
1

1. Comparison of stability analysis to previous work

The stability problem (6.4) can be understood in the context of previous work. Ben-
jamin (1957) and Yih (1963) have studied the stability of fluid flowing down an inclined
plane with a free surface in two dimensions, and Kao (1965a,b) has extended this by
considering the effects of a stratified two-fluid system flowing down an inclined plane, al-
though he did not consider arbitrary density profiles. In addition Yih (1967) has studied
the stability of flow with viscous stratification in two dimensions, which although quite
different physically, bears many mathematical similarities to the present study.

Finally, Sangster (1964) studied the problem of the flow of a two-fluid system down
an inclined surface with a rigid lid (no free-surface) in two dimensions, with and without
surface tension at the fluid-fluid interface. Therefore, the present study corresponds to
the problem studied by Sangster for an inclination of 90◦, zero surface-tension, and the
addition that one of the boundaries is towed at a fixed rate. Sangster did not investigate
the time-evolution of the thickness of one stream relative to the other, but only considered
the stability analysis for a fixed ratio of the bottom fluid thickness to top fluid thickness.
Through the use of a long-wave expansion (as used here) in addition to a truncated
Frobenius series for the eigenfunction (not used here), Sangster obtained approximations
to the real and imaginary components of the eigenvalue c. The analysis of Sangster was
limited to the condition that the thickness of the lower stratum be greater than that
of the upper, which is exactly the opposite of the situation of primary attention in the
current investigation. In the current study, primary attention is given to the situation in
which the size of the entrained layer (corresponding to the lower-stratum in Sangster’s
study) is small, although much of the analysis presented here does not require this con-
dition. Finally, Sangster’s calculations are rather laborious and the resulting eigenvalue
expressions are not shown to simplify as do the calculations presented here, which re-
sult in the comparatively compact expressions (6.10) and (6.11). In the axisymmetric
problem, the corresponding expressions do not simplify to such compact expressions.

In the investigations (Kao 1965a,b; Yih 1963, 1967), there were found “hidden neutral
modes” which are analogous to the modes found here. These modes are termed hidden
since they arise either from the misalignment of the density gradient with gravity (Ben-
jamin 1957; Yih 1963; Kao 1965a,b), or from the viscous stratification (Yih 1967), and
they vanish if these physical conditions are not present, for instance in homogeneous
flows. Further the modes are neutral to leading order for long waves. Thus the modes
found in the present study lie under this classification of hidden neutral modes.

In order to understand the connections to these previous investigations, we consider a
two-dimensional stratified fluid flow bounded by two walls of infinite extent which enclose
a channel (no free surface present) that is inclined with respect to gravity by an angle θ.
One wall of the channel is towed at speed U0 which may be zero, and the density profile
is arbitrary. See figure (1) for a diagram.

We let x = (x1, x2) be the horizontal and vertical coordinates with respect to the
channel walls and let u = (u1, u2) be the corresponding velocities. The no-ndimensional
Boussinesq approximation equations are given by

Re
Du

Dt
= −∇p+ ∆u +

Re

Fr2
ρ (sin θ,− cos θ) , ∇ · u = 0 ,

Dρ

Dt
= 0 . (1.1)

We allow for an arbitrary density profile varying only in the vertical direction ρB(x2),
and a shear velocity profile u1 = U(x2) as our background solution. The density and
velocity are related by

U ′′(x2) +
Re

Fr2
sin θ ρB(x2) + β = 0 , (1.2)
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Figure 1: Diagram of stratified flow through a channel inclined with respect to gravity.

where β is a constant arising for the horizontal pressure gradient.
A stream-function ψ exists with relation to the velocities u1 = −∂ψ/∂x2 and u2 =

∂ψ/∂x1. We perturb the background solution to obtain a stability equation for the per-
turbation stream-function ψ

(D2 − k2)2ψ − i k Re
(
(UB − c)(D2 − k2)ψ − U ′′Bψ

)
+ ik cos θ

Re

Fr2
ρ′B

UB − c
ψ + sin θ

Re

Fr2
D

(
ρ′B

UB − c
ψ

)
= 0 .

(1.3)

To the knowledge of the authors, this stability operator for arbitrary background den-
sity profiles has not been previously documented. The previous investigation (Benjamin
1957; Yih 1963; Kao 1965a,b; Yih 1967) have focused on the special case of a two-fluid
system and thus the effects of the terms involving ρB in (1.3) entered analysis in the
boundary conditions at the fluid-fluid interface only.

