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Appendix A. Introduction

In this Appendix, we show the mathematical formulas and the explanations necessary
to make the main text self-contained. It is structured as follows: in Appendix B, we
show the results that concern the interaction of a first shock wave with a single mode
steady density field. The asymptotic expressions for the different modes downstream are
shown. In Appendix C, the interaction of a second shock wave with the perturbations
generated by the first shock is discussed. In Appendix D, we show a comparison between
the far field perturbations obtained in Appendix C and the transient state solutions
provided by a linear numerical code. In Appendix E we discuss the interference between
the different mechanism of vorticity generation when a shock wave travels through a
density entropy/vorticity perturbation field. For the hypothetic case of suitably chosen
perturbation amplitudes upstream, the vorticity or entropy fields downstream might be
canceled out. In Appendix F, the different asymptotic limits for the re-shock interacting
with a 3D isotropic density spectrum are shown. These limits are obtained for very strong
shocks M; > 1, M{ > 1 traveling into a highly compressible gas v — 1 <« 1, or gases
with high adiabatic index « > 1. Finally, in Appendix G we provide some tables of the
averaged quantities of interest (kinetic energy, acoustic energy flux, vorticity and density
perturbations) either for 2D or 3D, and for different values of v and shock strengths
My, M.

Appendix B. First shock/density field interaction

At first, we recast some recently published results concerning the single mode shock-
density interaction (Huete Ruiz de Lira et al. 2011), which are necessary to address the
interaction with a second shock. Before the first shock enters into the perturbed region
x1 > 0, the zero-order conservation equations (mass, momentum and energy) across the
shock lead to the Rankine-Hugoniot (RH) relationships:
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where, v is the gas compressibility, and p;, p; and ¢; refer to the density, pressure and
speed of sound ahead of the shock wave (i = 1) or behind it (¢ = 2). The upstream and
downstream shock Mach numbers are denoted by M; and My respectively. The factor R
is the density jump across the shock.

The perturbed density field (x; > 0) is described as p; + dp1 where dp1(z1,y) =
p1ex cos(kgyxq) cos(kyy), and the amplitude of the perturbations is e, < 1. Behind the
first corrugated shock, density, pressure and velocity fluctuations are created downstream.
We define the following dimensionless perturbation functions, factoring out the small
parameter e:
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In Eq.(B5), t is the time, and x5 is the longitudinal coordinate measured in the com-
pressed fluid reference frame (co-moving with the compressed fluid). It is convenient to
express the downstream perturbed equations in the compressed reference frame. The
quantities ¥y, and vs, correspond to the longitudinal and transverse velocity fluctua-
tions respectively, and po and py represent the dimensionless density and pressure per-
turbations. We also define the dimensionless time as 7o = kycot. The linearized mass,
z-momentum and y-momentum conservation equations are, respectively:
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besides, we assume adiabatic flow behind the first shock, which is written as:
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Combining Eqs.(B 6) and using Eq.(B7), we derive the pressure wave equation:
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To solve the above wave equation, we need the boundary and initial conditions. In our
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case, we suppose that the shock wave travels isolated, which means that there are no
waves reaching the shock surface from behind (Huete Ruiz de Lira et al. 2011). The other
boundary condition is obtained after linearizing the RH relationships [Eqgs.(B1)-(B4)]
and using the continuity of the tangential velocity. In linear theory, the time asymptotic
evolution of the perturbed quantities (pressure, density, velocity) does not depend on
the initial conditions. We write the linearized RH equations and the tangential velocity
conservation for the density/entropy pre-shock modulation ahead of the shock:
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where Eq.(B9) represents the mass conservation, Egs.(B10) and (B11) correspond to
the longitudinal and transverse momentum conservation respectively, and Eq.(B 12) is
the energy equation. Here, £as€x, = ky1), is the dimensionless shock ripple amplitude. We
solve the wave equation with the boundary conditions inside the compressed fluid using
the coordinates transformation suggested in (Zaidel’ 1960):

kyxy = rosinh xo ,
Ty = racoshxs , (B13)

here, xo = const represents a planar front defined by xo = cot tanh y5. The shock front
coordinate is therefore given by: tanh yos = M>, and we see that:

ros = Toy/1 — M2 . (B14)

It is convenient to follow the calculations shown in (Wouchuk 2001). We define the
auxiliary function hs:
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and the wave equation [Eq.(B8)] for the pressure perturbations is now rewritten as:
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We solve the wave equation above with the corresponding boundary conditions a the
weak discontinuity (ze = 0) and at the shock front [x2 = x95(t) = (D — U)t]. At the
shock front [Egs.(B9)-(B12)] can be recast as:
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where ( is the dimensionless frequency that characterizes the periodicity of the pre-shock
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density field:
RMs  ky

1M ky
We solve Eqs.(B 17)-(B 18) by using the Laplace transform. For any quantity ¢(x2,r2) we

define its Laplace transform by: ®(xso, s2) = fooo w(x2,72) exp(—sara)drs. In particular,
for the above shock front equations:
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where the initial value for the shock pressure pog is obtained with the aid of the conser-
vation equations at ¢ = 0T between the transmitted shock wave and the reflected sound
wave. We get:
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Furthermore, it is clear that the initial shock ripple amplitude is €259 = 0, as the shock
front is planar in shape when it arrives at xs = 0. Besides, as discussed in (Velikovich et al.
2007; Wouchuk et al. 2009), the isolated shock boundary condition is mathematically
represented by the relationship: Hag(s2) = Pa(s2)v/s3 + 1 — pag. After some algebra, the
exact expression for the Laplace transform of the shock front pressure fluctuations Pog
is obtained:
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The coefficient o, characterizes the pre-shock perturbed field:
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Inverting Eq.(B 23), we obtain the shock pressure evolution as a function of the dimen-

sionless time ro5 = To4/1 — M3:
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The asymptotic limit of po; is:
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where the coefficients e;1, e;2 and e, are the same as those obtained in (Velikovich et al.
2007; Huete Ruiz de Lira et al. 2011):
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Even though the cases with (p < 1 (long wavelength regime) and ¢y > 1 (short wavelength
regime) give rise to different asymptotic behaviors for the pressure field downstream, the
expressions shown in Eq.(B26) are continuous functions of {y. However, the pressure
asymptotic amplitudes (ej1, €2, and ey) are not continuously differentiable at (y = 1.
This last fact will be important when discussing the acoustic energy flux radiated by
the second shock. As studied in (Wouchuk et al. 2009; Huete Ruiz de Lira et al. 2011;
Huete et al. 2012), in the long wavelength regime, the pressure disturbances caused by
the shock front are evanescent waves, and the intensity decays exponentially behind the
shock front. On the other hand, if y > 1 the pressure fluctuations travel as stable sonic
fronts. Taking into account the Laplace pressure equation Eq.(B23) and the isolated
shock boundary condition, we see that the Laplace transform for the pressure in the
whole compressed fluid Py(gs, x2) is governed by the following equation:

~ cosh [qo — s — ~
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where ¢ = sinh s5. Thus, in the short wavelength regime, the asymptotic expression for
the pressure waves at any position o and any time 75 is given by:

