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1. Summary of the method of generalized Taylor dispersion.

First, let us suppose that a population satisfies the following advection-diffusion equa-

tion:

∂n

∂t
= −∇.(x.Gn− D.∇n).

Here we are assuming the cells have no preferred direction and so the advection term

only represents the fluid velocity which is homogeneous shear and the reference frame is

chosen so the fluid velocity is zero at the origin.

If we change to a reference frame deforming with the fluid, the codeformational trans-

formation,

x1 = x.e−Gt,

which in Cartesian components under standard summation convention can be written as

x1
j = xi

(
e−Gt

)
ij
,

we can remove the fluid advection term from the governing equation:

∂n

∂t
= ∇x1 .(e−GT t.D.e−Gt).∇x1n.

We shall drop the 1 in the subsequent analysis for notational simplicity.

We define the spatial moments of concentration:

Mm =
∫

xmndx.

Computing the second spatial moment of the governing equation gives an expression

relating the diffusion tensor to the second spatial moment of concentration:

dM2

dt
= 2e−GT t.[D]sym.e−GtM0. (1.1)

This result is derived under the assumption that n decays sufficiently rapidly to zero at
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the outer spatial boundary. We now have an explicit expression describing the effect of

the shear on the dispersion.

Now, let us instead start with the following micro-scale model for P (p,x, t), the prob-

ability of finding a cell with orientation p at position x at time t, given by the equation:

∂P

∂t
+∇x.((x.G + vsp)P ) + drLP = 0.

Here we have again assumed the fluid velocity is homogeneous shear and the reference

frame is chosen so the fluid velocity is zero at the origin.

Generalized Taylor dispersion aims to obtain a governing equation for the cell con-

centration n(x, t) =
∫
Pdp. Here we outline the method in the case where there is no

swimming bias. Extending to the case where bias is included is fairly straightforward,

and can be derived by following the details given in Frankel & Brenner (1991, 1993).

Changing to the codeformational reference frame, and then non-dimensionalising based

on a length-scale L and diffusion time-scale drL2/v2
s , we obtain the following governing

equation:

ε2
∂P

∂t
+ ε∇x1 .(p.e−GtP ) + LP = 0,

where ε is as defined by equation:

ε =
vs
Ldr

. (1.2)

. On integrating this governing equation, we find that the spatial moments of P , given

by

Pm =
∫

xmPdx,
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satifsy the following coupled equations:

ε2
∂P0

∂t
+ LP0 = 0

ε2
∂P1

∂t
+ LP1 = εp.e−GtP0

ε2
∂P2

∂t
+ LP2 = 2ε[p.e−GtP1]sym.

c.f. equation (3.6a), Frankel & Brenner (1991). This result is derived under the assump-

tion that P decays sufficiently rapidly to zero at the outer spatial boundary.

As detailed in Frankel & Brenner (1991), on timescales long compared to the micro-

scopic relaxation time dr, that is for ε� 1, the non-stationary contribution to the density

vanishes exponentially rapidly and we can relate P0 and P1 to f and b defined in the

main paper:

lim
t→∞

P0 = f

lim
t→∞

P1 = εb.e−Gt.

Integrating the equation for P2 over orientation space gives the following expression for

the second moment of cell concentration, M2 =
∫
P2dp:

dM2

dt
= 2e−GT t.[

∫
pbdp]sym.e−Gt. (1.3)

Comparing the expressions for the second moments, equations (1.1, 1.3), and noting

that M0 = 1, we assert that if the population of cells undergoing a random walk in

homogeneous shear satisfies an advection-diffusion equation, then the diffusion tensor is

given by

D = [
∫

pbdp]sym. (1.4)

If we compare this with the expression given in the main paper for the diffusion:

D =
∫ 2π

0

[bp +
Pr

f
bb.Ĝ ]symdθ, (1.5)
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) we see that there is additional term to ensure that the diffusion tensor is positive

definite. This has been shown not to alter the long term spatial moments (Frankel &

Brenner 1991, 1993).

In the case where the eigenvalues of G have zero real part, Frankel & Brenner (1991,

1993), carefully considered all the higher order moments and were able to show that all the

spatial moments agree with the expected solution of the advection-diffusion equation and

therefore the cells do satisfy an advection-diffusion equation. What is still not understood

is what the population model should be for straining-dominated flow.

2. Calculation of two-dimensional spatial distribution, small Pe

asymptotics.

For gravitactic cells, at equilibrium, the cell concentration satisfies the following:

∇.((PeV +
1
ε
pyj)n− D.∇n = 0, (2.1)

where the non-dimensional diffusion tensor, D, is diagonal. The no-flux boundary condi-

tions are given by

−Dxx
∂n

∂x
= 0, at x = 0, 1

1
ε
pyn−Dyy

∂n

∂y
= 0, at y = 0, 1.

When Pe = 0, the equilibrium solution is n0e
νy. Inserting an asymptotic solution for

small Pe:

n = n0e
νy + Pen′(x, y) +O(Pe2),

into equation (2.1) gives the following expression at O(Pe):

1
ε
py
∂n′

∂y
−Dxx

∂2n′

∂x2
−Dyy

∂2n′

∂y2
= −n0νVye

νy.
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For the simple convection flow field, Vy = −π cos(πx) sin(πy), we can let

n′ = n0 cos(πx)f(y)

which automatically satisfies the no-flux boundary conditions at x = 0, 1 and results in

a linear constant coefficient differential equation for f(y):

νf ′ + rπ2f − f ′′ =
νπ

Dyy
sin(πy)eνy,

where r is the ratio of the diagonal entries in the diffusion tensor, r = Dxx/Dyy. This

has general solution

f = aeαy + beβy + (A sin(πy) +B cos(πy))eνy,

where the following constants are defined:

α = ν/2 +
√

(ν/2)2 + rπ2, β = ν/2−
√

(ν/2)2 + rπ2

A =
π(r + 1)ν

Dyy(π2(r + 1)2 + ν2)
, B =

ν2

Dyy(π2(r + 1)2 + ν2)
.

The constants a and b are found by imposing the no-flux boundary conditions at the

walls y = 0, 1:

νf − f ′ = 0, at y = 0, 1,

which yields

a =
Aπ(eβ + eν)

(eβ − eα)(ν − α)
, b =

Aπ(eα + eν)
(eα − eβ)(ν − β)

.

The validity of this approximation is examined in figure 1 for a range of Pe and κ: for

increasing gravitactic bias in swimming, κ, the approximation is valid for a decreasing

range of values of Pe.
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Figure 1. The absolute error maximised over all computational mesh points computed as a

function of Pe and κ. The error is the difference between the asymptotic approximation and

the numerical solution of the full advection-diffusion equation for spherical cells. Maximum

values of the error were computed at increments of 0.1 in Pe and κ and interpolated bilinearly.

(κ, Pe) pairs in the top right corner yield regions of negative concentration in the asymptotic

approximation and so were removed from the analysis.
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