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1. Asymptotic analysis for Model B

An unabridged version of section 6.2 in the full paper.
Since for Model B none of the Ki, Ji, Pi or Ai are constants, the asymptotic analysis

involves much expanding. We write each expansion in the same way, for example for Ki

Ki = K(i,0) + d−1K(i,−1) + d−2(κm0
−1K(i,−1) + K(i,−2)) (1.1)

+d−3

(

K(i,−1)κ

(

m0
−2 +

κ(m0
−1)

2

2

)

+ K(i,−3) + 2κm−1K(i,−2)

)

,

and similarly for all Ji, Pi and Ai. Each component K(i,j) (and J(i,j), P(i,j) A(i,j)) can
be calculated directly using Taylor series to expand the expressions for Ki (and Ji, Pi

and Ai) for d ≪ 1. Note that the leading order component of Ki and Ji do not depend
on χ and are constants that depend on λ, as in Model A where Λ = λ. For example,
K(1,0) = K̄1. The definitions of the relevant components for use in the asymptotic solution
are shown in table 1.

1.0.1. Equilibrium solution

Multiplying the equilibrium solution in equation (5.2) by d−1 gives

d−1 d2m

dz2
−

K̄2

K̄1

K1(Λ)

K2(Λ)

dm

dz
= 0, (1.2)

with boundary conditions m = 0 at z = 0, and m = d−1(e−d−1) at z = −1. If we expand
K1, K2 and then K1

K2
for small d, using the notation as explained above, then expanding

m in powers of d−1 and expanding the exponential in powers of d and substituting all
this into equation 1.2 gives

d−1 d2(m0d
−1m−1 + d−2m−2 + ...)

dz2
−

K̄2

K̄1

[

K(1/2,0) + d−1eκm0K(1/2,−1) (1.3)

+d−2(e2κm0K(1/2,−2) + eκm0κm−1K(1/2,−1)) + O(d−3)
]

×
d(m0 + d−1m−1 + d−2m−2 + ..)

dz
= 0.

For the outer solution, we find m0 =constant. Every subsequent m−n will also be con-
stant. The boundary condition at z = −1 gives that m0 = m−2 = ...m−n = 0 and
m−1 = −1.

For the inner solution we scale zI = dz and find the solution at leading order is

m0 = A0(e
zI − 1). (1.4)
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At next order we have

d2m−1

dzI
2

−
dm−1

dzI
−

K̄2

K̄1
K(1/2,−1)e

κm0
dm0

dzI
= 0. (1.5)

In order to match with the outer solution we require A0=0. Solving equation 1.5 then
gives

m−1 = A1(e
zI − 1). (1.6)

The matching as zI tends to −∞ provides A1 = 1. Solving the equation at second order,
substituting in m−1, gives

m−2 =
K̄2

K̄1
K(1/2,−1)(zIe

zI + 1) − A2 + B2e
zI . (1.7)

On applying the boundary condition at zI = 0 and using the matching, we find A2 =
K̄2

K̄1
K(1/2,−1) and B2 = 0. Thus,

m−2 =
K̄2

K̄1
K(1/2,−1)zIe

zI . (1.8)

1.0.2. Linear stability analysis

The asymptotic linear stability theory is performed on the Navier-Stokes equation,

(D2 − k2)2U = −k2d−1RΦ, (1.9)

and the cell conservation equation (5.22), with Pi(z) and Ki(z) defined in table 2 and
§5.3.2. As in linear stability analysis in §5.3, the equilibrium components are now denoted
with a superscript 0.

For the outer solution, the solutions for Φ and U are the same as for Model A, as
shown in §6.1.2 and equation (6.5).

For the inner solution we re-scale equation (5.22) and the Navier-Stokes equation (1.9)
using zI = dz, so that

(D2
I − d−2k2)2U = −k2d−5RΦ, (1.10)

{

PV (zI)
d2

dz2
I

−
K̄2

K̄1
K1(zI)

d

dzI
− d−2PH(zI)k

2 − d−2σ −
K̄2

K̄1

dK1

dzI
+

dPV (zI)

dzI

d

dzI

+d−2λχ−1κeκm0

PR(zI)
}

Φ + d−1λχ−1κeκm0

PM (zI) =

{

d−1 dn0

dzI
(1.11)