P(z2,72) = €5 cos ((172 — k5S x2) (B29)

where the dimensionless frequency of the compressed fluid is (7, given by:

My /1
clzw. (B30)

We notice that that ¢; < {y because of the Doppler shift. The longitudinal wave number
kss associated to the sonic waves is:

ky V/1— M3

From Eq.(B31) it is easy to see that for 1 < (p < 1/4/1 — M3, the waves are emitted to
the right, and travel following the shock front, while for y > 1/4/1 — M2 the sound waves
escape to the left. We have seen that the corrugated shock induces pressure perturbations
downstream, and it also generates post-shock velocity and density disturbances. Once we
have obtained analytically the pressure field behind the first shock, we can calculate the
velocity field and the other quantities. In particular, it is interesting to study the unstable
growth at the interface zo = 0. Due to the vorticity created to the right side of the
interface, the weak discontinuity is Richtmyer-Meshkov unstable and develops a ripple
that grows in time. It is important to know the ripple evolution at 22 = 0 because it will
act as an initial condition for the re-shock ripple &,50(72). When the shock wave crosses
the interface, it gets a ripple distortion, and as can be deduced from the linearized RH
Eqs.(B9)-(B12), a velocity field is generated behind the shock. At ¢ = 0%, the Laplace
transform for the normal velocity at the interface xo = 0 is:

—cosh (g2 + x2s) Pa2s(q2 + Xxas)
sinh go

‘/2:1:(32 = sinh q2, X2 = 0) = ) (B 32)
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and the exact temporal evolution is given by:
1 c+100
Vau(s2, X2 = 0) exp (s272)ds2 (B33)
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where c is a real number to the right of the singularities of the integrand. On the other
hand, the Laplace Transform for the interface ripple £2;(s2) is:
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It is important to remark that, if {y > 1/4/1 — M2, the acoustic waves emitted by the first
shock wave fill the whole space downstream and arrive at the interface. These sound waves
put the fluid elements to oscillate with dimensionless frequency (; further modifying the
ripple evolution &;(72). Thus, the asymptotic ripple interface growth (before the second
shock crosses it) can be written as:
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where the initial value for the asymptotic ripple evolution is &5 = lim,, ¢ é [s§§2i(52)] ,
and can be expressed as:
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The asymptotic normal velocity, 059, = — cosh x2sPas (s2 = sinh x25) is given by:
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Between the weak discontinuity and the shock wave, there are velocity, pressure and

oo
Vogi =
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entropy perturbations. The shock ripple oscillations have two effects on the downstream
velocity field: on one hand, they generate pressure fluctuations [given by Egs.(B9)-(B 12)]
which create an irrotational velocity field. On the other hand, the shock corrugation ad-
justs itself to ensure the conservation of tangential momentum across the shock surface.
This last process is the mechanism responsible of generating post-shock vorticity. Hence,
the velocity field can be decomposed as the sum of the rotational and potential compo-
nents v = 95 + 9. Formally speaking, the dimensionless vorticity associated to the

rotational velocity perturbations is defined as:

A -
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with 1:)'2 = (D2s,D2y). In the absence of viscosity, the vorticity remains frozen to the fluid
particles, and can be expressed as:

kyl'g
Mo
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where Q9 Pos is the vorticity contribution directly related to the shock curvature, and the
second term Q3 cos (Rk,x2) takes into account the interaction between the zero order
pressure jump at the shock surface and the gradient of the upstream perturbed density
profile. We realize that both terms appear naturally together as a consequence of the
conservation of the tangential velocity. They are also written in (Huete Ruiz de Lira

et al. 2011):
M2 1) /2yM? —~ + 1
0y (M —1) M -+ 7 (B42)
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The asymptotic downstream vorticity is expressed as a piecewise function of (p:

Do(g > Ny) = \/(Qs + Q2611)2 + (92612)2 cos (Rkyz2 — ¢rot) » o <1 (B 44)
(Q5 + Qaes) cos (Rky o) , Co>1,
where tan ¢, is given by:
Qaern

tan ¢, = ————— . B45
brot Q3 + Qaen (B45)
The far field expressions of the rotational velocity components are:
l
~rot ~ Qyo1 €08 (REz o — ¢Tot) ; o<1
e > w2 { G (B G, (B 46)
- k, Q' sin (Rkzxo — ¢rot) , (o <1
rot ~ e rot L2 rot y S0 >
Bay (2> A) = R { o0 S (RE,22) L G>1. (B47)
The quantities QL,, and Q?,, are given by (Huete Ruiz de Lira et al. 2011):
\/(Qg + 92611)2 + (92612)2
L= , (B48)

1+ (R%)2
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Besides the rotational velocity field, there is an acoustic velocity contribution. From
the asymptotic pressure field described by Eq.(B29), and taking into account the Euler

equations behind the shock [Eq.(B 10)], we get the acoustic velocity field. We obtain for
the longitudinal and transverse components:

0550(x2, 72 > 1) = Qe cos (G172 — kSexa) (B50)

s —
rot —

(B 49)
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The frequencies ¢; and k5 have been defined in Egs.(B 30)-(B 31). So far, we have shown
the pressure, vorticity and velocity fields generated by the first shock; it also is interesting
to know how the density field is modified when the distorted shock travels through
this inhomogeneous slab. We decompose the downstream density into the acoustic and

entropic contributions:

17(215(1'3,7'2 > 1) = Qac sin (ClTQ - kg;-TCQ) ’ (B 51)

where:

p2(kyta, ma) = p5" (kyw2) + p3°(kyw2, 72) - (B53)
The acoustic contribution is given by Eq.(B 29):
3 (kyxa, 72) = Pa(kyta, 72) (B54)

and the entropic contribution can be obtained with the aid of RH Eq.(B12) after sub-
tracting the acoustic part:

~ ~ k. To 5p1(k7, 5(12)
(ko) = B, fos —— Yy B55
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1
E,= <M§M22 - 1) : (B56)

At the interface, the entropic field perturbations generated by the first shock are given
by:

1— MZMZ(R—1)
2MEMy + ME+1 7
In the absence of thermal conduction, the entropy perturbations are frozen to the fluid.
We use the asymptotic expressions for the shock pressure dynamics to calculate the far
field entropic density profile:

p5i = Eppao + € = (B57)

o L, cos (Rkyws — ¢en) , G0 <1

P > X) & { : cos (Rk,x2) G=>1 (B58)

where the coefficients QL,, and Q%,, are given by (Huete Ruiz de Lira et al. 2011):

L= B2 (e +ed) +2B,en +1, (B59)

o = \/Egeg +2E,es+1, (B 60)
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and the phase ¢, is:
(1— M2M2) s
M2M2 + (1 — M2M2)e;

tan ¢e, = (B61)
In the long wavelength branch ({y < 1) the vorticity eddies and the entropy spots are spa~
tially shifted because ¢ ot # @epn- This fact will be important later on, when considering
the re-shock of the turbulent field.

