
Supplementary Material

for

Geometry of Valley Growth
Alexander P. Petroff1, Olivier Devauchelle1, Daniel M. Abrams1,2,
Alexander E. Lobkovsky1, Arshad Kudrolli3, Daniel H. Rothman1

1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139 USA
2Present address: Department of Engineering Sciences and Applied Mathematics, Northwestern
University, Evanston, IL 60208
3Department of Physics, Clark University, Worcester, MA 01610

Contents
1 Computation of the water table S2

2 Selection of the boundary S2

3 Comparison of the shape of the water table to the Poisson elevation S2

4 Comparison of contour curvature to the groundwater flux S5

5 The Poisson flux-curvature relation S5

6 Derivation of the shape of the valley head S7

7 Selection of valley heads S8
7.1 Florida Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S9
7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S10
7.3 Snake River valley heads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S11
7.4 Martian valley heads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S12

8 Stream discharge data S13
8.1 Comparison of field measurements to the predicted flux . . . . . . . . . . . . . . . S13
8.2 January 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S14
8.3 April 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S15

S1



1 Computation of the water table
In order to find the distribution of groundwater flux into the network, we solved for the shape of
the water table around the channels. From the main text, the Poisson elevation φ of the water table
is a solution to the equation:

∇2φ2 + 1 = 0 (S1)

with absorbing and zero flux boundary conditions. Thus φ is independent of the hydraulic conduc-
tivity K.

The ground water flux at a point is related to the shape of the watertable through the equation

q =
K

2
‖∇h2‖ (S2)

from which
q = P‖∇ K

2P
h2‖ (S3)

Thus, from the definition of φ
q = P‖∇φ2‖ (S4)

Because φ is only a function of the network geometry, q is independent of K. This result also
follows from conservation of mass. The total discharge from the network must be equal to the total
rain that falls into the network, regardless of conductivity. K sets the slope of watertable at the
boundary required to maintain this flux.

2 Selection of the boundary
We solve the equation around a boundary chosen to follow the position of springs and streams.
To identify such a boundary, we first remove the mean slope (0.0025) of the topography. We
then chose the 45 m elevation contour of the resulting topography as the boundary (Figure S1)
obtained from a high resolution LIDAR map of the network (S1). This elevation was chosen as the
approximate elevation of many springs. When the contour exits the area where the LIDAR map
was available, we replace the missing section of the channel with an absorbing boundary condition.
Because this approximation results in uncertainties in the flux near the missing boundary, we only
analyze the water flux into a well contained section of the network (blue boundary in Figure S1).
Finally, we include a zero-flux boundary condition in the south east in the approximate location of
a drainage divide. We solve equation (S1) with these boundary conditions using a finite-element
method (S2).

3 Comparison of the shape of the water table to the Poisson
elevation

Here we show that the solution of equation (S1) is consistent with field observations. We compare
φ (Figure S2b) to a previously reported (S1) ground penetrating radar (GPR) survey of the channels
(Figure S2c).
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Figure S1: To most closely approximate the shape of the network we use an elevation contour
of the topography. Approximating the channels as nearly flat, we required that the water table
intersect the channels at a constant height, which we chose as zero. This boundary is drawn in blue
and black. Additionally, a drainage divide (red line) was included in the south east. Because our
LIDAR map (S1) only shows two full valley networks, we only analyze the data from this portion
of the boundary (blue line). The boundary is linearly interpolated between points spaced at 20
m intervals on the blue boundary and points spaced by an average of 50 m on the red and black
boundaries.

As all heights are measured relative to the impermeable layer, we define h0 to be the reference
elevation and shift h accordingly. It follows from the definition of φ that

h = h0 +

√
2P

K
φ2 + (hB − h0)2, (S5)

where hB is the elevation of the water table at the boundary. A least squares fit of the measured
elevations to equation (S5) gives estimates P/K = 7 × 10−5, h0 = 38 m, and hB = 38 m
(figure S2d). Additionally taking P to be the observed mean rainfall rate of 5 × 10−8 m sec−1,
gives K = 6× 10−4 m sec−1. Each of these estimates is consistent with the analysis of Ref. (S1).
Furthermore, the estimated permeability is consistent with the permeability of clean sand (S3). The
elevation h0 of the impermeable layer may be overestimated due to uncertainties in the analysis of
the GPR data.
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(a) (d)

