Supporting material for the paper titled:

Gas Flow in Ultra-Tight Shale Gas Strata

By: Hamed Darabi, Amin Ettehad, Farzam Javadpour, Kamy Sepehrnoori

Nomenclature

Α	Cross-sectional area of cylindrical core, m ²
D_k	Knudsen diffusion coefficient, m ² /sec
$D_{k,pm}$	Knudsen diffusion coefficient in porous media, m ² /sec
F	Slip coefficient
K	General permeability function, m ²
L	Length of cylindrical sample, m
M	molar mass, kg.mol ⁻¹
Q	Flow rate, $m^3 \cdot s^{-1}$
R	Universal gas constant, 8.314 J.K ⁻¹ .mol ⁻¹
R_{avg}	Average pore radius, m
R_{nt}	Nano tube pore radius, m
Т	Temperature, K
V_d	Downstream reservoir volume, m ³
V_p	Effective sample pore volume, m ³
$\dot{V_u}$	Upstream reservoir volume, m ³
V_s	Sample cell volume, m ³
V_{std}	Gas molar volume at standard temperature and pressure, 22.413×10^3 m ³ .mol ⁻¹
a	Ratio of sample storage capacity to upstream reservoir
b	Ratio of sample storage capacity to downstream reservoir
C_{g}	Gas compressibility, Pa ⁻¹
ĸ	Permeability, m ²
k_D	Darcy permeability, m ²
k_a	Partial derivative of adsorbate density with respect to gas density
k_{app}	Apparent permeability in nano-tube, m^2
$k_{app,pm}$	Apparent permeability in porous media, m ²
k_n	Knudsen number
т	Pseudo-pressure function, Pa.m ² .s ⁻¹
р	Pressure, Pa
p_{avg}	Average core pressure, Pa
p_d	Pressure in downstream reservoir, Pa
p_{d0}	Initial equilibrium pressure, Pa
p_i	Initial reservoir pressure, Pa
p_L	Langmuir pressure, Pa
p_u	Pressure in upstream reservoir, Pa
p_w	Bottomhole pressure, Pa
q	Adsorbate density, mol.m ⁻³
q_L	Langmuir volume, cm ³ .g ⁻¹
r	Distance from wellbore, m
r_w	Wellbore radius, m
<i>s</i> ₁	Slope of the straight line part of $ln(\Delta p_D)$ versus time at late-time
t	Time, s
t_D	Dimensionless time

- *z* Gas compressibility factor (=1.0 for ideal gas)
- Δp Pressure difference between upstream and downstream reservoirs, Pa
- Δp_D Dimensionless differential pressure
- Δm_D Dimensionless pseudo-pressure function
- Φ Effective porosity contributed by adsorption
- *α* Tangential momentum accommodation coefficient
- μ Viscosity, Pa.s⁻¹
- ρ Gas density, kg.m⁻³
- ρ_s Core sample density, kg.m⁻³
- φ Porosity
- au Tortousity

Appendix A – Finite-Difference Numerical Solution

The general material balance equation for one dimensional core sample is:

$$c_{g}\rho\Phi\frac{\partial P}{\partial t} = \frac{\partial}{\partial x}\left(T\frac{\partial P}{\partial x}\right).$$
(A-1)

Equation A-1 is subjected to one initial condition and two boundary conditions,

$$P(x,0) = P_0, 0 < x \le L, \tag{A-2}$$

$$\rho c_{c_g} \frac{\partial P}{\partial t} = \frac{TA}{V_u} \frac{\partial P}{\partial x}, x = 0, t > 0, \tag{A-3}$$

$$\rho c_g \frac{\partial P}{\partial t} = -\frac{TA}{V_d} \frac{\partial P}{\partial x}, x = L, t > 0, \tag{A-4}$$

where $\Phi = [\phi + (1 - \phi)K_a]$, $P = p^2$, $T = K/(\mu z)$. *K* is a general permeability function, which may represent either Darcy permeability or apparent permeability function. Figure A-1 shows the schematic gridding of a one-dimensional core sample.

Figure A-1 Gridding in a one-dimensional core sample

Central approximation is used in space and backward approximation is used in time to discretize Eq. A-1,

$$\frac{T_{i-1}^{n}\Delta t}{\Delta x^{2}}P_{i-1}^{n+1} - (\frac{c_{g,i}^{n}\Phi_{i}^{n}}{z_{i}^{n}} + \frac{T_{i-1}^{n}\Delta t}{\Delta x^{2}} + \frac{T_{i}^{n}\Delta t}{\Delta x^{2}})P_{i}^{n+1} + \frac{T_{i}^{n}\Delta t}{\Delta x^{2}}P_{i+1}^{n+1} = -\frac{c_{g,i}^{n}\Phi_{i}^{n}}{z_{i}^{n}}P_{i}^{n} \quad i = 2, ..., N - 1, \quad (A-5)$$

where n+1 refers to current time and n refers to the previous time level. Eq. A-5 generates N-2 equations and N unknowns. By discretizing the boundary conditions, two independent equations are generated,

$$\left(\frac{c_{g_1}^n}{z_1^n} + \frac{AT_1^n \Delta t}{V_u \Delta x}\right) P_1^{n+1} - \frac{AT_1^n \Delta t}{V_u \Delta x} P_2^{n+1} = \frac{c_{g_1}^n}{z_1^n} P_1^n,$$
(A-6)

$$-\frac{AT_{N-2}^{n}\Delta t}{V_{d}\Delta x}P_{N-1}^{n+1} + (\frac{c_{gN}^{n}}{z_{N}^{n}} + \frac{AT_{N-1}^{n}\Delta t}{V_{d}\Delta x})P_{N}^{n+1} = \frac{c_{gN}^{n}}{z_{N}^{n}}P_{N}^{n}.$$
(A-7)

Equations A-5 to A-7 are iteratively solved to find the pressure distribution over time. After finding the pressure distribution at each time step, all properties (ρ , μ , z, K and c_g) are updated and used for next time step.