Appendix C. Second shock launched into the compressed perturbed
fluid

The second shock wave is launched after a time At following the first shock wave. We
assume that the slab length L and the time delay At are large enough as to ensure that:
1) the sound waves emitted by the first shock have disappeared, and 2) the perturbations
left by the first shock have reached their asymptotic regime by the time Ats. The details
on how L and At are chosen to meet these constraints have been given in Section 4
of the main article. From here on, we analyze the second shock perturbation dynamics
under the assumption that those requirements are met.

Once the second shock enters into the perturbed region (z2 > 0), it reacts generating
additional vorticity, entropy, and radiating sound into the re-compressed fluid. We write
the conservation equations behind the second shock in the (x3,y) reference frame (co-
moving with the re-compressed fluid particles). The linearized mass, z-momentum and
y-momentum conservation equations are, respectively:

Ops _ OV B

(97'3 B 8(ky $3) 3

Ovzz _ Ops

ors 0k, x3)’

03y .

ory — D3 (C1)

We also assume adiabatic flow behind the second shock, which is represented by:

Ops  Ops3
s ZPs C2
873 87’3 ( )

Combining Eq.(C1) and using Eq.(C2) we get the wave equation for the pressure per-
turbations downstream of the second shock:
9°ps 9*ps
= — Ps . C3
02 = O(kyas)?  ® (©3)

Our new region of interest is bounded between the second shock and the whole fluid be-
hind (up to x3 = 0). We also adopt here the isolated shock boundary condition assuming
that the piston is far enough from the shock. By the time the second shock is launched,
only the rotational and entropic perturbations generated by the first shock will affect the
second shock perturbation dynamics. Under these assumptions, we write the linearized
RH conservation equations and the tangential velocity conservation across the second
shock:

dés v+ 1._ MIR 6ps  MLIR' dvg,

drs  AMLTPT T2 T UM ey

(C4)
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Svze  MP+1_ MR —1) dp2 MR dvay

_ _ C5
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ops 1 dpo
R o
5 MLR'
U0 MR - 1) + 2 22 (C7)

C3 M { Co

As we mentioned in the main text, M| and M} refer to the upstream and downstream
second shock Mach numbers, respectively, and R’ is the density jump across the second
shock. The subscript 3 refers to the re-compressed fluid perturbations. In comparison
with Egs.(B9)-(B12), we realize that the rotational velocity field is now added to the
upstream perturbed quantities, in the right hand sides of Eqgs.(C4)-(C 7). We also write
the relationships between the unperturbed quantities across the second shock, that result
from the zero-th order RH equations:

D’ 1) M2
R/:@: — (ry—"_ ),21 , (08)
pr D' —U ~ (y—1)MP+2
D —U (y—1)MP +2
M = = 1
2 cs 2yMPZ —y 41" (C9)
2yM!?? — v+ 1
bs _ 2y —y¥ (C10)
y2) v+1
e _ V/(@yMP —y + D[y — M + 2] 1)
Co (v + 1)Mj '

The initial conditions for the second shock evolution are given by the initial shock cor-
rugation and the initial shock pressure perturbation. The corrugation is given by the
interface corrugation at that time, which is growing due to the RMI [see Eq.(B 36)]. On
the other hand, the initial shock pressure is:

) MPMP(R ~-1) oM{MPR .
P30 = 1 2( ) p‘l_ 1 2 t-/ (C12)

2]\/1{2]\4;—%]»_/[{2_’_]\4'{2 21 QAI{QAfé+Af{2+]\/f{21)2ml

where pSP and 05%¢ correspond to the initial values of entropy [see Eq.(B57)| and z-
velocity [see Eq.(B 38)| respectively generated by first shock at ¢ = 0. The other bound-
ary condition is given by the second shock wave, and, as it is a moving boundary, the
wave equation (C3) is also solved following the transformation used in Eq.(B 13) (Zaidel’

1960):

kyx3 = rgsinh x3 ,

73 = r3cosh x3 . (C13)
The wave equation [Eq.(C 3)| is rewritten as:
9ps Ips3 9°p3
2 2
: y—— Py = —— . C14
T3 o2 +173 Brs + r5p3 e (C14)

We also change variables inside the RH equations [Egs.(C4)-(C7)] and get a system of
partial differential equations over the variables (rs, x3) that couple ps and &.s. We omit
here some of the mathematical details, which are the same as those used in (Wouchuk
2001; Wouchuk et al. 2009). To rewrite Eqs.(C4)-(C7) using the coordinates (r3, x3), we
distinguish between long ({y < 1) and short ({y > 1) wavelengths for the vorticity and
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entropy fields. The linearized RH equations across the second shock for {y, < 1 are given
by:

1 9ps
r3s OX3

TS 2 O

xse  2M{2Mj drs, V1 — M2

l l
X |: ]\2315 sin (<0r3s R/¢rot) - ;n i (C(/Jr?)s - R/¢en) ) (C 15)
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M)R'

! 2 / /

en COS (COT?)S - R ¢en) ) (C 16)
2,/1— MP
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and for the short wavelength regime, (noting that now it is ¢e, = ¢ror = 0) we have:

]. 8]33 _ M{z +1 dﬁBs Méz(R/ )g
T35 OX3 |xa. 2M{2 M} drss V1-— "
M. Mj(R — ,
+ Qm% sin (Coras) — 2712(#)&) sin (Coras) (C17)
1
d& s y+1 MR/ ,
= s T &rot ——F——= €08 ((y73s) —
dras 4M§ /71 — D3 Q; tM - M’Q (CO 3 )
MR ,
— ——=——cos ((yr3s) - C18
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The amplitudes Q' ,, Q3,,, @', and Q2 are the asymptotic amplitudes of the rota-
tional and entropic modes ahead of the second shock, and their values are given in
Eqgs.(B48),(B49),(B59) and (B 60) respectively. The phases ¢ror and ¢ep, are defined in
Eqgs.(B45) and (B 61). We notice that ¢} can be expressed as a function of the pre-shock
wavenumber vector components, shock intensities (first and second) and the gas com-
pressibility v [see Eq.(2.2) in the main text]. A distinguishing feature of the re-shock
problem is the possibility of generating two branches (long or short wavelength) behind
the second shock either for (o < 1 or (p > 1. Mathematically, this fact is represented
by the two sets of linearized RH equations above. As has been done for the first shock
problem, it is convenient to define the derivative pressure function hs as:

~ 1 6p3

hs s Ovs (C19)
To solve the above differential equations, we also take the Laplace transform, as done
in the previous subsection. Equations (C 15)-(C18) are transformed into an algebraic
system. We define the Laplace Transform over the variable r3 of any quantity ¢ as:

P(s3,x3) :/ P(x3,73)e” 3" drs . (C20)
0

Thanks to the isolated shock boundary condition for the second shock, we can see after

some algebra that:
Hs(s3) 2133(53)\/5%4'1—]530 : (C21)
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Hence, the linearized RH equations at the second shock front can be recast for {y < 1 as:

