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Appendix A. Details of linear stability analysis

The decay instability is an instability of a primary wave involving a pair of other
modes (i.e. the primary wave decays into two secondary waves, see e.g. (Sagdeev &
Galeev 1969)). We shall derive this instability from the 3MT, Egs. (3.1). Introducing
the vector notation ¥ = (¥, Vg, ¥y ), a monochromatic primary wave is given by
W, = (Py,0,0) where Uy is a complex constant representing the amplitude of the initial
primary wave. This is an exact solution of Egs. (3.1). We consider the stability of this
solution to small perturbations involving the modes q and p_ by taking ¥ = ¥, + ¥,
with the perturbation given by ¥; = (O,Jq,{/;p_). Linearisation yields the following
equations at first order in e:

Ortbq = T(d, P, —P-) Wo ¢4 (A1)
Oy = T(p_,p,—q) T e 21,
We now seek solutions in form:
Yq(t) = Age™" o
Pp (t) = Ap e et

This requires Qp = —Qqg + A_. Solving Eqgs. (A1) then reduces to finding solutions of
the linear system

where

_ —iflq T(q,p,—p-) Yo
4= ( T(p_,p,—q) Vo i(—Qq+A). > (A2)

To obtain non-trivial solutions, we require det A = 0, which yields the dispersion relation:

Qq(_Qq + A—) - T(qa P, _p—) T(p—7 P, _q) |\IJO|2 =0. (A 3)

This has two roots, Q(f with corresponding eigenvectors:

Aq 1
A =| Te_p-—a¥% |- (A4)
P i (Qq-A_)

Instability occurs when €04 has a non-zero imaginary part. For an exactly resonant triad,
A_ = 0. For resonant triads, using Eq. (2.5) the roots of Eq. (4.1) are

Oq = +i |Wo| |p x q \/(p2—q2)(p2_*p2)- (A5)
\/(q2 + F)(p% 4+ F)
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In this case, instability occurs if ¢ < p < p_.

Let us now derive the modulational instability in the same way as we have done for
the decay instability. The modulational instability is studied using the 4MT. We begin
by linearising Eqgs. (3.3) about the pure primary wave solution, ¥y = (¥, 0,0,0) where
U, is a complex constant representing the amplitude of the initial primary wave. We
consider the stability of this solution to small perturbations involving the 3 modes q, p—
and py by taking ¥ = W, 4 ¥, with the perturbation given by ¥y = (0,%q, ¢p, , ¥p_).
Linearisation yields the following equations at first order in e:

Obq = T(a,p, —p-) Vo1p, e "2-"
+T(q,—p,p+) Vo top, € 2+ (A6)
by, = T(py,p,q) Yorhge "2+
8twp, = T(p—, p, _q) @0 wq ei A- t'
We again seek solutions of the form:
Jq(t) = Aqeimqt
i§+(ﬂ :‘Ap+e_i9p+t

Yp_ (1) = Ap_e -1,

This requires requires Qp, = Qq + A4 and Qp = —Qq + A_. Solving Eqgs. (A 6) then
reduces to finding solutions of the linear system
Aq
A Ap, =0
Ap_
where
iq T(q,—p,p+) Yo T(q,p,—p-)¥o
A= T+ pa)¥  i(Qq+Ay) 0 : (A7)
T(p-,p,—q) Yo 0 —i(—Qq +AL)
Setting det A = 0 yields a cubic dispersion relation:
Qg + A1) (~2q + A1) (A8)

+T(q, —p,p+) T(P+, P, Q) |Wo|* (—Qq + A)
~T(q,p, —p_) T(p_,p, —q) |¥o|* (g + A}) = 0.

The corresponding eigenvectors are given by

Aq 1
T(py,p,a) ¥
Ao, | =| Zwatag |- (A9)
A T(p_.p,=q) Yo
p- i(Qq—A_)

This derivation holds for any system with a quadratic nonlinearity. Using Eq. (2.5) and
performing some algebra we recover the usual form of the dispersion relation specific
to the CHM equation (Gill 1974) (see also (Lorentz 1972; Manin & Nazarenko 1994;
Smolyakov et al. 2000; Onishchenko et al. 2004)):

2 2 2 2

by —p p— —p
(*+F)Q+Bga+|%o|* [p x a” (1°—¢?) - -

P+ F)Q+w) +08pi, @ +F)(Q-w) +0p,

(A 10)

=0.
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This can be solved numerically, and sometimes analytically, for a given set of parameters
to determine ).