We now give an understanding of each component of the stability operator (1.3) in
light of previous work and the present study. The top line of the operator is simply
the classic Orr-Somerfeld equation for homogeneous fluid flow and does not give rise to
neutral modes at leading order in the long-wave expansion. Indeed all modes are damped
for sufficiently long waves or low Reynolds number in the Orr-Somerfeld equation (see
Drazin & Reid 1981, pp. 158-164).

The term multiplying cos θ arises from the horizontal component of density layering,
and can be understood as part of the Taylor-Goldstein equation for the inviscid limit.
Indeed the characteristic value of the term −ρ′B/Fr2 is the overall Richardson number for
the inviscid Boussinesq approximation, and in the case of θ = 0 and Re→∞ we obtain
the Taylor-Goldstein equation exactly. Therefore, we will refer to this term multiplying
cos θ as the Taylor-Goldstein term. Notice that the wavenumber k multiplies the Taylor-
Goldstein term and so it does not enter at the leading order of the long-wave expansion
and therefore cannot give rise to leading order neutral modes. Therefore, in the case of
θ = 0 and with the same scaling of the eigenvalue as in the homogeneous case, the Taylor-
Goldstein term drops out of the leading order problem and the leading order behavior of
the eigenvalue will be identical to that as in the homogeneous case.

The term multiplying sin θ arises from the vertical component of the density layer-
ing and we will refer to it as the vertical density layering term. Since this term is not
multiplied by the wavenumber, it enters the leading order equation for the long-wave ex-
pansion, and further since the eigenvalue c is present in this term, it allows for c = O(1)
to leading order in this expansion. Therefore, this term is necessary in (1.3) for the pres-
ence of hidden neutral modes, and it is the presence of this term in the stability operator
that is the focus of the current study.
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For further simplification we can substitute the relationship between the background
density and velocity profiles

sin θ
Re

Fr2
ρ′B(x2) = −U ′′′B (x2) , (1.4)

into (1.3) to obtain a stability operator in which we have eliminated ρB

(D2 − k2)2ψ − i k Re
(
(UB − c)(D2 − k2)ψ − U ′′Bψ

)
− ik cot θ

U ′′′B
UB − c

ψ −D
(

U ′′′B
UB − c

ψ

)
= 0 .

(1.5)

The previous investigations (Benjamin 1957; Yih 1963; Kao 1965a,b) have only studied
the effects of the vertical density layering term in conjunction with the Taylor-Goldstein
term, and once again these terms only entered in the boundary conditions at the fluid-
fluid interface. In the Orr-Somerfeld equation the first power of k only enters in product
with Re, while in the Taylor-Goldstein term k is not in product with Re. Therefore, in
the long-wave expansion of c, the first correction will be a function of Re if the Taylor-
Goldstein term is present and therefore there is the potential for a stability transition
to occur as the Reynolds number is varied, as has been seen in these previous studies
(Benjamin 1957; Yih 1963; Kao 1965a,b). In the current study however, the vertical
density layering term has been isolated so that there is no Taylor-Goldstein term present
in the stability operator. In this case, the first power of k only enters the operator in
product with Re and so the first correction to c has trivial dependence on Re as it is
only a scaling factor in the magnitude of the first correction, as seen in (6.8), (6.9) and
(6.11). Therefore, the flow configuration under current investigation in which the density
layering is completely vertical has the interesting feature that its stability or instability
to long waves is independent of the Reynolds number, and only depends on the density
profile. Of course the magnitude of the growth or decay rates of disturbances does depend
on the Reynolds number. This interesting feature was also found by Yih (1967) in the
stability analysis of a flow with viscous stratification.

2. Stability subtleties in the limit to the unbounded domain

For the two-dimensional stability problem, consider the limit to the semi-infinite do-
main with L→∞ and all other dimensional parameters fixed. This implies that κ→∞,
and in this limit the lubrication theory gives h∞ ∼ κ−1/2. Substitution of this relation-
ship into (6.11) gives c1 ∼ 3 i/140 κ−1/2. Since this value is positive it indicates that the
entrained layer will grow to a size that is unstable. We note that, however, the magnitude
of the instability tends to zero in this limit.

