Modelling photo-gyrotactic bioconvection in suspensions of swimming micro-organisms: asymptotic analysis for Model B

C. R. WILLIAMS ${ }^{1}$ and M. A. BEES ${ }^{1}$
${ }^{1}$ Department of Mathematics, University of Glasgow, Glasgow, G12 8QW, United Kingdom

(Received Today)

1. Asymptotic analysis for Model B

An unabridged version of section 6.2 in the full paper.
Since for Model B none of the K_{i}, J_{i}, P_{i} or A_{i} are constants, the asymptotic analysis involves much expanding. We write each expansion in the same way, for example for K_{i}

$$
\begin{align*}
K_{i}= & K_{(i, 0)}+d^{-1} K_{(i,-1)}+d^{-2}\left(\kappa m_{-1}^{0} K_{(i,-1)}+K_{(i,-2)}\right) \tag{1.1}\\
& +d^{-3}\left(K_{(i,-1)} \kappa\left(m_{-2}^{0}+\frac{\kappa\left(m_{-1}^{0}\right)^{2}}{2}\right)+K_{(i,-3)}+2 \kappa m_{-1} K_{(i,-2)}\right),
\end{align*}
$$

and similarly for all J_{i}, P_{i} and A_{i}. Each component $K_{(i, j)}$ (and $\left.J_{(i, j)}, P_{(i, j)} A_{(i, j)}\right)$ can be calculated directly using Taylor series to expand the expressions for K_{i} (and J_{i}, P_{i} and A_{i}) for $d \ll 1$. Note that the leading order component of K_{i} and J_{i} do not depend on χ and are constants that depend on λ, as in Model A where $\Lambda=\lambda$. For example, $K_{(1,0)}=\bar{K}_{1}$. The definitions of the relevant components for use in the asymptotic solution are shown in table 1.

1.0.1. Equilibrium solution

Multiplying the equilibrium solution in equation (5.2) by d^{-1} gives

$$
\begin{equation*}
d^{-1} \frac{d^{2} m}{d z^{2}}-\frac{\bar{K}_{2}}{\bar{K}_{1}} \frac{K_{1}(\Lambda)}{K_{2}(\Lambda)} \frac{d m}{d z}=0 \tag{1.2}
\end{equation*}
$$

with boundary conditions $m=0$ at $z=0$, and $m=d^{-1}\left(e^{-d}-1\right)$ at $z=-1$. If we expand K_{1}, K_{2} and then $\frac{K_{1}}{K_{2}}$ for small d, using the notation as explained above, then expanding m in powers of d^{-1} and expanding the exponential in powers of d and substituting all this into equation 1.2 gives

$$
\begin{align*}
& d^{-1} \frac{d^{2}\left(m_{0} d^{-1} m_{-1}+d^{-2} m_{-2}+. . .\right)}{d z^{2}}-\frac{\bar{K}_{2}}{\bar{K}_{1}}\left[K_{(1 / 2,0)}+d^{-1} e^{\kappa m_{0}} K_{(1 / 2,-1)}\right. \tag{1.3}\\
& \left.+d^{-2}\left(e^{2 \kappa m_{0}} K_{(1 / 2,-2)}+e^{\kappa m_{0}} \kappa m_{-1} K_{(1 / 2,-1)}\right)+O\left(d^{-3}\right)\right] \\
& \times \frac{d\left(m_{0}+d^{-1} m_{-1}+d^{-2} m_{-2}+. .\right)}{d z}=0
\end{align*}
$$

For the outer solution, we find $m_{0}=$ constant. Every subsequent m_{-n} will also be constant. The boundary condition at $z=-1$ gives that $m_{0}=m_{-2}=\ldots m_{-n}=0$ and $m_{-1}=-1$.

