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In this supplementary part, we first develop several aspects of the hydrodynamical de-
scription of a turbulent flow over a wavy bottom. In particular, we investigate the ro-
bustness of the results presented in the main paper with respect to (i) the order of the
turbulent closure, (ii) the Reynolds stress anisotropy and (iii) the moving of the bottom
boundary. None of these factors has a significant influence on the basal shear stress shift.
We also study the effect of the mechanisms controlling the hydrodynamical roughness z0,
and especially investigate the case where the thickness of the surface layer h0 is compa-
rable to that of the inner layer ℓ. We furthermore present a friction force model, in which
Navier-Stokes equations for a perfect flow are closed with a crude additional turbulent
friction term as an approximation of the stress derivatives, and for which analytical ex-
pressions of the linear solution of the flow can be derived. In particular, the resonance
condition as well as the behaviour of the basal stress for kH → 0 can be found and in-
terpreted. Finally, some technical considerations for the computation of the streamlines
are detailed.

1. A second order turbulent closure

A first order closure assumes that the turbulent energy adapts instantaneously to the
mean strain tensor. To take into account the lag between the stress and the strain tensors,
one needs to formulate a second order turbulent closure.

1.1. Relaxation equation

The dynamical equations governing the second-order moments τik can be derived rig-
orously. Under the assumption of turbulence isotropy at the dissipative scale, it can be
written under the form:

Dtτik = ∂tτik + uj∂jτik = −τkj∂jui − τij∂juk − ∂jφik − πik − 2

3
δikε. (1.1)

ε is the dissipation rate; φik = u′
iu

′
ju

′
k is the spatial flux of turbulent energy induced

by fluctuations; the pressure term πik = u′
k∂ip′ + u′

i∂kp′ conserves energy and is usually
responsible for the isotropisation of fluctuations.

We wish to get a stress tensor that relaxes towards its steady state expression

τij = κ2L2|γ̇|
(

1

3
χ2|γ̇| δij − γ̇ij

)

, (1.2)

see part 1. For dimensional reasons, we write the relaxation rate under the form |γ̇|/β,
where β is a phenomenological constant, and keep the mixing length L fixed by the
geometrical distance to the wall. The second moment equation then takes the form of a
first order relaxation equation:

Dtτik = ∂tτik + uj∂jτik =
|γ̇|
β

[

κ2L2

(

δij
1

3
χ2|γ̇|2 − |γ̇|γ̇ij

)

− τij

]

. (1.3)
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Figure 1. Effect of the parameter β,which is a non dimensional parameter encoding the time
lag between a change in the strain rate and that of the Reynolds stress. (a-c) Vertical profiles

of the horizontal component of the velocity Ũ = U + U ′ for η0 = 10−4 for (a) β = 0, (b) β = 1
and (c) β = 10 respectively. One can see that the profiles develop oscillations as β increases,
but that the behaviour close to the bottom (in log scale) remains the same. In panels (d) and

(e), we plot the rescaled basal stress We note S̃t(0) = A+ iB and S̃n(0) = C + iD vs β (still for
η0 = 10−4). They are weakly affected, meaning again that the behaviour close to the bottom is
almost unchanged.

Setting β = 0, one recovers the stationary solutions (1.2). A finite value of β introduces a
lag between a change of the flow velocity field and the point/time at which the Reynolds
stress readapts to this change.

1.2. Equations for 2D steady flows

For 2D steady situations, the stress relaxation equations are the following:

ux∂xτxz + uz∂zτxz =
|γ̇|
β

[

−κ2L2|γ̇|γ̇xz − τxz

]

, (1.4)

ux∂xτxx + uz∂zτxx =
|γ̇|
β

[

−κ2L2|γ̇|γ̇xx +
1

3
κ2χ2L2|γ̇|2 − τxx

]

, (1.5)

ux∂xτzz + uz∂zτzz =
|γ̇|
β

[

−κ2L2|γ̇|γ̇zz +
1

3
κ2χ2L2|γ̇|2 − τzz

]

. (1.6)
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At linear order, they simplify into:

(U ′ + iβU)St = 2(U ′ + iW ) − 2κ2(η + η0)U ′3, (1.7)

