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Appendix A. Derivation of (2.4)

. 0 . . . .
Let us integrate the term g(pruc), at a point of interest, over a duration A from time

A A ) . . . .
t— 5 tot+ 5 Assuming that the point of interest is covered by the continuous phase

A A
at t — 5 and 1 + 5 (A1) is obtained:

TR 9 N
/ [Hcﬁ(/’cuc)}dt = (/h:'ll(:)‘hL% - (/’qutr)‘kg + Z{(/)trutr) Ts — (/’cuc)|T}} (A1)
L

A ;
2 i=1

Here, 7 and T! respectively denote the arriving time and leaving time of the particle i
at the point of interest.
Equation (A2) now holds:

A A
A1 e Ly

1 2
(1 —-¢epeu’ = — H.pouodt = — / H.p.u.dt (A2)
A AC_F% A_Lf%
from which it follows that
0 . 1
S o) = ey — (el y) (43)

Upon substituting (A3) into (A1), (A4) is obtained:

| =

T, 0 I
/ A [Hca(/)cuc)}dt = E{(l - 6)/)LTULTL} + 7\ Z{(/)CUC)‘T;I - (/)Cuif”Til} (‘A 4)
Ji-3 / A

In fact, (A4) holds regardless of whether the point of interest is covered by the continuous

phase or the dispersed phase at the beginning and end of the interval of time-integration.
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Since T¢ and T} arc functions of position in space, they can be expressed as:

= Tia('/l“vfhz) (A 5)

t="T(r,y,z) (A6)
By differentiating both sides of (A5) and (A6) with respect to time, we have

de 0TF  dy oTf  dz OTF
= LA L AR 54 A
dt Ox dit Oy dt 0z u & (A7)

de OT!  dy oT!  dz OT! [
_ — v 7 7 s P s el AA
dt or < dt oy dt 9z " £ (A8)

. . . ! .
Here, u* is a moving velocity vector of surface and &7 and &; are gradient vectors of the
surfaces t = T7 and t = T!, respectively. Since surface gradient vectors are perpendicular

to the surface, (A 9)and (A 10) hold for the case with no mass transfer across the surface.
I=u-g (49)

1=u-¢& (A 10)
Here, u is a velocity vector for either the continuous or dispersed phase at the interface.
Time-integration of V - (p.ucu.) can be transformed to (All) by applying Leibniz’

rule:

.t+%
/ (H.V(peucu,)]dt
1

-
,I‘la 1\771 ,'I’ia+| T+%
= {V - (pucu.)}dt + Z / {V - (pucu.)}dt + / {V-(p.ucu.)}dt
ti% =1 " ,I;l 'I:s]\“
e N-1 s 2
=V- {/ (peucuc)dt + Z / (peucuc)dt + / (poucuc)dt}
Jioy = Juy
N
+ Z{(pr’ur’ur’ﬂ'l;’ 55 — (peeuc)|re - €5}
i=1
-Lfg N
=V [/ R {H(peucue) bdt] + Z{(/)cucuc”ﬂ Ei - (/)L:U(:U(:)‘T;" &1}
Jl-3 i=1
N
S AV (1 - o+ S (el — (peule ) (A11)

i=1
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Here, (2.9), (A9) and (A10) have been used.

Equation (2.4) in the main text is obtained from (A4) and (A11)

1 [ite o o
K/ [HC{E(/)CUC)+V-(pcucuc)}dt = E{(l76)[)(;uf}+v-{(176)[)(;11,(;11,6} (2.4)
AJioa : :

Appendix B. Derivation of (3.8)

Let us determine the time-averaged force acting on a portion of particle surface in a
spherical control volume V', having radius ~ which is smaller than the particle radius
R, and with center at X . Higher order terms with respect to v in the equations that
follow will ultimately be neglected, because we are focusing on the force per unit volume
applicable to infinitesimal volume, which is obtained for the limit v — 0.

We can count number of particles, surfaces of which appear in the volume V during
the total time-averaging duration A. Figures 4 and 5 show the spatial relation between
the control volume V' and the particle k. Two spherical coordinate systems, { X : 1,6, ¢}
and {X} : 7,0, ¢'} , arc introduced to denote coordinates relative to the center of the
volume V and the center of the particle k, respectively. Here, Xy and X}, are the centers
of the control volume and the particle k, and the origins of each spherical coordinate
system. In the figures, X and X, arc denoted as O and 0.