Now consider the same limit to an unbounded domain in the axisymmetric stability
problem. This implies that κ→∞, a→ 0, and h→ 0, and so the leading order correction
for c1 given by (C4) becomes valid with the log h term asymptotically dominating. This
gives the asymptotic expression for c1

c1 ∼ −
i κη2 (log h− log a) log h

96(1 + log a)3

(
1− κ

2
η2
)

for κ� 1, a� h� 1, | log h| � 1 ,

(2.1)

where η is given by (4.31). Therefore, the asymptotic position of the neutral stability
curve satisfies κh2 = 2, which is the same relationship as for the limiting layer size given
by the lubrication theory as can be seen in (4.35). Therefore it can be concluded that in
the limit to the semi-infinite domain, the entrained layer grows to a size asymptotically
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Figure 2: Log-log plot of neutral stability curves (solid lines) and zero-propagation speed,
or h∞, curves (dashed lines) for large κ in two-dimensons (left) and the axisymmetric
geometric (right) with the fibre radius a = 0.004 subtracted.

matching the size of a neutrally stable layer - an unexpected coincidence that does not
occur in the two-dimensional case.

Now consider the entire expression (C4), in the long-time lubrication limit of κη2 → 2,

c1 ∼ −
i 5 (log h− log a)

512(1 + log a)3
for κ� 1, a� h� 1, κη2 = 2 . (2.2)

As a → 0 the term (1 + log a)3 becomes negative, so that the imaginary component of
the eigenvalue is positive which indicates instability, and further the magnitude of the
instability only decays logarithmically with a as a→ 0.

There is a subtle difference between the two-dimensional case and the axisymmetric
case in the limit to the unbounded domain. In the two-dimensional case, the layer grows
to an unstable size whereas the magnitude of instability decays algebraically with L
(through the dependence on κ). On the other hand in the the axisymmetric case, the
layer grows to a size that asymptotically matches the size of a neutrally stable layer,
however the limiting layer size remains unstable with a magnitude that decays very slowly
(logarithmically) with L (through the dependence on a). Figure 2 shows the curves of
neutral stability and the curves of h∞ for both cases, and it can be seen that in the two-
dimensional case the two curves remain separated on a log-log plot as κ → ∞, whereas
in the axisymmetric case the curves approach one another in this same limit.

3. Smooth density transition velocity profiles

Here, we find a class of exact velocity profiles for the case of a vertically layered parallel
flow with a smoothed density profile, with density transition located at x = h, and a
transition length-scale of λ� h. We employ an arctangent functional form for the density
profile so that the velocity profile may be obtained in closed form. Let the density profile
be given by

ρ(x) = 1− ∆ρ

ρ0

(
1

π
arctan

(
x− h
λ

)
− 1

2

)
. (3.1)

The differential equation for the velocity profile becomes

w′′(x) = β − κ
(

1

π
arctan

(
x− h
λ

)
− 1

2

)
. (3.2)
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The exact solution to this differential equation can be written in closed form as

w(x) =A0(h, λ) +A1(h, λ) (x− 1) +A2(h, λ)x(x− 1)

− κ

2π

(
(x− h)2 − λ2

)
arctan

(
x− h
λ

)
+
κλ

2π
(x− h) log

(
1 +

(x− h)2

λ2

)
.

(3.3)

The coefficients A0 and A1 are chosen to satisfy the boundary conditions, giving

A0(h, λ) =
κ

2π

(
(1− h)2 − λ2

)
arctan

(
1− h
λ

)
− κλ

2π
(1− h) log

(
1 +

(1− h)2

λ2

)
,(3.4)

A1(h, λ) = −1 +A0(h, λ) +
κ

2π
(h2 − λ2) arctan

h

λ
− κλh

2π
log

(
1 +

h2

λ2

)
. (3.5)

A2 is obtained by enforcing the vanishing flux condition. For convenience we define the
quantities

I1(h, λ) ≡ 3

∫ 1

0

(
(x− h)2 − λ2

)
arctan

(
x− h
λ

)
dx (3.6)

I2(h, λ) ≡ 2

∫ 1

0

(x− h) log

(
1 +

(x− h)2

λ2

)
dx . (3.7)

These quantities are given in closed form by

I1(h, λ) = (x− h)
(
(x− h)2 − 3λ2

)
arctan

(
x− h
λ

)∣∣∣∣1
0

(3.8)

−λ
2

(1− 2h) + 2λ3 log

(
(1− h)2 + λ2

h2 + λ2

)
, (3.9)

I2(h, λ) = (x− h)2 log

(
1 +

(x− h)2

λ2

)∣∣∣∣1
0

+ 2h− 1 + λ2 log

(
(1− h)2 + λ2

h2 + λ2

)
.

The coefficient A2 can be expressed in terms of these quantities as

A2(h, λ) = 6A0(h, λ)− 3A1(h, λ)− κ

π
I1(h, λ) +

3κλ

2π
I2(h, λ) . (3.10)
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