For the inner solution we scale $z_{I}=d z$ and find the solution at leading order is

$$
\begin{equation*}
m_{0}=A_{0}\left(e^{z_{I}}-1\right) \tag{1.4}
\end{equation*}
$$

At next order we have

$$
\begin{equation*}
\frac{d^{2} m_{-1}}{d z_{I}^{2}}-\frac{d m_{-1}}{d z_{I}}-\frac{\bar{K}_{2}}{\bar{K}_{1}} K_{(1 / 2,-1)} e^{\kappa m_{0}} \frac{d m_{0}}{d z_{I}}=0 \tag{1.5}
\end{equation*}
$$

In order to match with the outer solution we require $A_{0}=0$. Solving equation 1.5 then gives

$$
\begin{equation*}
m_{-1}=A_{1}\left(e^{z_{I}}-1\right) \tag{1.6}
\end{equation*}
$$

The matching as z_{I} tends to $-\infty$ provides $A_{1}=1$. Solving the equation at second order, substituting in m_{-1}, gives

$$
\begin{equation*}
m_{-2}=\frac{\bar{K}_{2}}{\bar{K}_{1}} K_{(1 / 2,-1)}\left(z_{I} e^{z_{I}}+1\right)-A_{2}+B_{2} e^{z_{I}} \tag{1.7}
\end{equation*}
$$

On applying the boundary condition at $z_{I}=0$ and using the matching, we find $A_{2}=$ $\frac{\bar{K}_{2}}{K_{1}} K_{(1 / 2,-1)}$ and $B_{2}=0$. Thus,

$$
\begin{equation*}
m_{-2}=\frac{\bar{K}_{2}}{\bar{K}_{1}} K_{(1 / 2,-1)} z_{I} e^{z_{I}} \tag{1.8}
\end{equation*}
$$

1.0.2. Linear stability analysis

The asymptotic linear stability theory is performed on the Navier-Stokes equation,

$$
\begin{equation*}
\left(D^{2}-k^{2}\right)^{2} U=-k^{2} d^{-1} R \Phi \tag{1.9}
\end{equation*}
$$

and the cell conservation equation (5.22), with $P_{i}(z)$ and $K_{i}(z)$ defined in table 2 and $\S 5.3 .2$. As in linear stability analysis in $\S 5.3$, the equilibrium components are now denoted with a superscript 0 .

For the outer solution, the solutions for Φ and U are the same as for Model A, as shown in §6.1.2 and equation (6.5).

For the inner solution we re-scale equation (5.22) and the Navier-Stokes equation (1.9) using $z_{I}=d z$, so that

$$
\begin{align*}
& \left(D_{I}^{2}-d^{-2} k^{2}\right)^{2} U=-k^{2} d^{-5} R \Phi \tag{1.10}\\
& \left\{P_{V}\left(z_{I}\right) \frac{d^{2}}{d z_{I}^{2}}-\frac{\bar{K}_{2}}{\bar{K}_{1}} K_{1}\left(z_{I}\right) \frac{d}{d z_{I}}-d^{-2} P_{H}\left(z_{I}\right) k^{2}-d^{-2} \sigma-\frac{\bar{K}_{2}}{\bar{K}_{1}} \frac{d K_{1}}{d z_{I}}+\frac{d P_{V}\left(z_{I}\right)}{d z_{I}} \frac{d}{d z_{I}}\right. \\
& \left.+d^{-2} \lambda \chi_{-1} \kappa e^{\kappa m^{0}} P_{R}\left(z_{I}\right)\right\} \Phi+d^{-1} \lambda \chi_{-1} \kappa e^{\kappa m^{0}} P_{M}\left(z_{I}\right)=\left\{d^{-1} \frac{d n^{0}}{d z_{I}}\right. \tag{1.11}\\
& \left.-d \eta P_{5}\left(z_{I}\right) \frac{d^{2}}{d z_{I}^{2}}-d \eta P_{6}\left(z_{I}\right) \frac{d}{d z_{I}}+d^{-1} \eta P_{7}\left(z_{I}\right) k^{2}\right\} U,
\end{align*}
$$

where $P_{i}\left(z_{I}\right)$ can be calculated directly from the expression for $P_{i}(z)$ in $\S 5.3 .2$, with boundary conditions

$$
\begin{align*}
& U=0 \text { and } D_{I} U=0 \text { on } z_{I}=0 \tag{1.12}\\
\text { and } & K_{2}\left(z_{I}\right) D_{I} \Phi-\frac{K_{(2,0)}}{K_{(1,0)}} K_{1}\left(z_{I}\right) \Phi=0 \quad \text { on } \quad z_{I}=0 \tag{1.13}
\end{align*}
$$