When a particle center X'}, is in a spherical shell with inner and outer radii R —~ and
R+ v, in the coordinate system {Xo : 7,6, ¢}, a portion of the surface of the particle
is within the volume V. Upon denoting the partial surface of the particle k in V as SY,
the force acting on S,Y due to static pressure and shear stress of the continuous phase is

given by:

FUX,) = - / do'de' [R?sin'n’ (0, ¢') - T (X}, : R,6',0")] (B 1)

v
45y

Here, fqv df’d¢’ denotes solid-angular integration over the surface S,Y with respect to 6
Jsy
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Side view

Fi1Gure 2. Top view of volume V' and a particle
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and ¢' in the spherical coordinate system { X' : .6, ¢'}, fE(X) is the force due to
static pressure and shear stress of the continuous phase on a particle surface S} with cen-
ter at X, and n'(6',¢') is a unit vector along the v’ axis. The quantity T.(X}, : R,8',¢")
in the integrand is a tensor defined by (B 2) below, where P, 7. and I respectively de-
note the static pressure of continuous phase, the shear stress tensor of the continuous

phase, and the unit tensor:
T(X},:R,0,¢)=P(X}, R0, NI +71.(X},: R, 0,0 (B2)

Although time ¢ is not explicit in (B1) and (B2), it should be noted that both particle
center X, and particle surface S move with time in accordance with the movement of
the particle k.

We may choose angular coordinates (6'g, ¢'y) such that the vector n'(6'g, ¢',) is ori-

ented along the line X}, — X. Then, the point X, is given by;

X, =Xo+rn(r—0,,7+ ¢p) (R—y)<r<(R+7) (B3)

Here, r and n(r — 0,. 7 + ¢) arc radial coordinate and unit vector along r axis, respec-
; 0: 0 g ; I
tively, of the spherical coordinatesystem { Xy @ r, 6, ¢}
On the surface SY, the following cxpressions arc obtained as Taylor series around the
ko g CX] Y
center of the surface S)', that is, (X}, : R, 00, ¢'y):

on'

n'(ﬂ',(/)') = TL,(HI(),(/)IO) + (W) |0/0’UIORA9I

!
+ (a’rl) |0’Q,U’ORSi”‘H’0AH’ R R

Rsin®’ 0¢
=n'(0'0,¢'y) + o(y) (B4)
' ' ' ' 8Tc
TU(Xk : R79I7(/)) = TLT(XIC : RH 07(/),0) + (W) ‘R,()’o,c’)’ORAH

oT. ,
¢ o Rsinf g A8 4o
+ (]?gme’{)o’) ‘H,H 0,4 ORSZTLG 0 g +

=T(X}: 1.6'0,¢'y) +0'(7) (B5)
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Notations o(~y) and o' () arc vector and tensor quantities, respectively, whose values are
zero in the limit v — 0, because the values of RAA and Rsinf’ g A¢’ arc not larger than
v on SY.
Upon substituting (B4) and (B3) into (B1), we have
Fi(X)
<= [ Ao [Rsin {80 0') + o(2)} AT 2 Ry, 0') + 0(2)]]
5
= (W8, 6h) + o)} AT (X} s R, &) +o(1)} [ d8'ds [Rsing]

sY

—{n' (0. d0) + 0N} AT(X : R,0'0, ) + o(7)}a{r* — (R —r)*}(1 + o(7))

= =10, 00) - Te(X : B,6'0,¢'0)n{v* = (R = 1)*}(1 + o(7)) (B6)

In (B6), v2 — (R — r)? is the cross scctional arca of the volume V perpendicular to the
' axis at (R, 6], @), and the value of » varies with time corresponding to the position
vector Xy, defined by (B3).
Denote the contribution of those particles having centers in the volume element
Rty
dﬁdo[/ (rzsine)dr] to the time-averaged force acting on particle surfaces in the

JR—~

control volume V' in the time duration A, as 7. Then,

DM EAt A
ok Uk
I .

(B7)

Ay
Here 74 is the residence time of X, in the volume clement d()d(/)[ / (7'257171,9)(]7'], and
JR—~
E denotes summation over particles whose centers are in the volume clement for the
k
R4
time duration A. Since the particle £ moves in a volume clement d()d(/)[/ (rzsinﬁ)dr]
JR—~

, the time-integration in / fkT(X'k)df can be converted to a radial integration by using
Tk
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the  component of the moving velocity of S,Y, which we denote by vF.
. A
FEX)dt = / wdr for ¥ >0,
ST S T
(B8)

. ST T X/
FEX)dt = / Wdr for  w* <o0,,
Sy T4, g

R4
Here, [, is the radial displacement of X, in the volume element dﬁdo[/ (r*sinf)dr]
during the time duration A, the value of which is positive for v* > 0 and negative for

vk <0, and ry is the initial radial position of S,Y when the center of the particle &, that
R4~
is X}, appears in the volume element dﬁdo[/ (rzsine)dr].

