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The similarity solution for the active region near the chimney gives rise to a boundary-
value problem. In this supplementary material, we restate the boundary-value problem in
the planar geometry (section S1.1) and discuss the existence and uniqueness of solutions
(section S1.2). This boundary-value problem is specified on the domain [0, δ], where the
width of the active region δ is a free boundary that we determine dynamically in the full
Chimney-Active-Passive-Zone model, in one of two ways. Firstly, we impose the chimney
spacing, which indirectly imposes the width of the active region. We determine various
asymptotic approximations for this case (section S2) and reach the important conclusion
that the active region must have a finite width in order to sustain convection. Secondly,
we impose the maximum-flux criterion to determine the width of the active region. We
consider this case in the limit Ω � 1, prove the existence and uniqueness of a chimney
spacing that maximises the solute flux, and find its asymptotic dependence on Ω (section
S3).

S1. The boundary-value problem in planar geometry

S1.1. Statement of problem

The similarity solution for the active region is governed by a fourth-order system of
ordinary differential equations, subject to four boundary conditions, on the domain [0, δ].
The governing equations are

Θ′′ = −ΨΘ′ + Ψ′Θ, Ψ′′ = −Θ′, (S1.1a, b)

and the boundary conditions are

Ψ′0Θ0 = Ψ0Θ′0, Θ′0 = Ψ0Θ0/Ω, Θδ = 1, Θ′δ = 0. (S1.2a, b, c, d)

The width of the active region must be determined both in the case of fixed chimney
half-spacing L, and in the case in which L takes the value that maximises the solute flux
(the maximum-flux criterion introduced in section 5).

In the case of imposing the chimney spacing, the size of the active region δ is determined
through equation (3.13) in the main paper:

G(δ,Ω) = LRmθ
1/2
∞ , (S1.3)

where

G(δ,Ω) = Ω−1/2(−Ψ′δ)
−1/2 (δ −Ψδ/Ψ

′
δ) , (S1.4)

which we can evaluate having solved the boundary-value problem (S1.1, S1.2).

† Email address for correspondence: dwr29@cam.ac.uk



2 D. W. Rees Jones and M. G. Worster

In the case of imposing the maximum-flux criterion, we look for turning points which
correspond to flux-maximising chimney spacings,

∂γ

∂δ
= 0, (S1.5)

where γ is proportional to the solute flux through the chimney and satisfies

γ(δ,Ω) =
1

2

Ψ0

Θ0
(δ −Ψδ/Ψ

′
δ)
−1
. (S1.6)

In both cases, the solute flux is then determined by equation (3.16):

FSolute = −Rmγ(δ,Ω). (S1.7)

S1.2. Existence and uniqueness of solutions

We first investigate the existence and uniqueness of solutions to the boundary-value
problem as follows.

Given Ψ0 and Θ0, we can combine (S1.2a, b) to find Ψ′0 and Θ′0. This gives us an initial-
value problem that we can solve on any domain [0, δ] (assuming the solution doesn’t a
singularity at a finite value of η). In this section, we restrict attention to Ψ0 > 0 (which
corresponds to flow into a chimney) and Θ0 in the range [0, 1] (since if Θ0 > 1, the depth of
the mushy-layer near the chimney would be less than that in the passive region, contrary
to experimental and numerical observations). However, this problem is well-posed for a
wider class of initial conditions.

A solution of the boundary-value problem must satisfy boundary conditions (S1.2c, d).
Therefore, we solve the initial-value problem introduced above to a high accuracy using
the MATLAB ‘ode113’ routine, with relative and absolute error tolerances of 1× 10−12

and 1×10−15 respectively. Then we use the MATLAB ‘isosurfaces’ routine to plot surfaces
Θδ = 1, Θ′δ = 0 (the required boundary conditions) as functions of Ψ0, Θ0 and δ.
An example of this is shown in figure S1, and the solutions are the intersection curves
highlighted. An alternative representation of these solutions can be obtained by taking
slices through figure S1 at fixed values of δ. This corresponds to making contour plots,
as shown in figure S2, and the solutions are the intersections of the contours Θδ = 1 and
Θ′δ = 0.