The terms on the right hand side of equation 1.11 complicate the expression and so we consider the case in which they do not appear at first order (as in Model A). This requires $U \leqslant O(1)$ and $\eta U \leqslant O\left(d^{-2}\right)$. For a non-trivial solution we need $R \sim d^{5} U$ and we follow the logic outlined in $\S 6.1 .2$ and consider expanding using equations (6.8) and (6.9). At
first order the cell conservation and Navier-Stokes equations are the same as for Model A, hence Φ_{0} and U_{-n} are given in equation (6.10).

The expressions at second order are calculated in the same was as for Model A, thus we obtain

$$
\begin{equation*}
\Phi_{-1}=-A_{K} z_{I} e^{z_{I}}+C_{K} e^{z_{I}} \tag{1.14}
\end{equation*}
$$

where C_{K} is a constant of integration and

$$
\begin{equation*}
A_{K}=\frac{K_{(2,-1)}-\frac{K_{(2,0)}}{K_{(1,0)}} K_{(1,-1)}}{K_{(2,0)}} \tag{1.15}
\end{equation*}
$$

and the Navier-Stokes equation yields

$$
\begin{align*}
U_{-n-1}= & a_{-n-1} z_{I}^{3}+b_{-n-1} z_{I}^{2}+k^{2} R_{5-n-1}\left(z_{I}+1-e^{z_{I}}\right) \tag{1.16}\\
& +k^{2} R_{5-n}\left(A_{K}\left(z_{I} e^{z_{I}}-4 e^{z_{I}}\right)-C_{K} e^{z_{I}}+\left(3 A_{K}+C_{K}\right) z_{I}+4 A_{K}+C_{K}\right)
\end{align*}
$$

Solutions are matched up to second order in the usual way, as for Model A, and we find that the terms due to phototaxis do not appear at this order. If we look in the region of parameter space where $\eta \sim d^{-2}$ and $n=1$, as for Model A, then A_{0}, B_{0} and b_{-2} are given by (6.13). The cell conservation equation at third order is then integrated from $-\infty$ to 0 to obtain the solvability condition:

$$
\begin{equation*}
R_{4}=\frac{2 P_{(H, 0)}}{\left(1-\eta_{-2}\left(P_{(5,0)}-P_{(6,0)}\right)\right)} \tag{1.17}
\end{equation*}
$$

Integrating the cell conservation equation between 0 and $-\infty$ at fourth order gives

$$
\begin{align*}
R_{3}= & 4 b_{-2}+\frac{2\left(P_{(H, 0)}\left(A_{K}+C_{K}\right)+P_{(H,-1)}\right)}{\left(1-\eta_{-2}\left(P_{(5,0)}-P_{(6,0)}\right)\right)} \tag{1.18}\\
& +\frac{2 R_{4}}{\left(1-\eta_{-2}\left(P_{(5,0)}-P_{(6,0)}\right)\right)}\left[\frac{N_{K}}{4}-\frac{5 A_{K}}{4}-\frac{C_{K}}{2}+\eta_{-2}\left\{\left(\frac{5 A_{K}}{4}+\frac{C_{K}}{2}\right)\right.\right. \\
& \times\left(P_{(5,0)}-P_{(6,0)}\right)+\frac{3}{4} A_{(1,0)} N_{K}+\frac{1}{2} A_{(1,-1)}+\frac{A_{(4,-1)}}{2}+\frac{3 N_{K} A_{(4,0)}}{4}+ \\
& \left.\left.\frac{K_{(2,0)}}{K_{(1,0)}}\left(\frac{1}{2} A_{(2,-1)}+\frac{N_{K}}{4} A_{(2,0)}-\frac{1}{2} A_{(3,-1)}-\frac{N_{K}}{4} A_{(3,0)}\right)\right\}\right]
\end{align*}
$$

where $N_{k}=\frac{K_{(2,0)}}{K_{(1,0)}} K_{(1 / 2,-1)}$ is a constant and the definitions of $A_{(i, j)}, P_{(i, j)}$ and all other constants can be found in table 1, which also shows the dependance of the fourth order term on χ. Note that the expression for the Raleigh number as a function of the wavenumber, $R(k)$, to third order is the same as the expression to third order for Model A and Bees \& Hill (1998), since $P_{(H, 0)}=P_{H}, P_{(5,0)}=P_{5}$ and $P_{(6,0)}=P_{6}$, where P_{H}, P_{5} and P_{6} constants. Thus the effects of phototaxis only comes in at fourth order.