It follows from (B7) and (B8) that

fT = \Z/

Min(ry,ru+k)

Max(ry,r+) f ( )
k e
le (Bg)

In the summation on the right-hand side the radial integration involves overlap, and the
number of overlaps is countable and varies with radial position. Let us introduce the

overlap number N (r), which depends on radial position, and is such that

Mawx(ry,ru+l) T ! -l T !
Z/ Mdr - / { § f"’|(‘:("')}dr (B10)
: N vk
TR= N 7

k
< atintrminy 10F]

Here, Z refers to summation over all overlaps.
N(r)
The right-hand side of (B10) can be manipulated as:

R+~
[ BBy S0 S

L — Y

i=l N(r)
:Algl;Z S {ADEFTX =)}
i=l N(r;)
N -
= lim {0 (AOFHFX )] (B11)
i=l  N(r;)

Iy
The total radial section [R—“/, R—O—ﬂ,x] is divided into N subsections with equal length %

-adial position of the subscction . In the second and the last

andr;, = R

expressions on the right-hand side of (B11), (At)* is the residence time of the particle
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. . A . . .
center X, in the subscction [r;,r; 1], and f°(X'|,—,,) is the timec-averaged value of

f {(X "—,,) for all drops overlapping in the subsection. These arce given by the following

equations:
: 1 2y
ko_
(ADF = LN (B12)
S AANEFX b))
A5t N(ri)
fA(X r:m) - (B 13)
| S 0
N(n)

In the last expression on the right-hand side of (B11), Z (At)¥ can be transformed,

N(”)
using the definition of Ap, as follows:
> (Anf
27 : N(r;
Z (Atk = \:(]H(](/)[r,;z,s’i'nf)} 2y V)
N(ri) - N (]9(](/) [rizsi'nf)}
2~ .
= N:dﬁd(/)[7',;257#1,9} Ar(r;) (B 14)
By introducing (B14) into (B11), we obtain,
T FEXD) S O X
[ I i SIS (08X )
R—~ N(r) r ’ =l N(ry)
N o, o
. ; 2 . A
= \1g1; Zl[ ~ dfdo{r:*sin@} A p(ri) (X" =)
R+~ I
= dfdg¢|sinf {r?Ap(r) £ (X) }dr] (B 15)
R~
From (B9), (B10) and (B15), it follows that,
- 1 'R+7 ; .
FT = dbdo [sing / P2 A (r) £ (X )dr] (B 16)
i JR—~

By summing the contributions of particles having centers in a spherical shell with inner
and outer radii R—~ and R+ /~, in the time duration A, we determine the time-averaged
force acting on particle surfaces in the control volume V' during the total time duration

A is given by

v 17 2 N S Ty
Fig =3 ; do ; de[sind . {rPAp(r) fH(X")}dr] (B17)
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. . T . . . .
Since the vector n/ (6}, ¢)) is common to f (X}) for all particles having centers in

R+~
the volume clement (]9(](/)[/ (r?sind)dr], as shown in (B 6), we can define the time-
SR~

averaged value of T.(X,|,—r : R, 8}, ¢}) for all particles overlapping in the subsection

[T‘i, T‘i+1-| as

THX ooy, R, 0)) = (B18)

Here, Tif(X'\,,:m : R, 6}, ¢p) is the time-averaged value of T.(X'|,—., : R, 0}, &) for all
particles overlapping in the subscction. Then,
FUXG ) = 0000, 00) - T2 (Xilor, R0, 60)7{7" = (R=1)*}1+0(7) (B19)

From (B17) and (B19) we have,

A

Vv 7
Frs

1 T 27
= — d(}/ d¢
A /0 Jo

o PRI
[sind / W Ap(r)n (0, 64) - TH(X' < R, 60, 6p)r{7* — (R — ) }(1 + o(1)]dr]
JR—~

(B 20)
In the entire radial section [R —~, R+ ~] it follows that
I AR (X ") (' (B, 09) - T2 (X" .6, 69} |

2 AR(X =) {0 (8. 0) - TH(X Lo = R, 6, 00)} | (L+0(7))  (B21)

Here, X'|.—r = Xo + Bn(0, ¢). We now find from (B20) and (B21) that

A

—
Frs

Lim o [T %" ‘
=1 ;rq/'*/ d¢9/ do[ R’ sinfAp(X o + Bn(f, 7))
4 J0 J0

xn'(6), 04) - TX(Xo + Bn(8,0) : R0, 0))|(1+0(v))  (B22)
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47 .
Finally, using the relation V' = ?“”/'5, we derive

1

g 1 - T 27
vl;n)l(ﬁ1 FH s = 7‘/0 d()!/o dp[R?sindAg(Xo — Rn(0, ¢))

xn(0,¢) TH(Xo ~ Bn(0,0) : R.0,0)] (323)

The following relations have been used in obtaining the final expression on the right-hand

side of (B23).

o =m0 (B 24)
dp=7+0¢ (B25)
n'(6. ¢o) = —n(0, ) (1326)

Appendix C. Comparison of (3.8) with the impact term

In the Navier-Stokes equations time-averaged for multiphase flow(Ueyama and Miyauchi,

1976), the interaction term is given by

N
1
xZ (Polred +7cl7e) - €8 — (Polp L+ 7elp) - €1} (&)

N
Here, E denotes summation for all particle surfaces appearing at the point of time-
1=1
averaging during the total time duration A, and T¢ and T} arc the arrival and leaving
time of the particlep i at the point of time-averaging, which are functions of spatial
. { . .
coordinates; € and €; are gradient vectors of the respective surfaces 77 and T}, as

