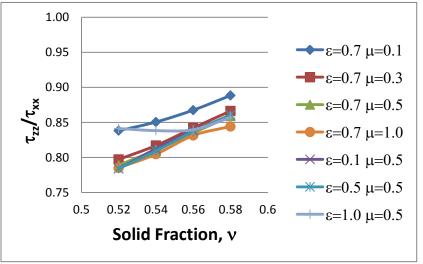

Normal Stress Ratios


These are from simple shear flow simulations done with Less-Edwards boundaries. Here x is the direction of flow, y is the direction of the velocity gradient, and z is the out of shear plane or vorticity direction. These cor

Generally (but with one exception), τ_{xx} is the largest value followed by τ_{yy} and τ_{zz} . The stress ratios τ_{yy}/τ_{xx} and τ_{zz}/τ_{xx} vary with concentration, v, and material properties, the coefficient of restitution, ε and surface friction coefficient, μ . They are also weak functions of k/pd³ γ^2 but all this data was taken for k/pd³ $\gamma^2 = 10^5$.

Note that τ_{yy} and τ_{xx} agree with in about 10%.