(b) (c)

Figure S2: Comparison of the Poisson elevation to field observation. (a) The available ground pen-
etrating radar survey was conducted on a portion of the southern valley network. The topographic
map of the channels near the survey is 1400 m across. (b) We solved equation (S1) around the
valley for the Poisson elevation. (c) The ground penetrating radar survey (S1) provided the ele-
vation of the water table above sea level at 1144 points around the network. The valley walls are
represented by the elevation contours for 30 m to 45 m at 5 m intervals. (d) The measured height
is consistent with theory. The red line indicates perfect agreement.
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4 Comparison of contour curvature to the groundwater flux
Because the curvature is a function of the second derivative of a curve, its estimation requires
an accurate characterization of the channel shape. To have the highest possible accuracy in the
estimation of curvature, we restrict the comparison between flux and curvature to a small piece of
the network where the boundary is linearly interpolated between points separated by 5 m.

The curvature at a point on the boundary is computed by fitting a circle to the point and its
neighbors on both sides (Figure S3b). Given the best fitting circle, the magnitude of the curvature
is the inverse of the radius. The curvature is negative when the center of the circle is outside the
valley and positive when the center is inside the valley.

To compare the curvature and flux at a point, we calculate the Poisson flux qp into each section
of this piece of the network by solving equation (S1) between the channels (Figure S3c). We closed
the boundary on the eastern side of the domain by attaching the extremities to the valley network
to the east using zero-flux boundaries. To identify the characteristic dependence of the flux at a
point on the curvature, we averaged the flux and curvature at points on the boundary with similar
curvatures. Each point in Figure S3d represents the average flux and curvature of 50 points on the
boundary.

5 The Poisson flux-curvature relation
The Poisson flux is the area that drains into small segment of the network divided by the length of
the segment. It can therefore be considered as a “local” inverse drainage density. Because all of
the area drains into some piece of the channel, the integral of the Poisson flux is the total area of
the basin. It follows that its mean value is the inverse drainage density.

In what follows we ask how the Poisson flux depends on the distance d a piece of the network
is from its drainage divide. Proceeding from an idealization in which d has a characteristic value
in a network, we find a scaling of geometric flux with curvature that is consistent with observation
(Fig. 1c). To these ends we neglect interactions between valleys and note that the importance
of groundwater competition has been previously considered (S1). Although this derivation gives
some motivation for the flux-curvature relationship in the absecence of interactions, its validity is
ultimatly based on observation.

A section of the network receives a large flux when it drains a large area a or when all of the
water is forced through a small length of channel wall `. When water from a large basin (d� κ−1)
drains toward a point , then a ∼ d2 (Fig. S4a). Note that “∼” is the symbol for “is the order of
magnitude of” or “scales as.” This area is drained into a section of channel, the length ` of which
is proportional to the planform radius of curvature, κ−1; thus in regions of high curvature

qp = Ωκ, (S6)

where Ω = md2 is a constant of the network related to the characteristic groundwater discharge
of a head and m ∼ 1 is a proportionality constant related to the characteristic shape of a valley
head. The flux into a point is therefore proportional to the product of variables characterizing the
network, Ω, and the local geometry of the channel, κ. Equating d with the inverse drainage density
of the network, we find d = 147 m from the analysis of the topographic map. Fitting a hyperbola
to the data in Fig. 1c, given this value of d, gives m = 1.5± 0.2, consistent with m ∼ 1.
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(a) (d)

(b) (c)

Figure S3: Identification of the relationship between the curvature of the valley walls and the
local flux of groundwater. (a) The curvature and flux are measured between two valleys along the
black contour. (b) The curvature at each point on the boundary is measured by fitting a circle to
boundary. (c) The flux into each section of the network is found from the solution of equation (S1).
(d) Comparison of the flux into each section of the network to the curvature. Geometric reasoning
gives the asymptotic behavior (black dashed lines) of this relation when the magnitude of the
curvature is large.
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Figure S4: The Poisson flux is the local drainage density. (a) When a basin drains into a convex
region (red line) the drainage density increases with curvature κ. (b) When a basin drains into a
concave interval, the drainage density decreases with curvature.