2 2

defined by the following two equations:
£l = VT? (C2)

g =vr! (€3)
We know that

€ u, =1 (C4)
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d U =1 (C5)
Here, u, is a velocity vector describing the motion of the surface.
The Navier-Stokes equation for the continuous phase, time-averaged for the dispersed

multiphase flow(Ueyama & Miyauchi, 1976), is given by:

d

a7 (1—epalt+V-{(1—-epuu.}

= - V{l-eP =V 41 -7+ (1 —e)p‘g + D, (C6)

A
Upon comparing (C6) with (2.13), we expect D, to be identical to — y hII)l( ‘—FR s -
—X0

From (B6), (B9) and (B10), we have

7oL /"”‘ {Z (B 06) T, I 0p. o)y & (=)} ko)

0]

(€7
The radial integration on the right-hand side for a total section [R — -, R + «y] can be

given as the product of the value of the integrand at r = I? and the representative radial
R+~

length which gives the volume under consideration, that is / {¥* + (R—r)*}dr, since
R—~

we shall take the limit for v — (. The representative radial length is obtained as

Rtn
/ (2 4 (1~ )Y

4
ey €9

From (C7) and (C8), it follows that

n' (8}, X' g ROL, 6T (14 0(7)), 4
Ly MO K RO o) s (g

N(R)

1 A
The valuc of ‘—F }/? g s given, from (C9), as

L5 1 /" O pts T
‘_FHq = ‘— de do|R*sinff" |
L [ ' (0. 04) - Te(Xolr=r = R. 6, 6h)
=—1 /] R2sinf{ Z : HA A+ o(7))
0 J0

[oE ]

(C 10)
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Upon taking the limit v — 0, we have

1——A 1 [~ 20 n' (6} T.(X|—r:R,6,, ¢
— lim —F‘Hq :—K/0 (]9/ d(/) 51119{2 O, 60) ToXilr—r R, 0/(/)0)}]

~—0 1/ Uf|1:H|

(C11)
The right-hand side of (C11) is the sum for duration A of all the terms at point X,
given as the product of a tensor T, on a particle surface and an outwardly directed unit
normal vector, divided by the absolute value of the normal component of the surface
moving velocity, which appears at every instant when a particle center arrives at the
surface of a sphere with radius R centered at X, in the total time duration A.
The right-hand side of (C1) can be traunsformed, using (C4) and (C5), to

nt

= Telpr - —} (C12)

LoUg T

(’

i=1 7

Here, n¢ and m! respectively denote unit normal vectors at the arriving and leaving
surfaces, with a positive component along the movement of the surfaces. The directions of
n¢ and n! arc respectively outward and inward at the particle surface, and the expressions

Ug - N

v¥|,—g|. The first term in the

and u, - ! arc both positive and correspond to
brackets on the right-hand side of (C12) is a product of a tensor T on a surface and
an outwardly directed unit normal vector, divided by the absolute value of the normal
component of the velocity of motion of the surface. The second term is a product of
a tensor T, on a surface and an inwardly directed unit normal vector, divided by the
absolute value of the normal component of the velocity of motion of the surface.

The physical meaning of the right hand sides of (C11) and (C12) are therefore identical.
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Appendix D. Derivation of (3.9):Non-spherical particle

By using a spherical coordinate system with its origin at X', an arbitrary point on the
particle surface can be specified as (X' : R'(8',¢'),8',¢'). The point X' will henceforth
be referred to a reference point of the particle.

Let us determine the time-averaged force acting on a portion of the particle surface
in a spherical control volume V', having radius « less than the particle size, and with
center at X . Higher order terms with respect to v in the equations that follow will
ultimately be neglected, because we are focusing on the force per unit volume applicable
to infinitesimal volume, which corresponds to the limit v — 0.

Analogously to a spherical particle (Appendix B), the force acting on S,Y duc to static

pressure and shear stress of the continuous phase is given by:

—/ db'de’ [sind' {R'(8', ')} C(#', ")
Sy

an(Rl(el,d)l),Hl,(/),) 'TL:(X;‘, SRI(HI,d),),H,?(/)I)}
= —n'(R'(6), 1), 00, D) 'Tc(X;«, D R'(6)), ¢). 00, d0)

xa{y® = (R'(65, 65) — r)°}C (0, ¢6) (1 + 0(+*)) (D1

for R'(6, ¢0) — v < r(6,¢) < R'(65,¢p) + . Here, n'(R'(6, d0), 04, ¢p) in (D-1) is a
unit normal vector on the surface Sy dirccted outward; it is distinct from a unit vector
i (8, ¢}) in a spherical coordinate system (X' : 7', 6", ¢'). The function C(8', ¢) is a cor-
rection factor corresponding to the shape of the particle surface suitably defined so that
the surface arca clement at (R'(6,¢'), 0, ¢') is preciscly given as sing’ C' (6", ¢ ){R'(0', ¢')}2d0' d¢’,
and 7w{v*> — (R'(0),, ¢4,) — r)?} is a cross scctional arca of the volume V' perpendicular
to the r'(6), ¢) axis at (R'(6}, ¢;,), 04, ). The value of (6, ¢) varics with time accord-

ing to the position of the reference point X, = Xo + 74,.(0,¢) for R'(0), ) — v <
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(0, 9) < R'(8), $4) +, where 4,.(8, ¢) is a unit vector along the radial direction specified
by spherical polar angles (6, ¢).