−dηP5(zI)
d2

dz2
I

− dηP6(zI)
d

dzI
+ d−1ηP7(zI)k

2

}

U,

where Pi(zI) can be calculated directly from the expression for Pi(z) in §5.3.2, with
boundary conditions

U = 0 and DIU = 0 on zI = 0, (1.12)

and K2(zI)DIΦ −
K(2,0)

K(1,0)
K1(zI)Φ = 0 on zI = 0. (1.13)

The terms on the right hand side of equation 1.11 complicate the expression and so we
consider the case in which they do not appear at first order (as in Model A). This requires
U 6 O(1) and ηU 6 O(d−2). For a non-trivial solution we need R ∼ d5U and we follow
the logic outlined in §6.1.2 and consider expanding using equations (6.8) and (6.9). At
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first order the cell conservation and Navier-Stokes equations are the same as for Model
A, hence Φ0 and U−n are given in equation (6.10).

The expressions at second order are calculated in the same was as for Model A, thus
we obtain

Φ−1 = −AKzIe
zI + CKezI , (1.14)

where CK is a constant of integration and

AK =
K(2,−1) −

K(2,0)

K(1,0)
K(1,−1)

K(2,0)
, (1.15)

and the Navier-Stokes equation yields

U−n−1 = a−n−1z
3
I + b−n−1z

2
I + k2R5−n−1 (zI + 1 − ezI ) (1.16)

+k2R5−n (AK(zIe
zI − 4ezI ) − CKezI + (3AK + CK)zI + 4AK + CK) .

Solutions are matched up to second order in the usual way, as for Model A, and we find
that the terms due to phototaxis do not appear at this order. If we look in the region
of parameter space where η ∼ d−2 and n = 1, as for Model A, then A0, B0 and b−2 are
given by (6.13). The cell conservation equation at third order is then integrated from
−∞ to 0 to obtain the solvability condition:

R4 =
2P(H,0)

(1 − η−2(P(5,0) − P(6,0)))
. (1.17)

Integrating the cell conservation equation between 0 and −∞ at fourth order gives

R3 = 4b−2 +
2(P(H,0)(AK + CK) + P(H,−1))

(1 − η−2(P(5,0) − P(6,0)))
(1.18)

+
2R4

(1 − η−2(P(5,0) − P(6,0)))

[

NK

4
−

5AK

4
−

CK

2
+ η−2

{(

5AK

4
+

CK

2

)

×(P(5,0) − P(6,0)) +
3

4
A(1,0)NK +

1

2
A(1,−1) +

A(4,−1)

2
+

3NKA(4,0)

4
+

K(2,0)

K(1,0)

(

1

2
A(2,−1) +

NK

4
A(2,0) −

1

2
A(3,−1) −

NK

4
A(3,0)

)}]

,

where Nk =
K(2,0)

K(1,0)
K(1/2,−1) is a constant and the definitions of A(i,j), P(i,j) and all

other constants can be found in table 1, which also shows the dependance of the fourth
order term on χ. Note that the expression for the Raleigh number as a function of the
wavenumber, R(k), to third order is the same as the expression to third order for Model
A and Bees & Hill (1998), since P(H,0) = PH , P(5,0) = P5 and P(6,0) = P6, where PH , P5

and P6 constants. Thus the effects of phototaxis only comes in at fourth order.

2. Table of constants

Table 1 summarizes the definitions of parameters that are needed for the asymptotic
analysis of Model B. Values are calculated using the standard values λ = 2.2 and α0 = 0.2.

Parameter Definition Value

K(1,0) coth λ0 −
1
λ0

0.570
Continued over page . . .
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Table 1 – Continued

Parameter Definition Value

K(1,−1)
λ1(cosh2 λ0−1−λ2

0)
λ2

0 sinh2 λ0
-0.344

K(2,0) 1 − coth2 λ0 + 1
λ2

0
0.156

K(2,−1)
−2λ1(sinh λ0 cosh2 λ0−sinh λ0−λ3

0 cosh λ0)
λ3

0 sinh3 λ0
0.186

K(4,0) K(2,0) −
K(1,0)

λ0
−0.103

K(4,−1) K(2,−1) −
K(1,−1)

λ0
+

K(1,0)λ1

λ2
0

0.0833

K(5,0) − 2
λ0

[

1 + K(2,0) −
4K(1,0)

λ0

]

−0.108

K(5,−1) − 2
λ0

(

K(2,−1) −
4
λ0

(

K(1,−1) −
K(1,0)λ1

λ0

))