- MP+17 - MP(R —1) -
Hs :_17 P ’_~j|_27rs’
3 (83) 2M{2Mé 53 3(83) P3o 1 —M2/2 5 (83)+
L o MR = )G Gheos (R'6pur) = sysin (Rrmr)
T 3T
B . MY(R — 1)) ¢ cos (R den) — s3sin (R ¢en) (C22)
en 2 Sg +C(l)2 ’
_ o + 1 ~
5$3&,5(83) —&rsg = ———————=P3(s3) +
3&rs(83) —&rso NI 3(53)
n ! MR Cosin (R ¢rot) + 53 c08 (R'drot)
rot M{ /71 — Mé2 S% + C62
_ l MQ/RI C(I) sin (R/¢en) + 83 cos (R/¢en) (C 23)
en2 1 — Még S% + C(/)Z )
and for (p > 1:
B M/2+1 ~ M/2(R/—1)—
Hsq(s 2—17[8138‘—~:|—277‘58+
3 ( 3) 2M{2Mé 3 3( 3) P3o 1 —M2/2 é- ( 3)
L o ME-DG G ME-DG G 2
rot M{ S§+<(I)2 en 2 Sg +<—(/)2 )
$3&rs(83) —Erso = 7——’—1153(83) +
AMY\/T — M2
+ 1 MQ/R/ S3 i MéR/ S3 (C 25)

M- MRS A T ME S G

From Egs.(C 22)-(C 25), we obtain an exact and closed expression for the Laplace trans-
form of the pressure perturbations at the second shock [see Eq.(2.3) in the main article].
To obtain the asymptotic expression for the shock pressure dynamics, we study the
residues of the shock pressure Laplace transform in Eq.(2.3). In order to study the shock
pressure produced by the vorticity (p4,), and the generated by the entropic field (ps,),
we decompose the pressure behind the shock in the form ps, = i, + p5,. The asymptotic
expression (rss > 1) for the vortex-component of the pressure perturbation is:

< . i‘ot 621 COs (C(/)T3S - R/¢7”Ot) + 622 Sin (C(I)rfis - R/(brot) 9 C(/) S ]-
CO = 1: M I / _ R />
Y 1| el cos(¢rss brot) , >
BTN s 1 @] oheos (Gras) + ey sin (Ghras) LGt
ML e cos (Gorss) G >1,
(C26)

where we note [see Eqs.(C 13)] that r3s = 734/1 — M2, The entropy-component of the
pressure perturbation is:

C < ]- : _% 621 cos (467"33 - R/(ben) + 6;2 SiIl (C(/)T3s - R/¢en) ) C(l) S 1

N B G

P3s = Go>1: @2, | e cos(Coras) + eposin (Coras) LG <1
> 2 e’ cos (¢rss) a1,

—~
Q
[\
3

~—
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The coefficients e}, €5, and €], are:

MMy [M? — (MP2 +1) ] o

/

€n = 2
AMPMBCE (1= GR) + (M2 — (M2 +1) ¢

y AMMEG V1 = GF o

12

AMPMPCR (1= G) + M — (M +1) ¢
oo 2MP2MS o (C28)
T 2MPMYGE 1+ (MP 1) - M

where o/ is:
/ 12 12 / 12 ‘7\{[{2
o =2M"MZ(R' = 1) | (6" — —g— | - (C29)
M2 —1
Both vortical and entropic contributions to the shock pressure evolution can be combined
into a single expression, which is given in Eq.(2.4) in the main article and repeated here:

<1 w1 cos (( Yrss )+ myuzsin( grss ), ¢ <1
Pas(rse > ) d L msrcos(Goras ) msasin(Gors, ), G 21
s s CO >1 Tsl1 COS( C(/)Tﬁis ) + g2 Sin( C(I)TSS ) , C(/) S 1

Tss COS( C(l)r3s ) ) C(l) Z 1 )

where the amplitudes are given by:

l Ql
i = D22 (e 08 (R'drer) — el sin (7' 6yn)] — 22 el 08 (R ) — ey s (')
1
Qﬁ“ot / . / / / Qlen ! . / / !
M2 = [e]7 8in (R ¢rot) + €j5 €08 (R Prot)] — - [€]1 S0 (R Gen) + €j5 €08 (R pen )]
1
l l
sl = 6]2\27 el cos (R ¢rot) — Q;” el cos (R pen)
1
Qiot . / len ! /
Msa = YT e sin (R ¢rot) — 2 el sin (R ¢en) |
1
; t / zn /
Tsil = ]\Z & 9 €1
S " S
I /
Tsl2 = ]\Z Clg — 5” €12
S S
Tos = —0bel _ Xen ol (C30)

M{ s 2 s

As has been shown in the previous section, the Laplace transform for the pressure at any
point of the re-compressed fluid is:
5 cosh g5 — (X35 — X3)] 5

Ps3(q3,x3) = cosh g P [q3 — (x35s — x3)] » (C31)

where g5 = sinh s and 0 < y3 < y3s. If we substitute Ps, from Eq.(2.3) into Eq.(C31),
we notice that we may have new poles at +i(;, where | = cosh [cosh71 ¢ — (x3s — x3)].

In the previous Appendix B, we have seen that the first shock generates a vorticity
field behind it, generated by the shock curvature and the baroclinic interaction. In the
re-shock problem, where the second shock travels into the perturbed field generated by
the first shock, a new vorticity field is generated downstream. We define the dimensionless
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vorticity behind the second shock as:

03,

Gy =

- (%D X {73) , (C32)

ky C3

where the operator ﬁgD is:

- 0 0
Van = <8kyx3 ’ 8kyy> . (033)

The vorticity generation behind the second shock is given in Eq.(2.13) in the main article,
and the asymptotic vorticity field is given in Eq.(2.17) and repeated here:

wyy cos ( R’ Rkyxs ) +wyesin ( R Rkzxs ), ¢(<1
wis1 cos ( R’ Rkyx3 ) + wisesin( R’ Rkyxs ), ¢h>1
wgp €08 ( R'Rkgxs ) + wgesin( R’ Rkyxs ) , ¢ <1
wgs cos ( R'Rkzx3 ) , ¢ >1.
The corresponding amplitudes of the asymptotic mode are:

Q/
M’ [

win = Qf«ot{Qll Ccos (R/¢rot) €[1 COS (R ¢rot) €12 sin (R/¢rot)]} +

QL, {2 cos (R ¢en) — % [er11 cos (R ¢en) — etz sin (R ¢en)]}

. Q)
wyg = QL sin (R ¢ror) + M’ [er1 sin (R ¢rot) + €12 c0s (R ¢ror)|} +
/
n{Q3 sin (R GDen) — [ell sin (R ¢en) + €12 cos (R ¢en )]}
/

Wis1 = erot ( ) COS R (brot + Q <Qg (;263) COs (ngben) s

l Q/Q . /
Wis2 = Qrot Sll’l R ¢rot + Q Qg - 763 S11 (R (z)en) y

Q Q)
Wsi1 = Q’rot <Q/ ]\41 ) + Qen ( 3 2/6l1) )

Q) . QY
Wgi2 = Qrot M/ - anfelQ )
Q’ Q’

