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Appendix A: The flow field for a stepwise change in EOF velocity (using Papkovich-

Fadle functions) 

To a certain extent the analysis presented here relates to analytical solutions for the EOF field in 

channels with an inhomogeneous zeta potential. In particular, Anderson and Idol [Anderson and Idol, 

1985] studied the flow in a circular capillary with a periodically varying  zeta potential in the axial 

direction, and Horiuchi et al. [Horiuchi et al., 2007] calculated the flow field for a step change in the 

zeta potential in a parallel-plates geometry.  Similarly, Ajdari [Ajdari, 1995] and Stroock et al. [Strook 

et al., 2000] as well as Qian and Bau [Qian and Bau, 2002] investigated periodic variations of the zeta 

potential in parallel-plates geometries (c.f. Appendix B). Long et al. [Long et al., 1999] calculated the 

EOF for point defects in planar and cylindrical geometries as well as for ring defects in cylindrical 

geometries. Lubrication theory was used by Ghosal [Ghosal, 2002b] to calculate the EOF field for a 

slowly varying zeta potential along a channel. The related problem of planar electroosmotic flow near 

a surface charge discontinuity in a semi infinite fluid domain was studied by Yariv [Yariv, 2004]. 

Here we intend solving the biharmonic equation in a planar geometry with a step change in the EOF 

velocity using Papkovich-Fadle eigenfunctions. The boundary conditions for the problem are depicted 

in Figure 10. At the channel walls (� � �1�, the impermeability condition �� � 0 determines the x-

derivatives of the stream function; the y-derivatives are determined by the Helmholtz-Smoluchowski 

boundary condition of equations (13) and (2) in the main text. These boundary conditions are based on 

the assumption that the width of the ITP transition zone is much smaller than the channel width, i.e. a 

step-like transition at 	 � 0 is assumed. We will use the decomposition of the stream function into 

near-field and far-field solutions as specified in equation (14). Since the far-field solutions obey the 

velocity boundary conditions at the wall, sketched in Figure 10, the wall boundary conditions for the 

near field solution are 


��
�	, ���|���� � 0,    
��
�	, ���|���� � 0. (27) 

Moreover, far away from the interface the near-field solution has to vanish 

lim���� �
�	, �� � 0. (28) 

Since the first wall boundary condition, equation (27), demands that �
 is constant everywhere at the 

wall, we can choose �
�	, ���|���� � 0 without loss of generality. The symmetry of the problem is 

such that the velocity field has a positive parity with respect to an inversion of the y-axis, translating to 

a negative parity of the corresponding stream function, i.e. ����� � �����. From the negative parity 

of the far-field solutions it then follows that also the near-field solution is required to have negative 

parity. 
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Figure 10 Illustration of the boundary conditions for the stream function ���, ��. The wavy lines on both sides 

indicate that the corresponding boundary conditions are to be imposed at the two far ends of the channel. The 

coordinate system moves with the average EOF velocity relative to the laboratory system and the transition zone is 

located at x=0 at the particular time considered. 

Solutions of the biharmonic equation (11) are sought in separable form 

 �
 � Φ����!"�. (29) 

With the definition 

Φ#��� �  $
�# % &#'Φ����, (30) 

the biharmonic equation reduces to an eigenvalue problem 

( ) � &#), (31) 

where 

) � *Φ�Φ#+ ,        ( � ,�
�# 10 �
�#-. (32) 

To simplify notation, we define the inner product between two such vectors ) � �Φ�, Φ#�. and / � ���, �#�.as 

0)|/1 � 2 3� 4Φ��������� % Φ#����#���5�
6� . (33) 

Following the analysis of [Kamke, 1962] and [Shankar, 2003] it is then straightforward to show that 

two eigenvectors ) and / with eigenvalues & and 7, i.e. () � &#), (8/ � 7#/, fulfil the 

biorthogonality relation, i.e.  