The solution branches can be categorised by the number of turning points of Ψ. The
first branch (starting from the right of figure S1, that is going from low to high δ) has
one turning point and each subsequent branch has an additional turning point. This
corresponds to the fact that Ψ′ = 0 ⇔ Θ′′ = 0 (from equation S1.1a). Physically, the
number of turning points corresponds to the number of convecting cells within the active
region. We have continued to higher values of δ and this pattern continues.

The first branch has a negative value of Ψ′δ and thereafter the sign of Ψ′δ alternates.
Thus the ‘even’ branches correspond to flow from the active to the passive region, and
therefore correspond to flow that is from the mushy layer into the liquid melt in the
passive region. This is inconsistent with the boundary conditions at the mush–liquid
interface (equation 3.2) and so is not a valid solution of the entire Chimney-Active-
Passive-Zone model. Hence G(δ,Ω) is defined only for Ψ′δ < 0. The other ‘odd’ branches
(the third, fifth, and so on) are in principle permissible. However, they are not consistent
with the overall Chimney-Active-Passive-Zone model in that the downwelling in the
passive region was assumed to set the vertical velocity scale away from the chimney.
Furthermore, these higher branches correspond to substantially lower-flux solutions of
the full problem (as proved in the case Ω � 1 in section S3). Therefore, motivated by
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Figure S1. Surfaces Θδ = 1, Θ′δ = 0 calculated in the case Ω = 1. The intersection curves,
highlighted with dashed yellow lines, correspond to branches of solutions.
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Figure S2. Contour plots at three values of δ at fixed Ω = 1. At these values of δ, there are
three intersection points, highlighted with yellow circles, corresponding the three branches in
figure S1. Note that the third branch changes rapidly as a function of δ near δ = 8.7 which
corresponds to the contours lying approximately tangentially.
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the maximum-flux criterion in section 5 of the main paper, we restrict attention to the
first branch.

The first branch of solutions starts at Ψ0 = 0, Θ0 = 1, δ = π/2, and there are
no solutions below δ = π/2. This interesting cut-off occurs because the solutions are
damped, nonlinear waves of frequency ω that is equal to a typical value of Θ1/2. But
Θ < 1, so ω < 1. The first branch corresponds to ωδ = π/2 (one quarter wavelength),
so δ > π/2. This argument will be formalised in an asymptotic approximation below
(section S2.2).

S2. The behaviour of the function G(δ,Ω) in planar geometry –
asymptotic analysis

S2.1. Introduction

In this section, we investigate the function G(δ,Ω), which is proportional to the chimney
spacing, in order to gain insight into the relationship between solute flux and chimney
spacing. We consider two asymptotic limits for the width of the active region δ. We
consider firstly the case δ is just above the lower cut-off at π/2, and secondly the behaviour
at high values of δ. These limits can be considered in the context of fixed chimney spacing,
which corresponds to imposing the value of G(δ,Ω). Note that the asymptotic limits
considered in this section do not correspond to the maximum solute flux.

S2.2. Solution for δ = π/2 + ε where ε� 1

There is an exact trivial solution of the boundary-value problem (S1.1, S1.2) for all values
of δ (namely Θ ≡ 1, Ψ ≡ 0), although G is not well-defined for this trivial solution, which
corresponds to a stagnant mushy layer.

For δ > π/2 there is a non-trivial solution. We compute its behaviour at δ = π/2 + ε
where ε� 1 asymptotically by finding an asymptotic expansion of the solution in powers
of ε. Let

Θ = 1 + εg1 + ε2g2 +O(ε3), (S2.1)

Ψ = 0 + εf1 + ε2f2 +O(ε3). (S2.2)

We substitute these equations into the governing equations and boundary conditions and
collect terms in powers of ε.