As we did for the second shock pressure perturbation, we separate the vorticity field left
by the second shock into the part generated by the vortical structures ahead w3 and the
part due to the entropic spots &§. Hence, we can study how these contributions interact
to create the new total vorticity field behind the second shock. We make w3 = &§ + &%,
where:

wjyy cos ( R’ Rkyxs ) + wjysin ( R’ Rkyxs ), () <1
wpyy cos ( R’ Rkyxs ) + wigsin( R'Rkgxs ), () >1
wyy cos ( R'Rkyxs ) + wlysin( R'Rkgxs ), () <1
w?, cos ( R'Rkyxs3 ) , ¢ >1.
(C35)
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Ficgure 1. Different contributions for the vorticity field left behind the second shock for

My = Mj = 2.0, ko/ky = 1/5, and for v =1 < 1, (o = 0.462 (a), v = 5/3, (o = 0.349
(b), and v > 1, o 22 0.233 (c).

wijy cos ( R’ Rkyxs ) + whysin ( R’ Rkyxs ), () <1

<
sl oy ] TN ik cos (R Rk ) S wisin( RRE,zs ) G > 1
A E AT oy, [ wieos (BB ) tulysin( R'Rkay) G <1
0= w, cos ( R'Rkzx3 ) >,
(C36)

where the amplitudes w™* and w® are the part proportional to Q¢ and Qe in Eq.(C 34)
respectively. We plot both contributions together with the total vorticity field for M; =
M{ =2, k;/k, =1/5, and different gases in Figure 1. We observe remarkable differences
between highly compressible gases v — 1 < 1, and gases with a higher adiabatic index
~ > 1. The phase shift that appears in Figure 1(a) between the entropic and vortical
contributions gives rise a negative interference between both terms. In contrast, for the
case studied in Figure 1(c), we observe a total positive interference between both con-
tributions. Finally, for a gas with v = 5/3, in Figure 1(b) we observe a slight phase
shift between both parts. Therefore, the small negative interference is not dominant for
monatomic gases under these conditions of shock strengths and upstream mode spatial
frequency. The spatial shift only appears outside of the region where (y > 1 and ¢ > 1
simultaneously.

From the conservation equations (C1), it can be seen that the velocity perturbation
field behind the second shock satisfies the following differential equation:

%05 - - -
% Vap x (vw X 173) T V2,0 . (C37)
03

As done for the single shock/entropy interaction, the velocity field generated behind the
shock is decomposed into rotational and acoustic contributions:

=, ~rot ~ac

U =1y + U5 . (C38)
In the absence of viscosity, the rotational mode is steady, and hence, the time dependence
disappears in the above Eq.(C 37):

~rot

v%DﬁS = —62D X (62D X 1%;“) = —ﬁgp X (33 . (C 39)

The solution of Eq.(C39) has been shown in Eqgs.(2.18)-(2.19). The corresponding am-
plitudes amplitudes are:

p) 2 2 2
o’ VWi Wiy o _ VWi T Wi
)

rot,ll , 2 rot,ls — , 2
14 ( BBk 1+ ( BBk
Ky ky

Vw2, + w? W,
Q{r'ot,sl = <t =t Ql = ] . (C 40)

RERE ) rotes R’ Rk, 2
L () o ()
Y Yy
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Ficure 2. Different contributions (entroplc and vortical) for the rotational velocity field left
behind the second shock for My = My = 2.0, ks /ky = 1/5, v — 1 << 1, (o = 0.462.

We recognize new phases associated to the vortical mode in the arguments of Eqgs.(2.18)-

(2.19), they are:
S
Protul o

(b;ot,sl = ta’nil (w5l2> . (C 41)

Wsi1

w,
/ o —1 1s2
¢’I"Ot,l8 = tan ( ) )

Wis1

As we did for the vorticity field, it is interesting to separate the rotational velocity
field into the components generated by the vortical and entropic perturbations ahead of
the second shock. The corresponding values are the same of those shown in Egs.(C 40)-
(C41), by just replacing w by the corresponding w? and w®, as done in Egs.(C 35)-
(C36). In Figure 2, we plot the vorticity contribution in blue, superposed to the entropic
contribution in orange for My = M| = 2.0, k;/k, = 1/5, v — 1 << 1, ((o = 0.462),
which correspond to the same values that those used in Figure 1(a). As happened with
the vorticity field, both vortical and entropic contributions interferes negatively to create
a downstream rotational velocity field with less kinetic energy.

On the other hand, the acoustic velocity field is governed by the sound wave equation:

2 5ac¢
07U,
2 2
0%13

In the asymptotic regime, the acoustic velocity field is a piecewise function of {0 as can
be seen from Egs.(2.20)-(2.21) in the main text. The amplitudes @,,.; and Q;

MIC [r12
Quucy = C’z : ; 0 \/ fo1 Tz s
b—
/ 2

- 8S -

ac,s — M ,2
CO - 2 0o 1

= V2,05 . (C42)

ac,s
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We remind that, the condition to have stable sound waves behind the second shock, is
mathematically given by ¢} > 1 [See Eq.(2.2) in the main text].

In Eq.(2.23), the density-entropic field generated behind the second shock is shown,
together with the corresponding asymptotic expression [see also Eq.(2.25)]:

Q/en,u cos ( R'Rk,x3 — ¢/en,ll ) ;G <1

G <1: ) / / /
P @s > Ay) (s os ( RBkews = 9l ) 0 G 21
y) =
CO > 1: Ql@n,sl COSs ( R/kaifd - (b/en,sl ) s Cé <
len,ss COS( R/er.’lfg ) 9 C(l) Z 1 9

where the amplitudes are:

Q/en,ll = \/ dl2l1 + dl2l2 ’ Q:an,ls = \/ dl251 + d1252 ’
Q/en,sl = \/ dgll + d§l2 ’ Q/en,ss = dSS . (C 44)

The coefficients dy;, d;s, dss and dgs are given by:

/

E
dlll = Ql —-£ [621 Cos (Rl(brot) - 622 sin (Rl(brot)] -

rotM{
E/
b= ep cos (R gen) — €y sin (R ¢en)] + QL cos (R ¢en)
eny [e71 cos ( en €2 en en en) 5
E/
d — O TP g R/ / R/ -
12 Q’““M’ [eg1 81 (R @rot) + €15 cos (R ¢rot)]
1
E/

- Ql ,J [621 sin (R,¢en) + 622 COS (R/¢en)] + Qfan sin (R/¢en) )

E B
dlSl = Qiotie/ Cos (R/(brot) + Qle” <_p€/s + 1) COs (R/¢en) )

M >
E' E'

djso = lmt—p,e’s sin (R ¢rot) + QL,, (pels + 1) sin (R ¢en)
M )