9/|): � 0   for  & ; 7, (34) 

where (8 denotes the adjoint operator of (, defined by 9/|(): � 9(8/|):. 
We may further proceed as in [Shankar, 2003] to solve the biharmonic equation Δ#�
�	, �� � 0 in the 

two semi-infinite domains =6 and =8shown in Figure 10 with the boundary conditions 

>�   �
�	, �1� � 
��
�	, ���|���� � 0, >>�  lim|�|�� �
�	, �� � 0, >>>� �
�0�, �� � ?����, (35) 

�6��� �8��� Δ#� � 0 

TE LE 


�� � 0;  
�� � �A6BCD
 
�� � 0;  
�� � �A8BCD

 


�� � 0;  
�� � �A6BCD
 
�� � 0;  
�� � �A8BCD
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>E�  Δ�
�	, ���|��F� � $
�# % 
�# '�
�	, ���|��F� � G����, 
where 

=6 � 4�	, �� H 	 I 0 J |�| K 15      and    =8 � 4�	, �� H 	 O 0 J |�| K 15. (36) 

?���� and G���� are functions that need to be determined from the requirements that at 	 � 0 the 

velocity field is continuous and the corresponding stream function solves the biharmonic equation. 

The notation 0� symbolises taking the limit for positive and negative values of 	, respectively. We 

extend Shankar’s analysis to antisymmetric short edge boundary conditions, i.e. ?����� � �?���� 

and G����� � �G����. In this case the eigenfunctions of equation (31) are given by the odd 

Papkovich-Fadle eigenfunctions [Smith, 1952; Joseph, 1977] 

PA�,"��� � & cos & sin &� � &� sin & cos &� PA#,"��� � 2&# sin & sin &�, (37) 

which obey ( )U" � &#)U", where )U" � $PA�,", PA#,"'.
. The complex eigenvalues are solutions of the 

equation 

sin 2& � 2&. (38) 

Note that if & is an eigenvalue, so is its complex conjugate &V as well as – &, so it suffices to tabulate 

values in the first quadrant of the complex plane. We will order these eigenvalues according to their 

ascending real parts as &X, Y Z [F. The first eigenvalues are &F � 0, &� � 3.74884 % 1.38434> and &# � 6.94998 % 1.6761>. We extend this notation so that negative indices refer to the complex-

conjugate values, i.e. &6X � &VX.  

Since (8 � (., we immediately get the corresponding eigenfunctions /bc with eigenvalue 7 of the 

adjoint operator (8 fulfilling (8/bc � 7#/bc, /bc �: $�b�,c, �b#,c'. � $PA#,c , PA�,c'.
. 

The boundary conditions (iii) and (iv) can now be expanded in terms of the eigenfunctions )U" and the 

expansion coefficients e" can be determined by making use of equation (33): 

f���� � *?����G����+ � g e"�)U"���,"  (39) 

e"� � h/b"if�jh/b"i)U"j � � h/b"if�j4&# sink & , (40) 

where the sum extends only over eigenvalues with positive (negative) real parts for solutions in =6 

(=8). 

The general form of the solution in the domains =6 and =8 fulfilling the boundary conditions of 

equation (35) is then given by 

�
��	, �� � g e"� " PA�,"��� !6"|�|, (41) 

where the sum only extends over eigenvalues with strictly positive real part in order to meet boundary 

condition (ii). We will use this summing convention in the following without explicitly mentioning it. 
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For completeness and convergence properties of the biharmonic expansion (41) we refer the reader to 

[Gregory, 1980; Joseph et al., 1977, 1978, 1982; Spence, 1983]. For large 	 this expression is 

dominated by the first eigenvalue &�, so the near field solution drops off rapidly within the region 

spanning ∆	~ � ln 0.01 Re &�⁄ � 1.23 at both sides of 	 � 0. 

Application to the transition zone problem 

We will now determine the expansion coefficients in equation (41) for the specific case of the flow 

field around a narrow isotachophoretic transition zone. The two domains =6 and =8 are coupled via 

the boundary conditions at 	 � 0, resulting in different expansion coefficients in the two domains. 