At O(ε), from (S1.1) the differential equations are

g′′1 = f ′1, f ′′1 = −g′1, (S2.3a, b)

and from (S1.2) the boundary conditions are

f ′1 = 0, Ωg′1 = f1 (η = 0), g1 = 0, g′1 = 0 (η = π/2), (S2.4a, b, c, d)

where we have used, for instance,

1 = Θ(δ) = Θ(π/2 + ε) = Θ(π/2) + εΘ′(π/2) +
ε2

2
Θ′′(π/2) +O(ε3)

=
[
1 + εg1 + ε2g2 + ε(εg′1) +O(ε3)

]
η=π/2

At O(ε2), from (S1.1) the differential equations are

g′′2 = −f1g
′
1 + f ′1g1 + f ′2, f ′′2 = −g′2, (S2.5a, b)

and from (S1.2) the boundary conditions are

f ′2 + f ′1g1 − f1g
′
1 = 0, Ωg′2 = f1g1 + f2 (η = 0),
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g2 + g′1 = 0, g′2 + g′′1 = 0 (η = π/2). (S2.6a, b, c, d)

S2.2.1. Solution of the first-order problem

The first-order equations are those of an unforced harmonic oscillator of frequency 1,
which, to leading order, is the average value of Θ1/2, as discussed in the argument for
the cut-off at δ = π/2. We combine (S2.3a, b) and solve subject to boundary conditions
(S2.4) – one of which is redundant because of the nature of the coupling – to find

f1 = A(Ω− 1 + cos η), (S2.7)

g1 = −A(1− sin η), (S2.8)

where A is an unknown constant that must be determined by solving the second-order
problem.

S2.2.2. Solution of the second-order problem

The second-order problem has the character of an oscillator of frequency 1 that is
resonantly forced by the first-order solution. This is evident upon eliminating g2 between
(S2.5a, b) and substituting equations (S2.7, S2.8) to obtain

f ′′′2 + f ′2 = A2[1 + (Ω− 1) cos η − sin η]. (S2.9)

We solve (S2.5a, b) subject to (S2.4a, b, c) to obtain

f2 = −B cos η +
A2

2
[(Ω− 1)(3 sin η − η cos η) + cos η + η sin η + 2η] + C, (S2.10)

g2 = −f ′2 +D, (S2.11)

where

C = (Ω− 1)(−B +A2/2),

D = B +A2 [π(Ω− 1)/4 + 1] ,

and B is another constant that could, in principle, be determined by proceeding to the
next order. Finally, we apply (S2.4d) to find that

A2

[
1

2
(Ω− 1) +

π

4

]
−A = 0,

so A = 0, in which case the leading order solution is trivial, or

A =

[
1

2
(Ω− 1) +

π

4

]−1

. (S2.12)

This means that we have fully determined the leading order problem and so can find the
leading order behaviour of G(δ,Ω).

S2.2.3. Conclusions

We can use this solution to compute the asymptotic behaviour of G(δ,Ω), which gives

G(δ,Ω) = 2Ω−1/2A−3/2ε−1/2 +O(ε1/2),

= 2Ω−1/2

[
1

2
(Ω− 1) +

π

4

]3/2

ε−1/2 +O(ε1/2). (S2.13)

In the special case Ω = 1, this simplifies to

G(δ, 1) =
π3/2

4
ε−1/2 +O(ε1/2). (S2.14)
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Figure S3. (a) is a log–log plot showing G(δ,Ω) at Ω = 1 (squares) and Ω = 2 (diamonds).
The asymptotic predictions from equation (S2.13) match extremely well (solid lines). Likewise
(b) is a log–log plot showing γ(δ,Ω) at the same values of Ω. Again, the asymptotic predictions
from equation (S2.15) match extremely well (solid lines).

Furthermore, we find the asymptotic behaviour of γ(δ,Ω):

γ(δ,Ω) =
1

4
ΩA2ε+O(ε2) =

1

4
Ω

[
1

2
(Ω− 1) +

π

4

]−2

ε+O(ε2), (S2.15)

which simplifies in the case Ω = 1 to

γ(δ, 1) = 4π−2ε+O(ε2). (S2.16)

These predictions match numerical results extremely well, as shown in figure S3.
These values of δ correspond to the lower branch of the relationship between flux and

Rayleigh number (see the dashed portion of the curves in figures 5 and 6 in the main
paper), so we find that at fixed chimney spacing L, FSolute varies with the inverse square

of L. In particular, since FSolute = −Rmγ(δ,Ω) and L = R−1
m θ
−1/2
∞ G(δ,Ω), we find

FSolute = − [ARmθ∞]
−1
L−2 = − [Rmθ∞]

−1

[
1

2
(Ω− 1) +

π

4

]
L−2. (S2.17)

Perhaps most importantly, this section formalises the argument that the minimum size
of the active region required to sustain convection is δ = π/2 (independently of Ω). This
demonstrates the important physical insight that there must be a finitely wide active
region, where baroclinic torque occurs, in order to drive convection through chimneys. It
is not the case that the buoyancy causes motion in the chimney and then the rest of the
mushy layer responds essentially passively.

