
Appendix A. The FEM model 

The equilibrium equation of a compressible, adiabatic and inviscid fluid for small perturbation is:  
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where pa is the excess pressure in the fluid (the pressure in excess of the static pressure) and u is the fluid 

acceleration. The constitutive behavior of the fluid is assumed to be inviscid, linear and compressible, 

therefore,  
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where 
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K is the bulk modulus of the fluid. We assume that all the variables of interest oscillate 

harmonically at an angular frequency of  (
i t
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 ). Using the harmonic time-derivative relations we 

obtain: 
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Combining the space derivative of Eq. (A 3) with Eq. (A 2), we obtain:  
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The FEM model accounts for scattering and multiple scattering. The fluid-structure acoustic model of 

ABAQUS couples the solid with the acoustic medium by equating the volumetric acceleration fluxes 

(Pierce 1991) at the interfaces.  

Appendix B. Analytical solutions 

For small radii, the axial force action on the particle increases as a function of Rs
3
, as King predicted (Fig. 

S1a). For larger radii, when the standing wave condition is broken, the Hasegawa’s solution for a 

travelling wave shows a different behavior from the numerical solutions (Hasegawa et al. 1980). This 

difference is likely due to the dimension of the emitter and reflector compared to the sphere. In fact, when 

a smaller flat reflector is used, the Hasegawa solution for travelling wave gives more precise results (Fig. 

S1b) 



 

Figure S1 a) Axial force acting on a rigid sphere for different radii with the standard configuration and b) a smaller flat 

reflector. 

 

Appendix C.  The CFD model 

The equations for conservation of mass and momentum are:  
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where p is the static pressure,   is the stress tensor is given by 
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where µ is the molecular viscosity and  I is the unit tensor. For compressible flows, the ideal gas law is: 
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where R is the universal gas constant and Mw is the molecular weight. The temperature, T, is computed 

from the energy equation. 
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where k is thermal conductivity. The two terms on the right-hand side of Eq. (C 5) represent energy 

transfer due to conduction and viscous dissipation. 

To solve the CFD model, a pressure-based solver was used, since it offers a better computational 

efficiency. On the other hand, the use of this solver imposes the use of a reflecting boundary condition 

(pressure outlet/inlet). To avoid interference with the core of the domain (inside the levitator), the domain 

(figure 1b) was extended accordingly by the number of periods required for the simulation to give a stable 

result (nt). For example, if nt =150, the radius of the external boundary with pressure outlet boundary 

condition was chosen longer than 150λ/2 (in our case, 112.5λ). The added computational cost was 

relatively low (10-15%), since the cells become coarser as farther from the core of the levitator. The mesh 

was unstructured, with the exception of a boundary layer of structured mesh around the sphere.  

 

Appendix D. The RMS pressure and velocity 

The RMS pressure and velocity decrease with moving away from the central axis (figure S2).   

 

Figure S2 The RMS pressure (left) and velocity (right) in the axi-symmetric levitator for the inviscid case. 



 

Appendix E. Asymptotic values 

In figure S3, typical asymptotic value plots are shown. For small radii, the solution is periodic (figure S3, 

left). For large radii, the solutions show strong oscillations around the mean value of the radial force 

(figure S3, right). 

 

Figure S3. Asymptotic values of the axial and radial forces for small (Rs/λ= 0.025, left) and large (Rs/λ=0.175, right) radii. 

The axial force reaches its asymptotic value before 80th periods, while the radial force keeps oscillating until the end of the 

sampling (nt=150). 

 

  

Appendix F. The acoustic boundary layer 

A boundary layer thickness comparable to the particle size is shown in figure S4 for Rs/λ =0.0025.  



 

Figure S4. Contour plots of the RMS particle velocity vrms (m/s) for Rs/λ = 0.0025 at different values of viscosity. It can be 

seen that already at air viscosity the boundary layer thickness is comparable with the particle size. The RMS value is 

obtained by averaging the periods 90 to 150. 

A boundary layer thickness negligible compared to the particle size is shown in figure S5 for Rs/λ =0.3.  

 

Figure S5 Contour plots of the RMS particle velocity vrms (m/s) for Rs/λ = 0.3 at different viscosities. 

 

Appendix G.  The acoustic streaming 

The small vortices at the upper and lower sides of the sphere are in the opposite directions than the 

streaming inside the boundary layer (figure S6). The streaming shows a similar pattern as in (Lee & Wang 



1990; Ohsaka et al. 2002; Rednikov et al. 2006). The mean axial and radial velocities explain the opposite 

drag force contribution on the radial and axial forces. 

 

Figure S6 Mean axial and radial velocities for a sphere of Rs/λ = 0.025 with two viscosities (air and air100). For low 

viscosity, i.e. thin acoustic boundary layer, only the external acoustic streaming can be seen compared to the sphere size. 

When the viscosity increases, the acoustic streaming within the boundary layer is clearly visible. The mean value is 

obtained by averaging over the periods 90 to 150.  

 

Appendix H. Effect of viscosity on big Radii 

Viscosity reduced the radial force for negative values, i.e. it increases in magnitude. The results for 

Rs=0.3λ, (negative radial force, lowest relative difference with FEM in the big radii range, figure 3b) 

illustrate this behavior (Table S1).  

Table S1. Values of Axial and Radial Force for Rs/λ = 0.3 at different viscosities. 

 Axial Force (N) Radial Force (N) 

Inviscid 6.9256e-05 -2.0798e-05 

Air 6.8328e-05 -2.0811e-05 

Air100 5.7848e-05 -2.0933e-05 

 

Appendix I. Ellipsoid  

Values of b/λ for equivalent-volume sphere radii. 

Table S2. Equivalent radius and semi-major axis of the ellipsoids. 

Rs/λ b/λ  (b/a = 2) b/λ (b/a = 5) 



0.025 0.0315 0.0427 

0.1 0.126 0.171 

0.175 0.220 0.299 

 

 

The RMS velocity significantly decreases with viscosity at the horizontal-axis extremities of the ellipsoid 

(figure S7). 

 

Figure S7 Contour plots of the RMS particle velocity vrms (m/s) for ellipsoid (b/a = 5) of different radii and viscosities. 
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