In concave regions of the channel the area drained is the sum of the area outside the concavity
and the area inside the concavity (Fig. S4b). This area a can be expressed as

a = m1dκ
−1 +m2κ

−2, (S7)

where m1 and m2 are dimensionless numbers related to the shape of the drainage basin outside
and inside the concavity, respectively. For example, if the concavity is a semi-circular depression
and it drains a rectangular region, then m1 = 2 and m2 = π/2. This area is drained by a segment
of length ∼ κ−1 giving a mean Poisson flux qp that scales as

qp = (m1d+m2κ
−1)/m3, (S8)

where m3 is a dimensionless number related to the shape of the concavity. Fitting the data to a
hyperbola, and again taking d = 147 m, we findm1/m3 = 1.52±0.22 andm2/m3 = 10.80±2.97.
This scaling relation, in combination with the behavior at large positive κ, gives the the asymptotic
behavior of the flux-curvature relation.

6 Derivation of the shape of the valley head
Here we derive equation (5) of the main text.

The balance between translation and curvature-driven growth relates the orientation to the cur-
vature through the equation

π cos θ = wκ. (S9)

We first re-write the orientation of a segment in terms of the local normal n̂(x) to the curve and the
direction the head is translating ŷ. It follows from the definition of θ that

πn̂(x) · ŷ = wκ(x), (S10)
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Next, by describing the shape of a valley head by a curve y(x), equation (S10) becomes

−π√
1 + (∂xy)2

= w
∂xxy

(1 + (∂xy)2)3/2
. (S11)

With the substitution g = ∂xy, this equation is re-expressed as an integrable, first order equation as

w∂xg + π(1 + g2) = 0. (S12)

Integrating once,

g = ∂xy = − tan
(
πx

w

)
. (S13)

Integrating a second time for y gives

y =
w

π
log cos

(
πx

w

)
, (S14)

equivalent to equation (5) of the main text.
Although not necessary here, it is occasionally useful to express the shape of the channel as a

vector v parameterized by arc length s,

v(s) =
w

π

(
2arctan(tanh(πs/2w))

log(sech(πs/w))

)
. (S15)

The derivative v is the unit tangent vector.

7 Selection of valley heads
The derivation of equation (S14) requires that the channel grow forward without changing shape.
Consequently, when identifying seepage valley heads suitable for analysis, we restricted our anal-
ysis to isolated channels.
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Figure S5: 17 isolated valley heads were chosen from the Florida network

7.1 Florida Network
We select valley heads from the Florida network that are reasonably isolated and not bifurcating.
Given such a valley, we extract an elevation contour approximately one half the distance between
the spring and the upland flat plain. We find that the deviation in the shape of any given channel
from equation (S14) is insensitive to the choice of elevation contour.
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Table S1: Valley heads from the Florida network. Coordinates are given with respect to UTM zone
16R

channel Easting (m) Northing (m) elevation (m) width (m)
1 696551.40 3373949.52 56.91 100.66
2 696423.49 3373123.32 55.74 111.03
3 694537.55 3373068.53 42.93 50.47
4 693995.09 3373701.11 49.49 49.60
5 694391.80 3373813.01 43.49 38.72
6 696841.09 3373900.80 44.23 28.96
7 698339.72 3374200.55 59.95 83.53
8 698040.54 3374282.69 50.91 48.28
9 697285.68 3375011.47 59.12 80.20
10 695968.97 3375029.24 49.15 56.05
11 696114.42 3375019.47 46.62 42.59
12 696336.97 3375135.23 49.88 56.34
13 696453.90 3375233.09 51.13 50.54
14 696976.13 3375317.38 51.10 46.08
15 694818.57 3375532.39 54.82 52.04
16 698537.91 3374777.58 54.21 70.77
17 697463.52 3375108.63 53.97 55.17