S2.3. Solution for δ � 1

S2.3.1. Analytical discussion

Integrating equation (S1.1b), we find

Θ = −Ψ′ + c, (S2.18)

where c = Θδ + Ψ′δ = 1 + Ψ′δ. We find numerically that Ψ′δ → 0 exponentially: so for now
we consider this as an ansatz. If this ansatz holds, then c → 1 exponentially. Note that
c is also equal to Θ0 + Ψ′0, so with boundary conditions (S1.2a, b)

Θ0 ∼ 1−Ψ2
0/Ω. (S2.19)
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Figure S4. (a) is a log–linear plot showing (i) the exponential decay of −Ψ′δ. The best-fit line
is Ψ′δ = − exp(−1.013δ + 0.05746). (b) is a log–log plot showing the algebraic behaviour of (ii)
2−Ψδ, (iii) (Ψ0)c−Ψ0 and (iv) Θ0− (Θ0)c. The best-fit lines are (ii) Ψδ = 2− 12.11× δ−2.053,
(iii) Θ0 = (Θ0)c + 1.453× δ−2.082 and (iv) Ψ0 = (Ψ0)c − 0.9013× δ−2.088. Throughout Ω = 1.

If we substitute equation (S2.18) back into (S1.1a), then we find

Ψ′′′ + ΨΨ′′ + Ψ′(c−Ψ′) = 0. (S2.20)

Consistently with the exponential decay of Ψ′δ, this equation can be approximated at
large η by

Ψ′′′ + ΨδΨ
′′ + Ψ′ = 0, (S2.21)

which we can solve by positing the solution Ψ′ = emη. This implies

m2 +mΨδ + 1 = 0⇒ m = −Ψδ

2
± i

√
1−

(
Ψδ

2

)2

. (S2.22)

Let ω =

√
1− (Ψδ/2)

2
. Then

Ψ′ = e−ηΨ′
δ/2(A cosωη +B sinωη). (S2.23)

From figure S1, we observe that the first branch has precisely one turning point Ψ′ = 0.
This is consistent with ω → 0, or equivalently Ψ→ 2 from below. Numerically, we observe
that this is an algebraic process. Then equation (S2.23) shows that our assumptions are
self-consistent and Ψ′δ ∼ e−δ.

S2.3.2. Numerical results

We numerically integrate the equations to a high accuracy and find that the scalings
postulated on the basis of analytical arguments hold very well. We also find that Ψδ

approaches 2 from below in an inversely quadratic fashion, and find the behaviour of Ψ0

and Θ0. These tend to a constant value, which depends on Ω. This value can be found
most readily by integrating the equations to large δ subject to Ψδ = 2, Θδ = 1. When
Ω = 1, we find [(Ψ0)c, (Θ0)c] = [0.8216, 0.3250]. Figure S4 shows our numerical results.

S2.3.3. Conclusions

Numerically we can calculate the various pre-factors, which depend on Ω. However, it
is more instructive to fix Ω, so in this subsection, ‘∼’ includes a proportionality constant
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that could be determined in terms of Ω. Asymptotically as δ →∞
G(δ) ∼ e3δ/2, (S2.24)

γ(δ) ∼ e−δ. (S2.25)

High values of δ correspond to the upper branch of the relationship between flux and
Rayleigh number (see the solid curves in figures 6 and 7 in the main paper). Now L =

R−1
m θ
−1/2
∞ G(δ,Ω) so at fixed L, high values of Rm correspond to high values of δ. So