/

s EP / s El” /
dsp1 = thﬁen + Q2 et L,
1

s E; / s E; /
dsl2 = Qrotﬁ{em + Qen _?GIZ +1 ’
E’ E’
dss = iotﬁ‘)/efs + an (—;6; + 1) ’ (C 45)
1

and the phases of the entropy spots are:

d d
(blen = tan_l ( ll2> ) (b:-:n s — tan_1 ( l52> )
’ di ’ dis1

¢ = tan”! (ZS”> . (C 46)

sl

Appendix D. Linear Numerical Simulations

We compare here the analytical results to numerical calculation done with the Linear
Perturbative Code (LPC) described in (Morice & Jaouen 2003; Clarisse et al. 2004). The
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code solves simultaneously the one-dimensional fluid equations for the mean flow and
their linearized form for three dimensional perturbations. The set of 3D-linearized equa-
tions is reduced to a 1D system for the modal components of the linear perturbation using
a Fourier decomposition in the transverse plane in planar geometry. The axial geometry
is described by a sinusoidal function cos(kyx + ¢). A linear Lagrangian perturbation ap-
proach is considered here. A Godunov-type scheme including high order extension is used.
Heat conduction, radiative transfer and viscosity are neglected, in correspondence with
the linear model developed in the previous Appendices B and C. Perfect gas equations
of state are used with a polytropic exponent ~. Mesh refinement shows the convergence
of calculations. In order to compare the numerical results with the asymptotic analytical
functions obtained in the previous section, we set two different shock waves propagating
in a row in the same box. As the first shock is subsonic with respect to fluid behind, any
subsequent shock will catch up the previous one. This configuration adds a restriction
in the second shock strength, because high second Mach numbers M imply that the
second shock catches up the first one ahead before the asymptotic regime is achieved.
Besides, as we do not consider the interaction between the second shock and the acous-
tic flux emitted by the first shock front, we only consider the cases in which (4 < 1,
in other words, we only compare the numerical cases where the pressure waves emitted
by the first shock decay exponentially, and hence, they do not interact with the shock
behind. This assumption guarantees that the second shock travels interacting only with
the rotational and entropic modes generated by the first one. In that sense, both numer-
ical and analytical results complement each other, because the numerical work allows
facing more complex situations and theoretical work provides analytical scaling laws for
the whole range of parameters. In Figure 3 we plot two numerical simulations for the
density field superposed to the analytical asymptotic behavior predicted by Egs.(2.25).
The perturbations are analyzed in the laboratory system of reference (z1,y), where the
first shock moves with relative shock velocity Dz1. We see how both shocks amplify the
density field and compress the initial entropic longitudinal wavelength (a factor R for
the first shock and R’ - R for the second shock). For both figures, the shock intensities
are M; = 2 and M| = 1.2 and the gas has an adiabatic index v = 5/3. The upstream
density profiles in Figure 3(a) and Figure 3(b) are characterized by k,/k, = 1/5 and
ky/k, = 1/2 respectively. We observe that there are no acoustic waves emitted by the
first shock in any case ({o = 0.349149 and ¢, = 0.872872 respectively). Nevertheless, the
characteristic shock oscillations for the second front are ¢ = 0.941947, and (|, = 2.35487,
respectively, and hence, the second shock emits sonic stable sonic waves in the second
case (¢ > 1).

From Figure 3 we notice that the numerical simulations agree very well with the
asymptotic theoretical results shown in Appendix C.

Appendix E. Suppression of the downstream rotational or entropic
field

We have seen that, for certain conditions, the vorticity generation behind the second
shock is given by a negative interference between the different contributions. Therefore,
it is natural to think about the possibility of generating an irrotational velocity field
downstream. That is, we look for the values of ~, My, M], k;/k, which give rise irrota-
tional velocity perturbations behind the second shock. Other authors in the past have
also addressed this question (Kevlahan 1997; Azara & Emanuel 1988), and they con-
cluded that the post shock will never be irrotational if the flow ahead is rotational. To
study the possibility of irrotational flows downstream, we suggest the hypothetical case
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Ficure 3. (Color Online) In dashed line it is plotted the numerical results for the den-
sity perturbed field (p;/p1) in the three zones (i = 1,2,3) for M7 = 2 and M] = 1.2 and
~v = 5/3. In solid black line it is plotted the asymptotic analytical expression. The pre-shock
mode in case (a) is ky, = 1/5, (Co = 0.349149, {; = 0.941947), and in case (b) ks, = 1/2,
(Co = 0.872872, ({ = 2.35487).

of a shock that moves into an arbitrary superposition of monochromatic rotational and
entropic fields.

Motivated by the phenomenon of interference between shock curvature and pre-shock
vorticity studied in (Wouchuk et al. 2009), and the baroclinic generation analyzed in
(Huete Ruiz de Lira et al. 2011), we may naturally ask whether that possibility may
be exploited to get either a completely irrotational or adiabatic flow downstream. In
(Wouchuk et al. 2009), the downstream vorticity had two sources: amplification of the
pre-shock eddy and shock curvature generated vorticity. Both terms are usually out of
phase which leads in general to a reduction of the total downstream vorticity. However,
its total value was never found to be zero. We now focus on all the sources of vorticity
generation including the vorticity generated by the baroclinic interaction (Huete Ruiz de
Lira et al. 2011). To be precise, let us consider an upstream array of single mode vorticity
written in dimensionless form by:

Wy = wy cos(kL x) sin(kyy) | (E1)
and an entropic density field given by:
pu = €y cos(kSx) cos(kyy) | (E2)

where w, and €, are, in principle, arbitrary amplitudes, unlike the re-shock problem.
According to the linear theory models of Wouchuk et al. (2009), Huete Ruiz de Lira et al.
(2011) and the model developed in the main article here [see Eq.(2.13)] the downstream
vorticity can be shown to be of the form:

Oq = [Qwy, + Qoplw, + Qopie, + Qsex] cos(Rk,x) sin(kyy) | (E3)

where the coefficients Q1, €9, Q3 are formally equivalent to those shown in Egs.(2.14)-
(2.17) respectively, and p¥, p¢ are the shock pressure contributions due to the vorticity
and entropy fields ahead. We realize that the vorticity downstream would cancel out
(@g = 0) if the amplitudes of the upstream modes were correlated in the following way:
Cu _ _Sht S, (E4)
Wy, Q3 + Qgpg
Thus, we can always get a pure irrotational flow even though the fluid ahead is not.
From Egs.(E3)-(E4), we can find certain situations in which, the entropic contribution
to the downstream vorticity interferes negatively with the total vortical contribution.
The minus sign indicates that the phase shift between both contributions has to be 7/2.
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For example, for a shock with M; = 3 moving through air v = 7/5 perturbed with a
wavelength ratio ky/k, = 1/2 (o = 1.04155), the entropic amplitude divided by the
vorticity intensity [Eq.(E4)] has to be €,/w, = —1.42978.

Similarly, we can look for cases in which no entropy perturbations are generated down-
stream. If we use Eq.(2.27) in the main text, we arrive at:

ﬁfzn = Epﬁgwu + Epﬁgfu + €y, (E 5)
where F, is formally the same as that shown in Eq.(B56), and it refers to the entropy
generation by shock curvature. We realize that the entropic field downstream is zero
(p5" = 0) if the amplitudes of the modes ahead are correlated in the form:

Cu Bt (E6)
Wy 14 E,p¢
Choosing the same example as before, for a shock with M; = 3 moving through air
v = 7/5 and perturbed with a wavelength ratio k,/k, = 1/2 ({o = 1.04155), we get
€u/w, = 0.0173194. Therefore, it is always possible to generate either an irrotational
velocity field or a pure adiabatic density perturbation field in the post-shock flow, albeit
not in the same situations.
Unfortunately, the re-shock problem does not have this property, because the pertur-
bations generated by the first shock are already correlated, and this correlation can not
be modified in order to satisfy either (E4) or (E6).