However, due to the fact that the y-velocity has to be continuous when crossing 	 � 0 we immediately 

see that the expansion coefficients in the biharmonic series must be equal in magnitude and of 

opposite sign in =6 and =8. The near field solution in =6 q  =8 can thus be written in the form 

�
�	, �� � sign��	� g e"" PA�,"��� !6"|�|, (42) 

where sign�	� � �2Θ�	� � 1� is the sign function. The near field solution thus has a discontinuity at 	 � 0 whose magnitude is proportional to the difference in the far-field solutions. This simply reflects 

the fact that the full stream function has to be continuous at 	 � 0. 

This leads us to the determination of the short edge boundary functions ?��� and G���. To obtain the 

first boundary condition we note that from the continuity of � at 	 � 0, it immediately follows that 

?6��� � �
�	 � 06, �� � �# $�8��� � �6���' � tuv��1 � �#�. (43) 

Since the biharmonic equation has to be fulfilled in the complete domain =8 q =6, we have to check 

that our ansatz equation (14) is also a valid solution at 	 � 0 and proceed by explicitely calculating 

each term in Δ#�
 � $
�k % 2
�#
�# % 
�k'�
. For the fourth derivative of �
 with respect to 	 we 

write symbolically 


�k�
�	, �� � g e"sign��	�" PA�,"��� &k !6"|�| % w���
�#Θ�	�, (44) 

where w��� � ∑ e"" PA�,"��� &# � 
�#�
�	, ���|��F� . The last notation denotes the right/left 

derivatives of the function �
�	, �� at 	 � 0. The other terms become 


�#
�#�
�	, �� � � g e"sign��	�" PA�,"��� &k !6"|�|
% 2 g e"sign��	�" sin & sin &� &k !6"|�|, 


�k�
�	, �� � g e"sign��	�" PA�,"��� &k !6"|�|
� 4 g e"sign��	�" sin & sin &� &k !6"|�|. 

 

(45) 

Collecting terms, we see that the biharmonic equation is fulfilled everywhere only if w��� � 0, i.e. 
�#�
�	, ���|��F� � 0, since this eliminates the term with the ill-defined second derivative of the 
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Heaviside (step) function. This leads to the second of the short edge boundary conditions and we 

obtain 

G6��� � $
�# % 
�#'�
�	, ���|��Fy � ?6zz���. (46) 

From equations (43) and (46) we obtain via equation (40) 

e" � �4v sin# &�4&# sink & � v&# sin# &. (47) 

Collecting terms, we have 

�
�	, �; v� � �v sign�	� g 1&# sin#�&� PA�,"��� e6{|||
" , (48) 

where the dependence on v has been made explicit in the notation for �
. The boundary conditions Π��� at �	, �� � �0, �1� are not consistent with the boundary conditions obeyed by the Papkovich-

Fadle eigenfunctions themselves. In particular, 
�PA�,"����|���� � 0, while 
�?6����|���� � �v. This 

suggests some discontinuous behaviour of the derivatives of the stream function at �	, �� � �0, �1�, 

as already pointed out by Joseph [Joseph, 1982]. Further note that only these points are problematic 

for the convergence of the series, since for |	| ~ 0 the terms are strongly damped by the !6"|�|-
factors, and the series will still give a faithful representation of the solution to the differential equation. 

It is well known that Fourier series expansions suffer from “Gibbs ringing” in the vicinity of 

discontinuities. The same is expected for the expansion in biharmonic eigenfunctions and has already 

been pointed out by Joseph [Joseph et al., 1978, 1982]. In order to reduce this effect we replace the 

sums by their respective Cesaro sums, i.e. instead of summing a sequence e� , > Z [ we do a weighted 

summation over the respective partial sums �X � ∑ e�X��� . In particular, we replace the truncated sum �� � ∑ e�����  by ��� � t� ∑ ������ � ∑ ��y��t�� e����� . We will refer to the truncated sums �� as the “plain 

summation” and to ���  as the corresponding “Cesaro summation”. 