Rm � 1 corresponds to δ � 1 and so at high Rayleigh number

L ∼ R−1
m θ−1/2
∞ e3δ/2 (S2.26)

implies that

FSolute ∼ −R1/3
m θ−1/3

∞ L−2/3, (S2.27)

since FSolute = −Rmγ(δ,Ω) ∼ −Rme−δ. So at fixed chimney spacing, flux scales with the
cube root of Rayleigh number, and at fixed Rayleigh number, flux scales with chimney
spacing to -2/3 power. Therefore, at large chimney spacing, the solute flux decreases
with L−2/3. To our knowledge, this result has not been observed before, which may be
because having one convecting cell in a large region between two chimneys is unstable to
the formation of new convecting cells and new chimneys.

S2.4. Discussion – asymptotics and the maximum-flux criterion

These asymptotic limits elucidate a number of important features of the Chimney-Active-
Passive-Zone model, particularly the need for an active region, and the eventual decrease
of solute flux with L. Numerical calculations of G for intermediate values of δ, shown
in the main paper and reproduced in figure S5, additionally show that there is a global
minimum value of G, which corresponds to the minimum chimney spacing required to
sustain convection, and that γ is a bounded, positive function on π/2 < δ <∞. Let δm,
which depends on Ω, be such that ∂G/∂δ(δm,Ω) = 0, and let Gmin. be the minimum
value of G. Then the minimum chimney spacing is

Lmin. = R−1
m θ−1/2
∞ Gmin.(Ω). (S2.28)

Combined with our asymptotic observations, this shows that there is some δc which
maximises the flux on δm < δc <∞. We prove the uniqueness of the maximum in section
S3 for the case Ω� 1, but numerically we find that this holds in general.

S3. Asymptotic solution in the limit Ω→∞
In the limit Ω→∞, we can solve the leading-order problem entirely analytically. This

allows us to prove that there is a unique chimney spacing that maximises the solute flux,
a result which we find numerically for all Ω.

S3.1. Leading order solution

At large values of Ω, the solution of the governing equations (S1.1) is a weak departure
from the exact solution of no flow, discussed in section S2.2. Considering the boundary
conditions (S1.2a, b) at (η = 0) leads us to posit a regular expansion

Ψ = Ψ0 +
1

Ω
f(η) +O(Ω−2), (S3.1)

Θ = 1− 1

Ω
g(η) +O(Ω−2). (S3.2)
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Figure S5. Adaptation of figure 7(a) from the main paper, showing G(δ,Ω = 1), which is
proportional to the chimney spacing. The global minimum corresponds to the minimum chimney
spacing required to sustain convection. The asymptotic results derived in this supplementary
material for δ → π/2 (dashed red curve) follow the numerical results (solid blue curve) very
well. However, the δ � 1 results (not shown) only apply for much higher values of δ (see figure
S4).

We substitute into the differential equations (S1.1) and find that

g′′ + Ψ0g
′ + f ′ = 0, f ′′ = g′. (S3.3a, b)

The boundary conditions (S1.2) imply that

f = 0, f ′ = Ψ2
0, g′ = −Ψ0 (η = 0), g = 0, g′ = 0 (η = δ), (S3.4a − e)

Integrating equation (S3.3b), we obtain

f ′ = g − C, (S3.5)

where C is a constant, and substituting this into equation (S3.3a), we obtain

g′′ + Ψ0g
′ + g = C. (S3.6)

This has general solution

g =

[
A sin

(
η
√

1−Ψ2
0/4

)
+B cos

(
η
√

1−Ψ2
0/4

)]
e−Ψ0η/2 + C. (S3.7)

The boundary condition (S3.4b) with equation (S3.5) shows that

B = Ψ2
0, (S3.8)

and then boundary condition (S3.4c) shows that

A =

(
Ψ2

0

2
− 1

)
Ψ0√

1−Ψ2
0/4

. (S3.9)

Boundary condition (S3.4e) then determines the unknown Ψ0, which is expressed implic-
itly by

δ(α) =
arcsinα+ π(1 + 2n)/2

(1− α2)
1/2

, (S3.10)

where α = Ψ0/2, n is an integer and arcsin takes its principal value. These multiple
solutions, shown in figure S6, correspond to the multiple solutions discussed previously.
We restrict attention to α > 0 (such that flow is from the mush into the chimney).
Furthermore, there are no solutions if α > 1, so we need consider only 0 6 α < 1.
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Figure S6. Plot of solution curves for equation (S3.10) for the first four branches. Note that
there are no solutions for δ < π/2 as we found previously.