Denote by f the contribution of those particles having reference points in the vol-
R (06300)7“1'

ume element d@d@[/ (r?5inf)C (8}, &y )dr to the time-averaged force acting on
R(0G,¢0)—

particle surfaces in the control volume V in the time duration A. Then,

s

T k& Tk
- - (D2)

where 75, is the residence time of the surface S,}f in the control volume V., and E
k
denotes summation over particles whose reference points are in the volume element

R'(04,¢4)+7
dfde / (r*sinf)C (8, ¢p)dr for the time duration A. Since the particle k moves
2 (00,60) =
R(0).00)
in a volume clement dfdg¢ (r2sinf)C 0y, ¢p)dr, the time-integration in the
JReo,60) -+

expression / fk % )dl can be converted to a radial integration using the r component

of the moving velocity of S} , which we denote by vF:

. et T X/
f{(X;‘,)dt:/ Mdr for vF >0,
J 7 Jr

. vk
| e 3
FEX)dt = / f"h()k")dr for ¥ <0,,
J T i+l il

Here, [, is the radial displacement of particle & in the time duration A, and rp is the

initial radial position of S, V' when the center of the particle k, that is X, appears in the
R'(0),60)+~

volume clement (]9(](/)[/ (r25ind)C (0}, o) )dr.
,’(06,(’)6)7'

Tt follows from (D2) and (D3) that
Max(ry,r+) fk (

= XZ/ 7)dr (D 4)

Min(ry,re+li) ‘(/r|

In the summation on the right-hand side, the radial integration involves overlap, and the

number of overlaps is countable and varies with radial position. Introduce the overlap
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number N (r), which depends on radial position and is such that

Maw(ry,ry+) T X,, R 0O UO
Z/ fk(1k)d7‘:/ ka (DS)

vk
ke S Min(r, e+ ‘LT‘| RI(0],60)—

Here, Z refers to summation over all overlaps.
N(r)
The right-hand side of Equation (D3) can be manipulated as:

I?(Oo UO fk . | fk
., Z ‘ k| } ar I\EE;Z Z |’U]“ }|rfr}(\‘v)

1 (0],60)—~ i—1

= hm Z{ (ADEFE( X lr=r.)}]

ZlN(r

= lim Z{Z{At VN X =)} (D6)

=1  N(r)

The total radial scetion [R’((}(’), o) — v, R'(0), o)) + ﬂ is divided into N subscctions with

2y 2 . .. . . .
cqual length Q ;and v = R0, ¢p) —r + % is the radial position of the i-th subsecction.

In the second and in the last expression on the right-hand side of (D6), (At)¥ is the
residence time of the surface S in the subsection [ry, 741 ], and £ (X'|,—,.) is the time-
averaged value of f‘\(X "=, ) for all particles overlapping in the subscction. These are

given by the following equations:

1 23/
[vE| | N

Y AQOFFTX =)}
1\r<r1>
S0

N(n)

(A1)} = (D7)

2

FAX o) = (D8)

In the last expression on the right-hand side of (D6), Z (AH)¥ can be transformed,

N(n)
using the definition of Ap, as follows:
> (@anf
S Py | N
Aty = ZLdhde(r? sinf)C (6}, o) - ‘
D (A, v d6do(ri sin6)C (6o, ) 2 d0de(r? sind) C (6, o)

Ar("l)

(risind)C (05, dp)A (i) (D9)



16 K. Ueyama

By introducing (D9) into Equation (D6), we obtain,

R 6” (‘70 f N -
/ by "| Xty — tim ST A0S

’(9 L )7, N(r) i—1 N(r)
N 9y —
. / 2 . A !
= Jim (Sl in) O e £ ()
BI04 00)+y
= dfde[sindC (65, dp) / r'zf"\ (X")dr] (D10
QU

From (D4), (D3) and (D10), it follows that,

R'(0y.00)+r

7= %d&d@[sinﬁ(](%,%)/ v FHX)dr] (D11)

R,<067C’)l{1>7n

By summing the contributions of particles having centers in a spherical shell with inner
and outer radii R'()), ¢f) — ~v and R'(6], df) + =, in the time duration A, we determine
the time-averaged force acting on particle surfaces in the control volume V' during the

total time duration A to be:

A1 [T 2 T {00000+
Flo == / do / dp[sindC 0y, ¢p) / r? fAHX)dr] (D 12)
/ A J0 40 S R0}, 00)—~
Since the vector n' (8], ¢h) is common to fi (X}) for all particles having reference
R (05.00)+7
points in the volume element dfd¢[sinfC (8, ¢p) / r’dr], as shown in Equa-
RI(0],60)—~
tion (D-1), we can define the time-averaged value of To(X}|r—r, : R (8}, 00), 05, ¢f) for

all particles overlapping in the subscction [r;, riq1] as

S AT (X e, - R (6, 0))}
J\(U)
> (A

N(n)

T::\(X;c|'r-:'r-1 531(967(/)0) 90 (/)0)

(D 13)

Here, TN (X 4|,y : R'(60)), 64), 05, 61) is the time-averaged value of To(X 4 |,—,, + B'(6), 64), 05, &)

for all particles overlapping in the subsection. Then,

FNX =) = {7 = (R85, 60) — 1)’ H(L + 0(7)

xn'(6), ¢) - T (X s, + R (85, 00), 60, 1) (D 14)
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From (D12) and (D14) we have,

A
F R.S

™

T 27 ‘R,<0£)=d)£)>+’\'
1 [ e[ delsinscsy opm sy on)- |
Ao Jo .

RI(04,00)—

{r*{y* = (' (8. 00) — )}

XAR(NTH(X': (0. 04). 6, 64)}dr] (1 + o(7)) (D13)
In the entire radial section [R'(8), ¢4) — v, R' (84, &() + 7], it follows that
Ae(XVTE(X": R (6. 64). 60 00)
~ Ar(X |0y VTS (X o= ap ey T8, 60).05, 60)(1 + 0(3)) (D 16)

Here, X'|,— pi(o1.01) = Xo + R'(6, 6)in (0, ¢). W find now from (D15) and (D16) that:

A
Frs

14r 4

T W27
va [ [ B 6 o) O ch)sintAR(Xa + I (6. )ir(6.)
4 0 J0

xn (0, ¢h) - T2 (Xo + R'(0), 60)in(0,0) : B' (0, 60),05,40)](1+0(7))  (D17)

where, n'(6), ¢,) is a unit normal vector on a surface of the particle at the angular

coordinates (64, ¢f).

47 .
Finally, using the relation V' = —“”/'5, we derive

1

1 A ™ 27 )
lim —FhLg = / dé / do[{R(8,6)12C(0, 6)sinfAr (X0 — BB, 6)in(8, 0))
V—>Xo V ’ A\ 0 0

Here, n(.¢) is a unit normal vector on a surface of the particle at the angular coordinates

(8, ). The following relations have been used in obtaining the final expression on the

right-hand side of (D18).

g =m0 (D 19)

Gh=mto (D 20)
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Appendix E. Derivation of (3.15)

A following cquation holds because a tensor ’_ZTC{’(X o) is constant in spacc.
1 ™ 27 e .
——\/ de/ do[sinfn(8,0) - T. (Xo)An(Xo — Bn(8,¢))R?]
A Jo Jo
1 /7 2 PR p—
= K/ dH/ dp[sinfn(0, $)An(Xo + Bn(0,¢))R*] - T. (Xo) (E1)
AJo Jo

By neglecting higher order terms of Taylor expansion, a surface integral on the right

hand side of (E1) is calculated to

1 ™ 27 )
_X/ dQ/ do[sinfn(0, o)A (X + Rn(f, ¢))R?]
A Jo 0

x T 27 .
)\H(X 0) / d@/ do [sz‘n@n(ﬁ,c‘))ﬁz]
i 0 0

—i-]i/oW de/o ﬂdc‘>[8in¢9n(9,G‘i){n(Q,@) (VAR)| x5 }]

Q

= R—: /hﬂ df /ﬁ2W do[sinfn (9, d){n(8,¢) - (VAr)|x,}] (E2)
4 J0 J0
Let us take the Z axis of the Cartesian coordinate system along the vector (VAR)| x, -
(VAr)|x, =aiz (a>0) (E3)
By using the Cartesian coordinate system, the unit vector on the r axis, ., is given
by

n(Xg:0,9) =1i,. = sinfcospix + sinbsingiy + cosbiz (E4)

Here, 1x, 7y and 2, are unit vectors along the X, Y and Z axes, respectively.

The angular integration in the final expression on the right hand side of (E2) is now

calculated to
T 27
[ a8 [ dolsingn(6.6)(n(0.0) (VAw)x, ]
Jo Jo
T 27
=aq / df / d(/)[.s’in()z(:()sﬁ(:()sd)ix + sind*cosbsingiy + .s’in()(t()sf}ziz]
Jo Ja

4 4 -
= §7Ta7,z = §7T(V/\H)|XO (EO)
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Upon substituting (E2) and (E5) into (E1), we have

T 27
71\/ dH/ do[sinfn(0,¢) - Te (Xo)Ar(Xo — Rn(9, ¢))R?]
4270 J0

4 .
ﬂwRd(wRﬂxo T (Xo) (E6)

X

From (E6) and (F3) derived in Appendix F, (3.15) is obtained.