In Figure 11 we explore both of the aspects mentioned in the previous paragraphs. As can be seen 

from the figure, the sums for �
�06, �� converge well, although it is apparent that the Cesaro 

summation yields a much smoother curve. By contrast, the sum for 
��
�06, �� converges much 

slower, and due to the fact that the derivative of the odd biharmonic eigenfuctions vanishes at the 

boundary, always has a discontinuity at the wall. For the plain summation it even seems that the sum 

always lies within a band around the functional value. The width of this band does not seem to get 

reduced significantly below the value obtained with 50 terms even when summing a larger amount of 

terms. In the following, if not stated otherwise, the analysis is done by adding the first 250 terms of the 

Cesaro sum, where only eigenvalues λ in the first quadrant of the complex plane have to be 

considered, since the eigenvalues appear as complex-conjugate pairs (i.e. the fourth quadrant is 

included automatically when taking twice the real part of the sum over the first quadrant).  
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Figure 11 Convergence of the series expansions for ����6, �; �� � ���$� � ��' and �����6, �; �� � ������6, �; ��; 

Left: plain sum, Right: Cesaro sum. The sums run over ���� complex-conjugate pairs of eigenvalues in the first and 

fourth quadrant of the complex plane. 

To summarize, in the frame of reference co-moving with the average EOF velocity, the stream 

function and the components of the velocity field are given by 

��	, �� � v ����1 � �#�4Θ��	� � �5 � sign�	� g 1&X# sin# &X PA�,"����X !6"�|�|� 

�A��	, �� � v ���1 � 3�#�4Θ��	� � �5 � sign�	� g 1&X# sin# &X 
�PA�,"����X !6"�|�|� 

�A��	, �� � g eXPA�,"����X &X!6"�|�|. 
(49) 

Note that the only independent parameters in these expressions are v and �. We remark that this form 

is equivalent to the one obtained by Horiuchi et.al. by Laplace transform methods [Horiuchi et.al., 

2007]. 

 

Appendix B: Alternative representation for the flow field for a stepwise change in the 

EOF velocity (Meleshko’s method of superposition) 

An alternative representation for the flow field �
�	, �; v� can be obtained by the superposition 

method for the biharmonic equation developed for the problem of steady Stokes flow in a rectangular 

cavity by Meleshko [Meleshko, 1996]. We will use the solution of Qian and Bau [Qian and Bau, 2002] 

for the biharmonic equation in a cavity defined by the region �	, �� Z ���, �� � ��1,1�, using 

dimensionless coordinates. The velocity ����	, ��|���� � sign�	� is prescribed at the top and bottom 

surfaces and the shear rate 
����	, ���|���� � 0 at the side walls. Their solution reads 
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�����	, �� � � 4� � g ��1��v� ������� �>Y�v�	��
���� ���

� g$ �	, 27 % 1 � �� �  �	, 27 % 1 % ��'�
c�F ¡ , (50) 

where v� � �¢� , and we have used the abbreviations  

����� � coth v� sinh v��sinh v� � � cosh v��sinh v� ,   �� � ,* v�sinh# v� � coth v�+6� % 1-, 
 �¥, ¦� � � ��2§ arctan © sin ª§	� «sinh ª§�� «¡. (51) 

An approximation for �
�	, �; v� may now be obtained for sufficiently large � ¬ 1 and |	| K �# from 

�
�	, �; v� � v ,sign�	� 12 ��1 � �#� � �����	, ��-. (52) 

Truncating the x-domain from 	 Z ���, �� to 	 Z �� 2⁄ , � 2⁄ � serves the purpose of attenuating the 

influence of the shear-stress boundary condition at |	| � �, which is inadequate in the present context. 

As an example, setting � � 5, and summing the first 10 terms in both sums gives an excellent 

approximation in the range 	 Z ��2.5, 2.5�. Since ��
�	, �; v�|���®u has already decreased by 5 orders 

of magnitude compared to its value at 	 � 0, which is more than sufficient for all practical purposes. 