Appendix B – Modified Analytical Solution to the Pulse-Decay Diffusivity Equation

The material balance equation for gas flow in one dimensional core sample with adsorption and considering Knudsen diffusion and slip flow is

$$\phi \frac{\partial \rho}{\partial t} + (1 - \phi) \frac{\partial q}{\partial t} = \frac{\partial}{\partial x} \left(\frac{\rho K}{\mu} \frac{\partial p}{\partial x} \right), \tag{B-1}$$

where q is adsorbate density per unit sample volume, K is a general permeability function, which may represent either Darcy permeability or apparent permeability function, and μ is gas viscosity. Using the chain rule to substitute the adsorbate density with density, we have

$$\frac{\partial q}{\partial t} = \frac{dq}{d\rho} \frac{\partial \rho}{\partial t}.$$
(B-2)

Using a Langmuir adsorption function (Cui et al. 2009):

$$q_a = \frac{q_L p}{p_L + p},\tag{B-3}$$

$$q = \frac{\rho_s q_a}{V_{std}},\tag{B-4}$$

$$\frac{dq}{d\rho} = \frac{\rho_s q_L}{V_{std}} \frac{p_L}{\left(p_L + p\right)^2} \frac{1}{\rho c_g} \equiv k_a.$$
(B-5)

Substituting Eq. B-5 into Eq. B-1, we have

$$(\phi + (1 - \phi)k_a)\frac{\partial\rho}{\partial t} = \frac{\partial}{\partial x} \left(\frac{\rho K}{\mu}\frac{\partial p}{\partial x}\right).$$
(B-6)

Using the real-gas law, gas molar density is

$$\rho = \frac{pM}{zRT}.$$
(B-7)

Assuming gas viscosity μ , compressibility factor *z*, gas compressibility c_g and apparent permeability to be constant, we substitute Eq. B-7 into Eq. B-6 and simplify to get

$$(\phi + (1 - \phi)k_a)pc_g \frac{\partial p}{\partial t} = \frac{K}{\mu} \frac{\partial}{\partial x} \left(p \frac{\partial p}{\partial x} \right).$$
(B-8)

We define a general pseudo-pressure function $m(p) = 2 \int_{0}^{p} \frac{K}{\mu z} p' dp'$ and reform Eq. B-8,

$$\frac{\partial m}{\partial t} = \frac{K}{\mu c_g(\phi + (1 - \phi)k_a)} \frac{\partial^2 m}{\partial x^2}, 0 < x < L, t > 0.$$
(B-9)

Equation B-9 is subjected to two boundary conditions and one initial condition, $m(x,0) = m_d(0), \ 0 < x \le L,$ (B-10)

$$m(0,t) = m_u(t), t \ge 0,$$
 (B-11)

$$m(L,t) = m_d(t), t \ge 0.$$
 (B-12)

The boundary conditions in Eqs. B-10 and B-11 vary over time and are determined by material balance at the inlet and outlet of core sample:

$$\frac{\partial m_u}{\partial t} = \frac{KV_p}{\mu c_g \phi LV_u} \frac{\partial m}{\partial x}\Big|_{x=0}, t > 0$$
(B-13)

$$\frac{\partial m_d}{\partial t} = -\frac{KV_p}{\mu c_g \phi LV_d} \frac{\partial m}{\partial x}\Big|_{x=L}, t > 0.$$
(B-14)

We define three dimensionless groups $\Delta m_D = (m_u - m_d)/(m_{u0} - m_{d0})$, $t_D = k_{app,pm}t/(\mu c_g \varphi L^2)$, $x_D = x/L$. With these dimensionless groups, the analytical solution can be found similar to Hsieh *et al.* (1981):

$$\Delta m_D = \frac{m_u(t) - m_d(t)}{m_u(0) - m_d(0)} = 2\sum_{n=1}^{\infty} \frac{a(b^2 + \theta_n^2) + (-1)^n b \sqrt{(a^2 + \theta_n^2)(b^2 + \theta_n^2)}}{\theta_n^2(\theta_n^2 + a + a^2 + b + b^2) + ab(a + b + ab)} \times e^{(-\theta_n^2 t_D)}.$$
 (B-15)

As discussed by Jones (1997), if the ratios of core sample pore volume to upstream and downstream reservoir volumes is one (a=b=1), then even terms of Eq. B-7 cancel; if $t_D>0.1$, then the contribution of remaining terms to solution is less than 0.16% of the first term. The late transient solution of the Eq. B-9 is

$$\ln(\Delta m_D) = \ln(f_0) + s_1 t, \qquad (B-16)$$

where
$$f_0 = 2\left(a(b^2 + \theta_1^2) + b\sqrt{(a^2 + \theta_1^2)(b^2 + \theta_1^2)}\right) / \left(\theta_1^2(\theta_1^2 + a + a^2 + b + b^2) + ab(a + b + ab)\right)$$

 $s_1 = -Kf_1A(1/V_u + 1/V_d)/(\mu Lc_s)$, $f_1 = \theta_1^2/(a+b)$ and θ_I is the first solution to equation $\tan \theta = ((a+b)\theta)/(\theta^2 - ab)$. With the experimental pulse-decay data, the plot of Δm_D on a log scale versus time yields a straight line at late transient time. The slope of the line, s_1 , is related to apparent permeability:

$$K = -\frac{s_1 \mu Lc_s}{f_1 A(1/V_u + 1/V_d)}.$$
(B-17)