Appendix F. Further calculations on the first and second terms on
the right-hand side of (3.19)
F.1. First term

The first term on the right-hand side of (3.19) can be expressed, using (3.11), as

1 T 27 — )
——X)\H(Xo)/ de/ do[sinfn (8, ¢) - AT (X : R, 6, 0)R?]
4 0 0
_ VoAr(Xo) fﬁT(Xo)
A v,

= o) par )

(F1)

A following cquation is obtained from (3.3) by neglecting higher order terms in a Taylor

expansion.
Aq(Xo)
™ 2m I )
_ / d / de[sinf / (P AR(Xo i 1,6, 6) dr]
0 0 Jo
™ 2m I )
~ / d@/ do[smﬁ/ (P2 (Ar(Xo) +rn(8,0) - (VAr)|x,) dr|
0 0 Jo
e 27 I .
= Ar(Xy) / dG/ d@[sme/ r’dr]
Jo 0 Jo
o 27 R
+ [ as [ dolsing [ rn(6.0) - (VA x, ) b (F2)
Jo Jo 0
The sccond term on the right hand side of (F2) can be calculated using (E3) and (E4),
T 27 IR
/ d / dolsing / (9100, 8) - (VAR)|x.) Y]
Jo Jo Jo
T 27 IR )
= a/ d()/ d(/)[svf'n,f)(:os()/ rdr] =0 (F3)
Jo J0 J0

The integral of the first term on the right hand side of (F2) gives the volume of a
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sphere with radius R.

T 27 IR 3
‘ 4
/ (]9/ d(/)[sin()/ r2dr] = i =V, (F 4)
Jo Jo Jo 3

By substituting (F3) and (F4) into (F2), we have
‘/'p)\R(XO) ~ Ad(XO) (F 5)
From (3.1), (F1) and (F5), it follows that

T 27
fl\/\R(Xo)/ dH/ dglsinfn (X : 0,¢) - AT (X : R,0,6)R?]
< JO JO

fAT(XO)

~ 6(X()) P V. (F 6)
14

The right hand side of (F6) is the same as the conventional interaction term.

F.2. Second term

The sccond term on the right-hand side of (3.19) can be calculated from (E3) and (E4)
as

1 T W27 -
- | b / do|sinfn(8,6) - AT (X : R,0,6){n(0.0) - (VAr)|x, } ']
~Jo J0

R[> 2 — .
= a—\/ d¢9/ do[sinfcosdn(0,6) - AT (X : R, 0, 6)R?
A Jo Jo
R T 27 . .
+(lT / do / do[sinfeosn (0, ¢) - AT (X : R, 6, ¢)R?] (F7)
FAN T Jo
The surface integration in the first term on the right-hand side of (F7) is a weighted
surface integration of the force due to AE(XU : R, 0, ¢) on a hemispherical surface with

positive Z axis, with weight function cosfl. Since the value of cosf is between () and 1 for

0 < 8 < 7, the following equation is proposed to see the main property of the term:

g 27 —
a% / do / do[sinfcosdn (6, ¢) - AT? (Xo: R,60,0)1]
i 0 J0

Q

% 27 )
c+a%/ d@/ do[sinfn(8,0) - AT (X, : R.6, )%
<200 0
o) FTX)
0z’ x v,

I
4
QL
\
~h
L
!
+
o
2

= —¢"R( (F8)
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Here, f?T+(X0) is the contribution of AT2 (X, : R,6,¢) on a hemispherical surface
with positive Z axis, defined as follows (¢™ is a fitting paramcter between 0 and 1, and

represents the effect of the weight function, cosf):
% 27 o )
FT(X) = - / d / do[sinfn(9,¢) - AT} (X o : .6, 6)R] (F9)
0 Jo

Similarly, the sccond term on the right-hand side of (F7) is given by

T 27 _
aﬁi / df / dg[sinfeostn (0, ¢) - AT> (X : R, 0, ¢)R?]
JA O % Jo

Q

% 27 o
—c*a%/ d¢9/ do[sinfn (8, ¢) - AT (X0 : R, 6, ¢)R?
A Jo Jo

_ R—x7— 9 X
ST = Rl T

(F 10)

Here, prTf(XO) is the contribution of AT2 (X, : R,6,¢) on a hemispherical surface
with negative Z axis, defined as follows (¢~ is a fitting paramecter between 0 and 1,

representing the effect of the weight function cosf):

T 27 _
27 (Xo) = 7/ de/ do[sinfn (6, ¢) - ATN( X : R, 6, ¢)R? (F11)
. g JO

Appendix G. Derivation of (4.5) and (4.6)

Let us take a time-averaged value of the velocities of the dispersed phase observed
at point X . For simplicity, no rotation is assumed for particles. When the center of
the particle is in a sphere with radius R centered at X, the dispersed phase velocity
measured at X is the same as the moving velocity of the particle center at the volume
element in the sphere. Upon denoting the residence time of a center of particle 7 in a
volume clement r2sinfdfrgdr at (Xo @ r,0,¢) as (At)., ,, the contribution of thosc
particles, for which the center has been in the volume element during the total time
length A, to the time integral of ug at X is given as Z {(At)f.ﬁ,au;(Xo :r,0,9)}.