32 C.P. Connaughton, B.T. Nadiga, S.V. Nazarenko and B.E. Quinn

0.25 Y ‘
. oy
F=05 —o— F=01 —o
F-08 —=— F=05 —o— |
0.2 F=2 . F=20 —&—
= F=20
0.15 ]
=)
B ]
0.1 ]
0.05 ]

0 0.2 0.4 0.6 0.8 1 1.2

FIGURE 18. Instability growthrate for purely meridional perturbations with M = 0.5 > 1/2/27
for different values of the deformation radius.

Appendix B. Effects of Finite Deformation Radius

We now consider the dependence of MI on the deformation or Larmor radius, noting
that a finite deformation radius is obtained in the QG system under a reduced gravity
approximation. When F' is finite, there are two regimes, depending on the value of M.
For an interval of instability to exist, we require s2 . > 0. Referring to Eq. (7.4), this
requires that

p(F) =2M?*(1+F)> - F > 0. (B1)

The discriminant of the corresponding cubic, p(F) = 0, is A = —4(—=2M? + 27M*) .
Since we are only interested in F' > 0 we can identify two regimes.

o Regime 1: M > \/2—27
In this case, A < 0 so p(F) = 0 has one real root, F; (which is negative) and p(F') > 0
when F' > Fj. Then for any positive value of F' there exists a finite range of s, s €
(0, Smax), for which the perturbation is unstable. spax is given by Eq. (7.4). In this
regime, finite deformation radius tends to reduce the growth rate of the instability but
cannot suppress it. See Fig. 18.

e Regime 2: M < ,/2—27
In this case, A > 0 and p(F') = 0 has three real roots, Fy, Fy and F3. F; is always negative
and Fy and Fj are always positive. p(F') < 0 in the range (F», F3). In this regime, there are
critical values of F', F5 and F3 such that the range s € (0, Spmax) of unstable pertubations
only exists if F < Fy or F > F3. F, and F3 are obtained by finding the positive roots
of Eq. (B1) and spmax is again given by Eq. (7.4). In this regime, there is a range of
intermediate deformation radii which completely suppresses the instability. See Fig. 18.
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FIGURE 19. Same as in Fig. 2 but now for a finite deformation radius, F' = 2.
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FIGURE 20. Same as in Fig. 6 but now for a finite deformation radius, F = 1.

Appendix C. Case of Meridional primary Wave and Off-Zonal
Modulation.

Above we considered the case when the primary wave is purely meridional and the
modulation is purely zonal. This geometry is important considering that both the baro-
clinic instability in GFD and the drift-wave instabilities in plasmas typically have most
unstable modes being in the meridional direction. These modes can be considered as an
initial condition for the secondary modulational instabilities as it is done in the present
paper. At the same time, we have established above that the most unstable modulations
for M > 0.53 are zonal.

On the other hand, for low M the most unstable modulations are off-zonal. This, in
our opinion, is the reason why the final statistical state in the system in the M = 0.1
simulation showed the presence of off-zonal anisotropic flows even though the initial mod-
ulation was purely zonal. Moreover, it is quite likely that in such weakly-nonlinear cases
the system will pick the modulation which is off-zonal already at the initial moments.

Thus, here we will consider a case with M = 0.1 where we start with purely meridional
primary wave, p = (10,0) and with the modulation wavevector corresponding to the
fastest growing mode in this case, namely q = (9,6). Corresponding numerical results
for this case are shown in Fig. (21) (vorticity snapshots) and Fig. (4) (evolution of the
g-mode amplitude [¢),| and respective results obtained from simulating the 4MT and
3MT models).

First of all, as in all previous cases, we see good agreement of the initial evolution
with predictions for the linear instability obtained based on the 4MT and the 3MT
models. Moreover, we see that the 4MT and the 3MT in this case qualitatively describe
the nonlinear behavior too. Namely, like in the four-mode system, we see oscillatory
behavior, even though the oscillations appear to be irregular. However, these irregular
oscillations are clearly non-turbulent, as one can see from the vorticity frames in Fig. (21)
which shows quite a regular pattern even at ¢ = 100 (in units of the inverse instability
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FIGURE 21. Vorticity snapshots showing the growth, saturation and transition to turbulence of
an off-zonal perturbation of a meridional primary wave having M = 0.1.

growthrate), by which time the respective M = 0.1 system with zonal q is completely
turbulent, see Fig. 10. A transition to turbulence does eventually occur after a very long
time, and the turbulent state does exhibit off-zonal striations similar to the respective
M = 0.1 system with zonal initial modulations q.



