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Supporting material for the paper titled: 

Gas Flow in Ultra-Tight Shale Gas Strata 

By: Hamed Darabi, Amin Ettehad, Farzam Javadpour, Kamy Sepehrnoori 

Nomenclature 

A Cross-sectional area of cylindrical core, m
2
 

Dk Knudsen diffusion coefficient, m
2
/sec 

Dk,pm Knudsen diffusion coefficient in porous media, m
2
/sec 

F Slip coefficient 

K General permeability function, m
2 

L Length of cylindrical sample, m 

M molar mass, kg.mol
-1

 

Q Flow rate, m
3
.s

-1
 

R Universal gas constant, 8.314 J.K
-1

.mol
-1 

Ravg Average pore radius, m
 

Rnt Nano tube pore radius, m
 

T Temperature, K 

Vd Downstream reservoir volume, m
3
 

Vp Effective sample pore volume, m
3
 

Vu Upstream reservoir volume, m
3
 

Vs Sample cell volume, m
3 

 

Vstd Gas molar volume at standard temperature and pressure, 22.413×10
3 

m
3
.mol

-1 

a Ratio of sample storage capacity to upstream reservoir 

b Ratio of sample storage capacity to downstream reservoir 

cg Gas compressibility, Pa
-1 

k Permeability, m
2
 

kD Darcy permeability, m
2
 

ka Partial derivative of adsorbate density with respect to gas density 

kapp Apparent permeability in nano-tube, m
2
 

kapp,pm Apparent permeability in porous media, m
2
 

kn Knudsen number 

m Pseudo-pressure function, Pa.m
2
.s

-1
 

p Pressure, Pa 

pavg
 Average core pressure, Pa 

pd Pressure in downstream reservoir, Pa 

pd0 Initial equilibrium pressure, Pa 

pi Initial reservoir pressure, Pa 

pL Langmuir pressure, Pa 

pu Pressure in upstream reservoir, Pa 

pw Bottomhole pressure, Pa 

q Adsorbate density, mol.m
-3

 

qL Langmuir volume, cm
3
.g

-1 

r Distance from wellbore, m 

rw  Wellbore radius, m 

s1 Slope of the straight line part of ln(∆pD) versus time at late-time 

t Time, s 

tD Dimensionless time 
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z Gas compressibility factor (=1.0 for ideal gas) 

∆p Pressure difference between upstream and downstream reservoirs, Pa 

∆pD Dimensionless differential pressure  

∆mD Dimensionless pseudo-pressure function 

Φ Effective porosity contributed by adsorption 

α Tangential momentum accommodation coefficient 

µ Viscosity, Pa.s
-1 

ρ Gas density, kg.m
-3 

ρs Core sample density, kg.m
-3 

φ Porosity 

τ Tortousity  

 

Appendix A – Finite-Difference Numerical Solution  

The general material balance equation for one dimensional core sample is: 
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Equation A-1 is subjected to one initial condition and two boundary conditions, 
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where [ (1 ) ]aK     , P=p
2
, T=K/(μz). K is a general permeability function, which may 

represent either Darcy permeability or apparent permeability function. Figure A-1 shows the 

schematic gridding of a one-dimensional core sample. 

 

Figure A-1 Gridding in a one-dimensional core sample 

Central approximation is used in space and backward approximation is used in time to discretize 

Eq. A-1, 
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where n+1 refers to current time and n refers to the previous time level. Eq. A-5 generates N-2 

equations and N unknowns. By discretizing the boundary conditions, two independent equations 

are generated, 
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(A-6)
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Equations A-5 to A-7 are iteratively solved to find the pressure distribution over time. After 

finding the pressure distribution at each time step, all properties (ρ, μ, z, K and cg) are updated 

and used for next time step.  

 

Appendix B – Modified Analytical Solution to the Pulse-Decay Diffusivity 

Equation 

The material balance equation for gas flow in one dimensional core sample with adsorption and 

considering Knudsen diffusion and slip flow is 

(1 ) ,
q K p

t t x x

 
 
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    
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 (B-1) 

where q is adsorbate density per unit sample volume, K is a general permeability function, which 

may represent either Darcy permeability or apparent permeability function, and μ is gas 

viscosity. Using the chain rule to substitute the adsorbate density with density, we have 

.
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 (B-2) 

Using a Langmuir adsorption function (Cui et al. 2009): 
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Substituting Eq. B-5 into Eq. B-1, we have 
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Using the real-gas law, gas molar density is 

.
pM

zRT
   (B-7) 

Assuming gas viscosity µ, compressibility factor z, gas compressibility cg and apparent 

permeability to be constant, we substitute Eq. B-7 into Eq. B-6 and simplify to get 
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 (B-8) 

We define a general pseudo-pressure function  
0

2

p
K

m p p dp
z

   and reform Eq. B-8, 

2

2( (1 ) )g a

m K m

t c k x  

 
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   
, 0 x L  , 0.t   (B-9) 

Equation B-9 is subjected to two boundary conditions and one initial condition, 

( ,0) (0)dm x m , 0 ,x L   (B-10) 
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(0, ) ( )um t m t , 0,t   (B-11) 

( , ) ( )dm L t m t , 0.t   (B-12) 

The boundary conditions in Eqs. B-10 and B-11 vary over time and are determined by material 

balance at the inlet and outlet of core sample: 
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We define three dimensionless groups ∆mD=(mu-md)/(mu0-md0), tD=kapp,pmt/(µcgφL
2
), xD=x/L. 

With these dimensionless groups, the analytical solution can be found similar to Hsieh et al. 

(1981):  
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As discussed by Jones (1997), if the ratios of core sample pore volume to upstream and 

downstream reservoir volumes is one (a=b=1), then even terms of Eq. B-7 cancel; if tD>0.1, then 

the contribution of remaining terms to solution is less than 0.16% of the first term. The late 

transient solution of the Eq. B-9 is 

0 1ln( ) ln( ) ,Dm f s t    (B-16) 

where    2 2 2 2 2 2 2 2 2 2

0 1 1 1 1 12 ( ) ( )( ) / ( ) ( )f a b b a b a a b b ab a b ab                , 

 1 1 (1/ 1/ ) /
gu ds Kf A V V Lc   ,   2

1 1 /f a b 
 

and θ1 is the first solution to equation 

   2tan ( ) /a b ab     . With the experimental pulse-decay data, the plot of ∆mD on a log 

scale versus time yields a straight line at late transient time. The slope of the line, s1, is related to 

apparent permeability: 
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