N(r,0,¢)
Here, N(r,0,¢) and u, (X : r,0,¢) respectively denote the total number of particles
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that appcarcd in the volume clement r2sinfdfredr at (Xo : r,6,¢) during the total
time duration A, and the moving velocity of particle ¢ centered at (X : 7,68, ¢). Let us
introduce the time-averaged moving velocity of a particle with center at (Xg : r, 0, ¢) as

> AL, gul(Xo i 1,60,0)}
— N(r,0,0)
> (A,

ud(Xg:r,68,0) =
N(r,0,6)

(G1)

P

The contribution can now be transformed to:

Z {(At)i‘,o,ou;}(XU : T‘,H, O)}

N(r,0,6)

={ D (A etup(Xe:r.0.0)

N(r,0,¢
= r?sinfdfdodrig (X : 1,0, (/))ui‘p\(Xo 2,0, 0) (G2)

The final expression is obtained from the definition of Ag.
The total time integral of the dispersed phase velocity at X during A is obtained by

summing the contribution of volume elements in the sphere:
e(Xo)us'(Xo

/ de/zrdo 5m¢9/ rAr(Xo 17,0, 0)ud (X : 7.0, 0)dr]
- /V Ar(X)ul (X)dV (@3)

R

Here, Vg is a spherical volume with radius R centered at Xy, (G3) is a rigorous relation
between the time-averaged moving velocity of particles u A and the time-averaged velocity
of the dispersed phase @g?, and it shows that these two physical quantities are not
generally the same.

In the case where the time-averaged moving velocity of particles u p\ is constant in

space, we know from (G3) that the time-averaged moving velocity of particles uT} is

equal to the time-averaged velocity of the dispersed phase wg¢, since

e;\u_dd(Xo):/\; Ar(X)ud (X)dV = ul (Xo)/\; Ar(X)dV = eAud (X))  (G4)
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When uT} exhibits spatial variation, the right hand side of (G3) can be calculated, ne-
glecting higher order terms of Taylor expansion, as follows:
/ )\H(XO)uT}(XO)dV
‘f"rrg
T 27 IR ) - -
~ / d / 4o [sinf / P {\plxo + rir - (VAR x0o Mt x, + iy (VD) x, Jdr]
Jo Jo Jo
(G3)
By using (E4), the right hand side of (G5) can be calculated to

T 27 IR - -
/ dG/ do [smﬁ / r*{Anlx, + i - (V/\H)‘XO}{’U,}HXO + 7, (Vu;})\xo}dr}
0 0 J0

R? -
~ e(Xo)Au (Xo) + AV lx, - (Vu)lx, (G 6)

From (G3), (G3) and (G6), we have:

—d A R* Ve A
uq’ ~ul T)T(vuz}) (GT)

The terms in (G7) are all given at the same point in space. It is interesting to study the
physical background of the second term on the right hand side of (G7), however, it is not

investigated here.

Appendix H. Derivation of (4.5)

The Navier-Stokes equations, time-averaged, for the continuous and dispersed phases

arc given by (Ueyama and Miyauchi, 1976):

% (1 - ()/)(:ucc} +V- {(1 — E)m(}
= V{1 =P} =V Al =T} + (1 - g + D. (H1)
9 e - d —d _d —
7(6[)[{“1(1 ) + v ’ (6dedud ) = 7v(fpd ) - v ' ((Td ) + ([)d g - Dc (H 2)

ot
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Here, D, is an interaction term given by (C1) in Appendix C. By summing Equations

(H1) and (H2), we have:

J__, . .
pm,au_(’L + pmu_cL ° (V’U/_(()

= *v . (ﬁ({’I + 7_7({’) - v ‘ ﬁ + /)m,g - 6/)ziTR : (vm() (H 3)

Here, pm = (1—€)pe"+€pa” is the density of the two-phase mixture, 75 = (1—¢€)pou/ul. +
emd is the Reynolds stress tensor of the two-phase flow, and uwy = ul —u.lis a
relative velocity vector between the time-averaged velocity vectors of the dispersed and
continuous phascs. In deriving (H3), the equations of continuity, time-averaged for both
phases, have been used to derive the left hand side, and the relative velocity wg, together
with p. and pg, are assumed to be constant. The relations EUI + T~ EdI + 7,4 and
{

ug® ~u’ are assumced for the sake of simplicity, based on the fact that n- (P.I+7.) =

n - (Pyl + 74) and uyg = u, at the interfaces that abound in the two-phase flow ficld.