Appendix F. Asymptotic expressions in the strong shocks limit

As shown in the preceding paragraphs, if the shock waves are launched against an
isotropic density field, a turbulent velocity, density and acoustic field is generated behind
both shocks. The intensity of the perturbations generated downstream depends on the
gas compressibility v, and the shock strengths M; and M. To study the compression of a
turbulent spectrum we define the statistical averages of the downstream fluctuations after
choosing an adequate probability density function. This procedure has been extensively
discussed in (Wouchuk et al. 2009; Huete Ruiz de Lira et al. 2011; Huete et al. 2012)
and in Section 3 of this article. For the single shock problem, all the averages could be
obtained in analytical closed form for any value of the M; and ~y. Nevertheless, for the
re-shock problem considered here, the analytical expressions are cumbersome, and it is
in certain limits where the analytical solutions are feasible. As an example, in the strong
shocks-limit, and for highly compressible gases the 3D kinetic energy Ksp behind the
second shock can be expressed as a function of elementary functions. The rotational long
wavelength branch ({p < 1) is:

1 v—1 5
KL (My>1, M > 1y-1<1)x2——— {3ln<>+2} —1)%2 4+
3D( 1 1 Y ) 9/2 B) (v )

+ % [m (V;l) +7r} (v=1)*+0 [(7—1)7/2} , (F1)

and the rotational short wavelength contribution is:

1 v—1
Kip (My>1, M >1,v-1<1 %—{ln()ﬁ—Q} —1)%2% 4
3D( 1 1 Y ) 2\@ 9 (v )

n % [m (72_1) +7r} (y—1?°+0 [(v— 1)7/2} : (F2)



Shock and re-shock of isotropic density inhomogeneities-Supplementary material- 21

The acoustic part scales as:

-1
Kfp (0 104 > 1.7~ 1< 1) 2260 - 1)~ V& [in (15 ) 0] (- 124

e G R (e A L G R AU
+ {14111(72_1)—1-733}(7 )+O[( )7/2]. (F3)

The total kinetic energy is obtained by summing the above equations and can be seen in
Eq.(3.16) in the main text. From the above equations, we see that the acoustic part is
dominant in that limit. For the vorticity field generated downstream, we can split it up
into the long and short wavelength contributions, they are:

22 1
Wi, (My> 1L M >1,7—1<1)=— V2 [111(72 )+2}+

Jr—1
- 4[ln( 21)+2} ?(181 < 5 >+13)\/7+
+ 2[61n<7;1>+133] (w—1)+0[(7—1)3/2}, (F4)
Wip (My>1,M] > 1,y -1« 1) (1:)—35%[31 ( 21>—|—28}+

e R G GRS

4 [201n< 21)+20]( 1)+

where the total vorticity generated behind the second shock is shown in Eq.(3.30). In
above expressions Eq.(F 4)-(F 5) we see a divergent behavior when v — 1, which is more
important for the short wavelength contribution. Finally, we show the same limits for
the different contributions of the density perturbations:

[ (F5)

~-1
Ghp (My>1,M]>1,y-1<1)= ﬁ[m(%)m} (v—1)%%+

+ 2 [m <72_1> + 2} (y-13+0 [(’y - 1)7/2] , (F6)

-1
p (My>1, M >1,y-1< 1):4(71)2[2[111 <72> +12] (y—1)%2 4

-1
+ 2[111( . >+12]( 1)3+O{(7—1)7/2} : (F7)
the acoustic contribution is:

—1 .
G5 (M > 1,M{>>1,7—1<<1)22(7—1)—f2[1n<72> +9] (y—1)%2 4+

+ [4ln< 21>+21} (y—1)%2 = \[[4ln( 21)+17}( —1)5/2 4
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-1 73
+ [14ln (72) + 3} (=17 +0 (-1 . (F8)
Now, we show the limits that correspond to the other bound of the curve (M7 > 1, M] >
1), which refer to low compressible gases v > 1. For the kinetic energy, we separate its
components into the long, short for the rotational part, and the acoustic contribution,
they are:

5 13

1
KLo(My > 1, M >1,7v>1) - +0(=), F9
BD( 1 1 Y ) 3\/572 6\/5’}/3 (74) ( )
, 8 —5v2  49v2—80 1
Kip(My > 1,M] > 1 1) = O(— F10
sp(My>>1,M{ > 1,v>1) 62 + 6077 + (V4), (F10)
3-2V2 12-8V2 1
K3H(My > 1, My > 1,y > 1) = wa + 5’%”[ + O(ﬁ) : (F11)

We see that all contributions tend to zero as 1/42. The vorticity field generated down-
stream also tends to zero when v > 1 as:

5 3 1
Wi (M > 1, M, >1,y>1)~ ——~ +0(=), F12
SD( 1 1 Y ) 3\/572 10\/573 (74 ) ( )
, 8—5v2 48-17V2 1
s y i o —
Wip(My > 1, M] > 1,v> 1) 62 + 6073 + 0(74) . (F13)
And finally, the different contributions for the density perturbed field are:
1 19 157
Gip (Mi>1,M{>1,y>1)~ — — + -
3D ( 1 1 Y ) \/§ 6\/5’7 24\/5’}/2
4 1247 1
— +0(—), F14
3v5/2 2404/273 (w‘*) (F14)

1 11 4\ 1 1888 —1633v2
Gip (My>1,M{>1,yv>1)=1- ( )7 1888 — 1633v/2

PR _|_ —_
V2 6v2 3 2402
4 4352 — 5849v/2 1
O(— F15
5t m oG (F 15)
3-2v2 12-8V2 1
ac ! ~
SH(My > 1, M >1,v>1) 52 + 5y + O(?) . (F 16)

We observe that for v — oo, the entropic part (Gé p +G35p) tends to unity, which means
that there is no modification over the density perturbations ahead the first shock, and
the acoustic part G$%, tends to zero, because of the low compressibility.