0.0966

+ 2λ1

λ2
0

(

1 + K(2,0) −
4K(1,0)

λ0

)

J(1,0)
λ2

0

3 sinh(λ0)

∞
∑

l=0

λ2l+1
0 (z)a2l+1,1 0.452

J(1,−1)
λ0

3

(

(λ1cosech(λ0) − λ0λ1 coth(λ0)cosech(λ0)) -0.0225

×

∞
∑

l=0

λ2l+1
0 (z)a2l+1,1 +

λ0

sinh(λ0)

∞
∑

l=0

λ2l+1
1 (z)a2l+1,1

)

J(2,0)
λ2

0

5 sinh(λ0)

∞
∑

l=1

λ2l
0 (z)a2l,2 0.159

J(2,−1)
λ0

5

(

(λ1cosech(λ0) − λ0λ1 coth(λ0)cosech(λ0)) -0.163

×

∞
∑

l=1

λ2l
0 (z)a2l,2 +

λ0

sinh(λ0)

∞
∑

l=1

λ2l
1 (z)a2l,2

)

J(4,0)
λ2

0

3 sinh(λ0)

∞
∑

l=0

λ2l+1
0 (z)ã2l+1,1 -0.227

J(4,−1)
λ0

3

(

(λ1cosech(λ0) − λ0λ1 coth(λ0)cosech(λ0)) 0.114

×

∞
∑

l=0

λ2l+1
0 (z)ã2l+1,1 +

λ0

sinh(λ0)

∞
∑

l=0

λ2l+1
1 (z)ã2l+1,1

)

J(5,0)
λ2

0

5 sinh(λ0)

∞
∑

l=0

λ2l
0 (z)ã2l,2 -0.166

J(5,−1)
λ0

5

(

(λ1cosech(λ0) − λ0λ1 coth(λ0)cosech(λ0)) 0.0195

×

∞
∑

l=0

λ2l
0 (z)ã2l,2 +

λ0

sinh(λ0)

∞
∑

l=0

λ2l
1 (z)ã2l,2

)

A(1,0)
J(1,0)K(1,0) − J(2,0) + α0(J(5,0) − K(1,0)J(4,0) −

3(K(5,0) − 2K(1,0)K(4,0)))
0.0862

Continued over page . . .
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Table 1 – Continued

Parameter Definition Value

A(1,−1)

J(1,0)K(1,−1) + J(1,−1)K(1,0) − J(2,−1) + α0(J(5,−1) −

K(1,0)J(4,−1) − K(1,−1)J(4,0) − 3(K(5,−1) −

2K(1,0)K(4,−1) − 2K(1,−1)K(4,0)))
0.0114

A(2,0) J(1,0) − α0(J(4,0) − 3K(4,0)) 0.436
A(2,−1) J(1,−1) − α0(J(4,−1) − 3K(4,−1)) 0.00453
A(3,0) 3α0K(4,0) -0.0618
A(3,−1) 3α0K(4,−1) 0.0500
A(4,0) 3α0(K(5,0) − 2K(1,0)K(4,0)) 0.00537
A(4,−1) 3α0(K(5,−1) − 2K(1,0)K(4,−1) − 2K(1,−1)K(4,0)) -0.0415

P(H,0)
K(1,0)

λ0
0.259

P(H,−1)
K(1,−1)

λ0
−

K(1,0)λ1

λ2
0

0.103

P(5,0) A(1,0) +
K(2,0)A(2,0)

K(1,0)
0.205

P(6,0)
K(2,0)A(3,0)

K(1,0)
− A(4,0) -0.0223

AK
1

K(2,0)

(

K(2,−1) −
K(2,0)K(1,−1)

K(1,0)

)

1.79

CK 1.0 1.0

NK
1

K(1,0)

(

K(1,−1) −
K(1,0)K(2,−1)

K(2,0)

)

-1.79

Table 1: Summary of constants needed to compute the asymptotic
solution for Model B, where α0 = 0.2. Here, λ0 = λ and λ1 =
−χ−1λ, where λ = 2.2 and χ−1 = 1. K(i,0) and J(i,0) are equivalent
to the values of Ki and Ji when Λ(z) = λ, i.e. the values of Ki and
Ji when χ = 0. These are the (corrected) values of Ki and Ji used
in Bees & Hill (1998).