Note that this representation has better convergence properties than the one presented in Appendix A 

and is in particular not plagued by the slow convergence at 	 � 0, since the sums in �����	, �� yield 

a smooth function.  

 

 

Appendix C: Electroneutrality and the influence of Maxwell stresses on the velocity field 

around an ITP transition zone 

Maxwell stresses become increasingly important once the transition zone becomes sufficiently narrow 

and the electric fields large. With the charge density given by Gauss’ law as 

¯ � ° · �²³�, (53) 

where ² is the permittivity of the medium, the Stokes equation including the Maxwell stresses 

becomes 

0 � ¦Δ´ � °� % ¯³. (54) 

The electric and species concentration fields can be calculated as described for the NPS model. At first 

glance it may seem contradictory to on the one hand impose electroneutrality, i.e. ∑ µ�¶�� � 0, for 
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determining the concentration as well as the electric fields and on the other hand use Gauss’ law (53) 

for determining the charge density for the momentum equation, since on a fundamental level ¯ �· ∑ µ�¶�� . However, it is important to note that compared to the concentrations of the ions, which is 

typically of the order of ¶F~106# mol/l, the induced charge density can safely be neglected in the 

Nernst-Planck equation [Newman and Thomas-Alyea, 2004]. We can estimate the induced charge 

density ¯~ ²¹F º⁄  from a typical width º~10 µm of the transition zone and the scale of the electric 

field ¹F~1 kV cm⁄ . Using a relative electric permittivity of ²½~80, the ratio ¾ between the 

concentration of charge carriers and the bulk concentration is of the order 

¾ � ¯ ·⁄¶F ~¿�106À�. (55) 

Due to the smallness of this parameter the deviation from electroneutrality may thus safely be 

neglected in the Nernst-Planck equations. In the spirit of a perturbation approach, expanding 

concentration and electric fields in ¾, the equations of ¿�¾F� are just the Nernst-Planck equations 

obeying the electroneutrality assumption as employed in this study, while Gauss’ law connects the 

electric field obtained in ¿�¾F� with the concentration fields of ¿�¾��. 

In order to assess the importance of the Maxwell stresses in the context of the present approximation 

we have included this term in the NPS model described in the main text and calculated the stream 

function as well as concentration fields for different current densities, c.f. Figure 12. In order to be 

able to directly compare with the original model, these results have been overlaid to plots of the 

respective results obtained in the NPS model without the Maxwell stresses. Since the electric field 

gradients in the transition zone increase for larger applied current densities and consequently the 

charge density increases, we have chosen three different current densities ranging from 0.4 kA/m² to 

1.0 kA/m². As can be seen, the inclusion of Maxwell stresses does have some impact on the stream 

function for large applied current densities. Nevertheless, at least in the range considered the 

corresponding change in the velocity field only has a small impact on the concentration field at the 

transition zone. This indicates that Maxwell stresses play a minor role in typical ITP experiments. 

Nevertheless, at even larger applied fields the Maxwell stresses may dominate the flow and ion 

transport at a transition zone and even lead to instabilities. For example, a deformation of transition 

zones may occur even in the case of vanishing electroosmotic flow. However, the analysis of this 

effect lies outside the scope of the present study. 
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j=0.4 kA/m² 

  

j=0.75 kA/m² 

  

j=1.0 kA/m² 

Figure 12 Left column: Contour lines of the normalised stream function as calculated in the NPS model without 

(black) and with Maxwell stresses (red) with (from top to bottom) Á � �. Â, �. ÃÄ, �. � ÅÆ Ç�⁄ . All other parameters 

were chosen according to equation (25). Right column: TE ion concentration profiles as calculated in the NPS model 

without (greyscale) and including Maxwell stresses (red). Light and dark shades correspond to high and low 

concentrations of TE ions, respectively. 
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