7.2 Experiments
The experimental apparatus used to grow seepage channels has been previously described (S4).
The channel used in the comparison to equation (S14) grew from an initially rectangular indenta-
tion 3 cm deep in a bed of 0.5 mm glass beads sloped at an angle of 7.8◦ with a pressure head of
19.6 cm. To extract the shape of the channel, we first removed the slope of the bed by subtracting
the elevation of each point at the beginning of the experiment. We then follow the growth of an
elevation contour a constant depth below the surface. Because the shape of channel at the begin-
ning of the experiment is heavily influenced by the shape of the initial indentation, we restrict our
analysis to the shape of the contour after 45 minutes of growth. The channel grew for a total of
119 minutes and was measured at 3 minute intervals.
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Figure S6: An elevation contour (blue lines) was extracted from the experiment every three min-
utes from a digital elevation map (S5). These three representative elevation contours from the
beginning, middle, and end of the experiment demonstrate that the shape changed little during
growth.

7.3 Snake River valley heads
To compare the form of amphitheater-shaped valley heads growing off of the Snake River in Idaho,
we extract the valley shape from images taken from Google Earth. We select three prominent heads
(Table S2, Figure S7); Box Canyon (S6) and two near Malad Gorge. We extract the shape of each
of these heads by selecting points at the upper edge of the valley head. The mean spacing between
points is 13 m. We stop selecting points when the valley turns away from the head.

Figure S7: The shape of amphitheater-shaped valley heads growing off of the Snake River in Idaho
were extracted from aerial photos of the channels. Heads 1 and 2 are near Malad Gorge. Head 3 is
Box Canyon.
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Table S2: Valley heads near the Snake River
channel latitude longitude width (m)

1 42.8675◦ 115.6432◦ 190
2 42.8544◦ 115.7045◦ 166
3 42.7084◦ 114.9683◦ 132

7.4 Martian valley heads
The shapes of the Martian ravines which we compared to equation (S14) were extracted from im-
ages generated by the Themis camera on the Mars Odyssey orbiter. Channels are selected based on
the condition that the amphitheater head was largely isolated from neighboring structures. Because
the ravines are deeply incised into the topography, there is typically a sharp contrast between the
ravines and the surrounding topography. We extract the shape of the ravine by selecting points
spaced of order 100 m apart along the edge of the ravine (Table S3, Figure S8). We stop selecting
points when the ravine intersects with a neighboring structure or when the direction of the valley
curves away from the head.

Figure S8: 10 valley heads near the Nirgal Valley, Mars. The shape of each head was extracted by
selecting points at the edge of the valley head from images generated by the Mars Odyssey orbiter.
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Table S3: Martian valley heads
head Themis Image latitude longitude width (m)

1 V06395001 -8.7270◦ 278.1572◦ 4730
2 V06395001 -8.7235◦ 278.1557◦ 2650
3 V09004001 -9.4310◦ 274.6110◦ 1940
4 V11138002 -7.9183◦ 275.4740◦ 3690
5 V11138002 -7.9160◦ 275.4736◦ 3740
6 V14133002 -9.5763◦ 278.4435◦ 2940
7 V14857001 -7.5656◦ 273.6060◦ 3110
8 V16654002 -8.7792◦ 275.5868◦ 3970
9 V16654002 -8.7781◦ 275.5894◦ 3310

10 V26750003 -8.0633◦ 274.8977◦ 3370

8 Stream discharge data

8.1 Comparison of field measurements to the predicted flux
Fig. 1 of the main text compares the solution of equation (S1) to field measurements. The instan-
taneous discharge of a stream is measured from the the cross-sectional area a in a locally straight
section of the channel and the surface velocity v, from which the discharge Q = av. We measure
the surface velocity of the stream from the travel time of a small passive tracer between points
at a fixed distance. This method may underestimate the discharge in very small streams where a
substantial fraction of the flow may be moving through the muddy banks of the stream.