Finally, C can then be determined from boundary condition (S3.4d). In particular,

C = (−1)n2α exp(−αδ). (S3.11)

However, recognising that Ψ′δ = f ′(δ)/Ω = −C/Ω, we can restrict attention to the case
n even, thereby ensuring that Ψ′δ < 0, as discussed previously in section S1.2. Then
equation (S1.6) implies that

γ(δ,Ω) = C/2Ω, (S3.12)

so, under the maximum-flux principle, we maximise C(δ), plotted in figure S7, in order
to determine the solute flux, which is proportional to γ.

S3.2. Application of the maximum-flux criterion and discussion

As discussed above, we can restrict attention to the domain 0 6 α < 1, and since δ = δ(α)
on each branch (as specified by equation S3.10), we can also consider C as a function of
α. Now

dC

dδ
=

(
dδ

dα

)−1
dC

dα
=

1

δ′
(1− α(αδ)′) 2 exp(−αδ). (S3.13)

But

δ′(α) =
1

1− α2
+ α

arcsinα+ π(1 + 2n)/2

(1− α2)
3/2

> 0, (S3.14)

which, by substituting (S3.14) into (S3.13), shows that dC/dδ = 0 if and only if

1− 2α2 =
α

(1− α2)
1/2

(arcsinα+ π(1 + 2n)/2). (S3.15)

Now the left-hand side decreases monotonically from 1 to −1 and the right-hand side
increases monotonically from 0 to +∞, so by the Intermediate-Value Theorem, there
is a unique solution, α = αc, to equation (S3.15). Further, the positive function C(α)
satisfies C(0) = C(1) = 0, so this turning point must be a maximum. Having solved
equation (S3.15) numerically to find αc, we determine

δc = δ(αc) = 1/αc − 2αc, (S3.16)

Cc = C(αc) = 2αc exp(−1 + 2α2
c). (S3.17)

Therefore, we have proved the existence of a unique maximum flux on each branch
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Figure S7. The existence of a unique maximum flux, illustrated for the case n = 0, which is
the overall maximum-flux case. C can be interpreted as a function of α, as in (a), or δ, as in
(b).

of solutions. Furthermore, the overall maximum occurs when n = 0, which we prove as
follows. Define

h(α) = (1/α− 2)(1− α2)1/2 − arcsin(α), (S3.18)

which implies that

h′(α) = −(4 + 1/α2)(1− α2)1/2 < 0. (S3.19)

But h(α), which decreases from +∞ to −π/2 over [0, 1), satisfies

h(αc) = π(1 + 2n)/2, (S3.20)

and so as n increases, αc decreases. Then Cc = 2αc exp(−1+2α2
c) must also decrease with

n. Therefore, solutions with a greater number of convecting cells have a lower associated
solute flux, and the maximum-flux criterion leads us to consider solutions which have
only one convecting cell.

In the case n = 0, we find αc = 0.3582, δc = 2.0749, and Cc = 0.3407. This leads to
the asymptotic prediction

γc(Ω) ∼ 0.1704 Ω−1 (S3.21)

for the proportionality constant in the relation FSolute = −Rmγc(Ω), as is confirmed by
the numerical calculations presented in the main paper (see figure 8a).

This asymptotic limit proves the uniqueness of a the flux-maximising chimney spacing
in the limit Ω� 1. However, this result actually holds for all Ω. Indeed, this asymptotic
calculation captures a number of features relevant to all values of Ω. In particular, figure
S6 is structurally the same as a projection of the dashed curves in figure S2, which is the
case Ω = 1. Furthermore, a graph of γ(δ,Ω) along the first branch of solutions in figure
S2 corresponds to figure S7. Thus this asymptotic proof provides valuable corroboration
of our numerical observation that there is always a unique value of δ, and hence of L
such that the solute flux is maximised, and that we need only consider solutions with
one convecting cell.