2. Table of constants

Table 1 summarizes the definitions of parameters that are needed for the asymptotic analysis of Model B. Values are calculated using the standard values $\lambda=2.2$ and $\alpha_{0}=0.2$.

Parameter	Definition	Value
$K_{(1,0)}$	$\operatorname{coth} \lambda_{0}-\frac{1}{\lambda_{0}}$	0.570
Continued over page \ldots		

Table 1 - Continued

Table 1 - Continued

Parameter	Definition	Value
$A_{(1,-1)}$	$\begin{gathered} J_{(1,0)} K_{(1,-1)}+J_{(1,-1)} K_{(1,0)}-J_{(2,-1)}+\alpha_{0}\left(J_{(5,-1)}-\right. \\ K_{(1,0)} J_{(4,-1)}-K_{(1,-1)} J_{(4,0)}-3\left(K_{(5,-1)}-\right. \\ \left.\left.2 K_{(1,0)} K_{(4,-1)}-2 K_{(1,-1)} K_{(4,0)}\right)\right) \end{gathered}$	0.0114
$A_{(2,0)}$	$J_{(1,0)}-\alpha_{0}\left(J_{(4,0)}-3 K_{(4,0)}\right)$	0.436
$A_{(2,-1)}$	$J_{(1,-1)}-\alpha_{0}\left(J_{(4,-1)}-3 K_{(4,-1)}\right)$	0.00453
$A_{(3,0)}$	$3 \alpha_{0} K_{(4,0)}$	-0.0618
$A_{(3,-1)}$	$3 \alpha_{0} K_{(4,-1)}$	0.0500
$A_{(4,0)}$	$3 \alpha_{0}\left(K_{(5,0)}-2 K_{(1,0)} K_{(4,0)}\right)$	0.00537
$A_{(4,-1)}$	$3 \alpha_{0}\left(K_{(5,-1)}-2 K_{(1,0)} K_{(4,-1)}-2 K_{(1,-1)} K_{(4,0)}\right)$	-0.0415
$P_{(H, 0)}$	$\frac{K_{(1,0)}}{\lambda_{0}}$	0.259
$P_{(H,-1)}$	$\frac{K_{(1,-1)}}{\lambda_{0}}-\frac{K_{(1,0)} \lambda_{1}}{\lambda_{0}^{2}}$	0.103
$P_{(5,0)}$	$A_{(1,0)}+\frac{K_{(2,0)} A_{(2,0)}}{K_{(1,0)}}$	0.205
$P_{(6,0)}$	$\frac{K_{(2,0)} A_{(3,0)}}{K_{(1,0)}}-A_{(4,0)}$	-0.0223
A_{K}	$\frac{1}{K_{(2,0)}}\left(K_{(2,-1)}-\frac{K_{(2,0)} K_{(1,-1)}}{K_{(1,0)}}\right)$	1.79
C_{K}	1.0	1.0
N_{K}	$\frac{1}{K_{(1,0)}}\left(K_{(1,-1)}-\frac{K_{(1,0)} K_{(2,-1)}}{K_{(2,0)}}\right)$	-1.79

Table 1: Summary of constants needed to compute the asymptotic solution for Model B, where $\alpha_{0}=0.2$. Here, $\lambda_{0}=\lambda$ and $\lambda_{1}=$ $-\chi_{-1} \lambda$, where $\lambda=2.2$ and $\chi_{-1}=1 . K_{(i, 0)}$ and $J_{(i, 0)}$ are equivalent to the values of K_{i} and J_{i} when $\Lambda(z)=\lambda$, i.e. the values of K_{i} and J_{i} when $\chi=0$. These are the (corrected) values of K_{i} and J_{i} used in Bees \& Hill (1998).