Appendix G. Tables

In this section we have computed some numerical values from the formulas correspond-
ing to the quantities of interest: kinetic energy, acoustic energy flux, vorticity and density
generation behind the second shock. These values might be useful as a guide for real or
numerical experiments.
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| My | M{ | Kap | Sap | Wap | Gap |

1.001| 0.00172| 8.544-10"7| 7.275-107° 1.00171

1.1 0.02742 0.00452 0.01961 1.00938
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1.001| 1.00511] 3.19-107° 2.95005 0.94511
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TABLE 1. 2D Downstream kinetic energy average, acoustic energy flux, vorticity and density
generation, as a function of M; and M7 for v = 11/10.
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| My | Mi | Kap | S2p | Wap |  Gap |
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| My | Mi | Kap | S2p | Wap |  Gap |

1.001| 0.00107| 5.292-1077| 4.502-107%| 1.00106

1.1 0.01568 0.00273 0.01083 1.00461

1.001| 2 0.33940 0.06428 0.59777 0.88527
5 0.72390 0.13144 1.98978 0.62533

00 0.83083 0.14998 2.54823 0.53277

1.001| 0.01152| 6.77-1077 0.01083 1.00046

1.1 0.04758 0.00327 0.04650 1.00557

1.1 2 0.43544 0.07353 0.86119 0.88193
5 0.75133 0.14527 2.32696 0.62398

00 0.76118 0.16138 2.59668 0.53861

1.001| 0.32351| 1.243-107° 0.59798 0.86936

1.1 0.43232 0.00605 0.88299 0.87854

2 2 0.82174 0.12193 3.59033 0.76757
5 0.64712 0.19839 4.55824 0.54363

00 0.35947 0.19333 2.25990 0.48573

1.001| 0.67749| 1.323-107° 1.99261 0.57824

1.1 0.77845 0.00659 2.63234 0.58746

5 2 0.93157 0.11859 7.68411 0.51773
5 0.48557 0.16689 7.11198 0.36420

00 0.14527 0.14706 1.47883 0.32593

1.001| 0.77332| 1.275-107° 2.55502 0.47351

1.1 0.86530 0.00626 3.31356 0.48252
00 2 0.93872 0.10817 9.08250 0.42712
5 0.43681 0.14531 7.82214 0.29966
00 0.10381 0.12339 1.21601 0.26717

TABLE 3. 2D Downstream kinetic energy average, acoustic energy flux, vorticity and density
generation, as a function of My and Mj for v = 5/3.




26 C. Huete, J.G. Wouchuk, B. Canaud and A.L. Velikovich

| My | Mi | Ksp | Ssp | Wap | Gsp |

1.001| 0.00270| 7.642-1077| 9.699-107%| 1.00269

1.1 0.03727 0.00250 0.02603 1.01290
1.001| 2 1.45082 0.06565 3.83390 0.96782
5 6.33828 0.16172 74.3317 0.70655
00 9.63143 0.17995 236.087 0.44881

1.001| 0.02813| 1.181-10" 0.02603 1.00376

1.1 0.12314 0.00371 0.12155 1.01978

1.1 2 1.93346 0.08791 5.91556 0.97299
5 6.24290 0.19081 86.2304 0.71858

00 8.31369 0.19328 232.177 0.46263

1.001| 1.42561| 3.894-107° 3.83524 0.94281

1.1 1.90208 0.01728 6.05336 0.98064
2 2 3.92117 0.26773 53.1120 0.97065
5 3.05516 0.31036 341.553 0.76392
00 2.85749 0.23269 192.440 0.47957

1.001| 6.17114| 6.486-107° 74.4871 0.53513

1.1 6.71339 0.03409 106.780 0.57540

5 2 7.68855 0.30751 805.641 0.61430
5 4.13583 0.25580 4756.11 0.50204

00 0.47957 0.14372 101.738 0.27999

1.001| 9.36522| 5.919-107° 236.999 0.16333

1.1 9.79997 0.02991 335.120 0.20003
00 2 10.3991 0.27887 2493.15 0.25823
5 5.54640 0.14066 14587.5 0.21072
00 0.06956 0.04294 31.1287 0.08269

TABLE 4. 3D Downstream kinetic energy average, acoustic energy flux, vorticity and density
generation, as a function of M; and M7 for v = 11/10.
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| My | Mi | Ksp | Ssp | Wap | Gsp |

1.001| 0.00207| 5.846-1077| 7.417-107%| 1.00206

1.1 0.02715 0.00186 0.01860 1.00871
1.001| 2 0.71952 0.04478 1.41598 0.88198
5 1.83880 0.11077 7.11246 0.57649
00 2.21153 0.13177 10.3996 0.45202

1.001| 0.02034| 8.519-107" 0.01860 1.00189

1.1 0.08587 0.00262 0.08263 1.01205
1.1 2 0.94914 0.05801 2.10609 0.87921
5 1.91451 0.13225 8.45856 0.57691
00 1.99994 0.14853 10.6070 0.46286

1.001| 0.70709| 2.114-107° 1.4164 0.86955

1.1 0.95483 0.00847 2.14845 0.89056

2 2 1.95412 0.16413 11.4924 0.77542
5 1.47141 0.23026 18.4987 0.52016

00 0.81229 0.20845 9.032 0.43312

1.001| 1.78276| 2.68-107° 7.12335 0.51884

1.1 2.03104 0.01249 9.68974 0.54026

5 2 2.47211 0.19473 38.3507 0.48768
5 1.16635 0.20950 48.4215 0.32512

00 0.21877 0.14987 5.18571 0.26358

1.001| 2.13573| 2.643-107° 10.4299 0.37157

1.1 2.35864 0.01231 13.9384 0.39226
o0 2 2.56336 0.17768 52.2163 0.36213
5 1.07720 0.17593 62.8804 0.24061
0o 0.11751 0.11082 3.72016 0.18887

TABLE 5. 3D Downstream kinetic energy average, acoustic energy flux, vorticity and density
generation, as a function of My and Mj for v = 7/5.




28 C. Huete, J.G. Wouchuk, B. Canaud and A.L. Velikovich

| My | Mi | Ksp | Ssp | Wap | Gsp |

1.001| 0.00167| 4.732-1077| 6.003-107%| 1.00166

1.1 0.02126 0.00148 0.01438 1.00630

1.001| 2 0.45657 0.03352 0.77211 0.86278
5 0.99406 0.08054 2.57674 0.59820

00 1.14762 0.09548 3.31104 0.50795

1.001| 0.01584| 6.623 107" 0.01438 1.00089

1.1 0.06526 0.00201 0.06174 1.00790

1.1 2 0.59718 0.04237 1.11865 0.85898
5 1.04364 0.09569 3.03029 0.59843

00 1.05885 0.10869 3.39821 0.51820

1.001| 0.44891 1.41-107° 0.77234 0.85511

1.1 0.60727 0.00531 1.14152 0.86885

2 2 1.17520 0.10524 4.61673 0.73826
5 0.91748 0.17284 5.84886 0.51784

00 0.49342 0.16076 2.96387 0.47243

1.001| 0.96468| 1.638-107° 2.58023 0.56786

1.1 1.11766 0.00700 3.40862 0.58193

5 2 1.35731 0.12263 9.89970 0.50179
5 0.69518 0.16503 9.11803 0.34868

00 0.18831 0.13321 1.92533 0.31861

1.001| 1.10957| 1.626-107° 3.31957 0.46742

1.1 1.25070 0.00698 4.30479 0.48123
00 2 1.37523 0.11693 11.7412 0.41809
5 0.62853 0.14858 10.0605 0.28947
00 0.13154 0.11414 1.58452 0.26275

TABLE 6. 3D Downstream kinetic energy average, acoustic energy flux, vorticity and density
generation, as a function of My and Mj for v = 5/3.
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