To compare the measured discharge to the Poisson equation, we integrate the flux, q = P‖∇φ2‖,
along the section of the network upstream from the measurement assuming the reported annual
rainfall, P = 5 × 10−8 m sec−1. When discharge is measured near a spring, the flux is integrated
around the valley head.
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8.2 January 2009
Easting (m) Northing (m) discharge (cm3 sec−1) predicted discharge (cm3 sec−1)
696905.45 3374708.15 11700 4802.54
695425.47 3374595.35 310 422.30
695333.80 3374486.16 1900 1459.50
695410.03 3374422.51 2100 1403.02
695589.53 3374413.20 2000 1272.90
695608.45 3374439.65 1700 1145.17
695602.26 3374467.29 4700 2103.67
695532.14 3374764.77 310 490.24
694045.68 3373713.71 710 1708.72
694102.24 3373742.47 850 1381.31
694110.98 3373726.59 850 3520.83
694393.38 3373788.44 810 1761.83
694515.20 3373714.30 2300 2051.40
694700.99 3373494.69 2900 1831.06
697174.63 3373662.18 700 3004.36
697622.18 3374045.11 10800 4700.85
697523.57 3374034.52 440 2225.53
696432.08 3373937.74 3500 2619.48
696353.61 3374006.59 3500 2688.01
696415.16 3373979.53 3600 2545.77
696363.79 3373884.98 570 673.20
696314.56 3373838.46 3100 1132.34
695400.74 3373894.43 2800 2117.42
695417.69 3373884.87 3100 2522.08
694429.25 3374329.77 700 1145.16
694541.01 3374318.70 1250 1626.34
694295.68 3374320.27 700 950.41
694081.94 3374205.31 1950 2969.80
693696.69 3373094.27 300000 284251.54
693575.95 3374496.41 100000 148834.48
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8.3 April 2009
Easting (m) Northing (m) discharge (cm3 sec−1) predicted discharge (cm3 sec−1)
696577.00 3375064.00 26688 17558.21
696515.00 3375060.00 31324 25683.40
696526.00 3375081.00 10878 7960.94
696378.00 3375075.00 3155 2196.50
696374.00 3375047.00 31168 28808.33
696312.00 3374949.00 44714 33750.34
693684.21 3374490.78 181142 148233.29
693857.70 3374480.17 134261 134367.19
694237.23 3374550.07 159510 123111.22
694371.93 3374575.91 96597 120688.53
694445.52 3374574.44 123230 115351.89
694706.00 3374606.66 142841 111689.91
694808.19 3374666.05 133061 103032.24
694815.26 3374674.12 24251 14558.59
695449.36 3374792.20 70782 70543.57
695317.14 3374776.63 115771 82714.80
695400.81 3374783.02 18354 10476.11
695613.16 3374808.59 46630 69195.87
695756.20 3374863.59 11422 10024.07
695787.02 3374851.22 81630 57339.57
695914.95 3374827.10 24757 41590.16
695922.74 3374822.92 31480 15071.30
696011.72 3374871.04 6903 2472.52
696019.12 3374873.43 52090 38588.88
696127.23 3374876.96 44644 36223.61
696267.06 3374905.73 51745 34747.90
696335.93 3374970.34 52171 29296.08
696577.00 3375064.00 26688 17558.21
696515.00 3375060.00 31324 25683.40
696526.00 3375081.00 10878 7960.94
696378.00 3375075.00 3155 2196.50
696374.00 3375047.00 31168 28808.33
696346.42 3374960.48 8141 4287.83
696916.41 3374703.37 2704 2773.16
696913.37 3374697.05 2131 1230.01
695406.38 3373894.53 6791 2117.42
695284.53 3373820.41 4975 6209.90
695268.73 3373828.01 12171 7245.29
695207.06 3373539.81 28499 16435.07
695163.07 3373472.73 285299 214562.12
695825.64 3373844.08 20009 6515.55
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Easting (m) Northing (m) discharge (cm3 sec−1) predicted discharge (cm3 sec−1)
695818.15 3373874.10 3098 1747.84
695829.40 3373872.17 6847 4724.56
695870.78 3373925.80 1292 1436.14
695873.99 3373937.31 7298 2562.84
694804.18 3374918.55 4777 2926.35
694811.43 3374929.34 15554 10799.79
694864.00 3374985.35 9906 7942.65
694853.04 3375015.85 6866 2769.17
694999.62 3375057.93 11789 6421.11
695043.10 3375092.62 3376 2175.13
695043.00 3375070.20 5248 3776.13
695410.00 3373885.00 4173 2590.45
697528.00 3374024.00 995 2400.35
695529.00 3374749.00 685 490.24
695437.00 3374602.00 263 422.30
695434.00 3374600.00 10759 9777.40
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