(U ′ + iβU)Sxx = −2iU +
2

3
χ2(U ′ + iW ) − 2

3
χ2κU ′2, (1.8)

(U ′ + iβU)Szz = −2W ′ +
2

3
χ2(U ′ + iW ) − 2

3
χ2κU ′2. (1.9)

Taking the difference of equations (1.8) and (1.9), one can compute

Sxx − Szz =
−4iU

U ′ + iβU (1.10)

to obtain four closed equations:

U ′ = −iW +
U ′ + iβU

2
St + κU ′2, (1.11)

W ′ = −iU, (1.12)

S′
t =

(

iU +
4

U ′ + iβU

)

U + U ′W + iSn, (1.13)

S′
n = −iUW + iSt. (1.14)

As before, they can be written in the usual compact matrix form

d

dη
~X = P ~X + ~S, (1.15)

where ~X = (U, W, St, Sn), and now with

P =











0 −i U ′+iβU
2 0

−i 0 0 0
(

iU + 4
U ′+iβU

)

U ′ 0 i

0 −Ui i 0











. (1.16)

In figure 1, we show the effect of this new parameter. As expected for inertial effects in
a relaxation process, finite values of β generate oscillations in the vertical profiles of the
velocities and stresses. The example of the horizontal velocity is displayed in the panels
(a), (b) and (c). The amplitude and the frequency of these oscillations increase with β.
Interestingly, these oscillations do not affect much the behaviour of the modes close to
the bottom. As a consequence, the basal shear stress S̃t(0) = A+iB and the basal normal
stress S̃n(0) = C + iD are weakly affected by β, see panels (d) and (e). Interestingly,
both A and B decrease as β increases and their ratio remains roughly constant. β has
thus a negligible effect on the emergence of bedform.

2. Reynolds stress anisotropy

It is an experimental fact that, in a turbulent boundary layer close to a rough wall,
the Reynolds stress tensor is not isotropic: τxx is significantly larger than the other
components (Raupach et al. 1991, Shafi & Antonia 1995). Besides, anisotropy seems less
pronounced for a larger bottom roughness (Krogstad & Antonia 1994, Keirsbulck et al.
2002), an issue which is however still matter of debate (Krogstad et al. 2005).

To account for this Reynolds stress anisotropy, it is easy to generalise the Prandtl-like
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Figure 2. Effect of the normal stress anisotropy. (a-d) Coefficients A, B, C and D as a function
of η0 for different values of χ2

x − χ2

z (0.1, 1, 5 and 10). The dashed lines correspond to the
isotropic case. Inset (e): ratio B/A. Arrows indicate increasing normal stress anisotropy.

first order turbulent closure (1.2) with the following expression:

τij = κ2L2|γ̇|
(

1

3
χ2

i |γ̇| δij − γ̇ij

)

, (2.1)

where the value of χx now differs from that of χz . Following the above-cited literature,
we expect χ2

x/χ2
z to be around 1.3–1.5. At the linear order, the velocity, pressure and

stress fields read:

ux = u∗
[

U + kζeikxU
]

, (2.2)

uz = u∗kζeikxW, (2.3)

τxz = τzx = −u2
∗
[

1 + kζeikxSt

]

, (2.4)

p + τzz = p0 + u2
∗

[

1

3
χ2

z + kζeikxSn

]

, (2.5)

τzz = u2
∗

[

1

3
χ2

z + kζeikxSzz

]

, (2.6)

τxx = u2
∗

[

1

3
χ2

x + kζeikxSxx

]

, (2.7)
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and the stress equations can be simplified into

U ′St = 2(U ′ + iW ) − 2κ2(η + η0)U ′3, (2.8)

U ′Sxx = −2iU +
2

3
χ2

x(U ′ + iW ) − 2

3
χ2

xκU ′2, (2.9)

U ′Szz = −2W ′ +
2

3
χ2

z(U
′ + iW ) − 2

3
χ2

zκU ′2. (2.10)

The normal stress difference is this time:

Sxx − Szz =
−4iU

U ′ +
2

3

χ2
x − χ2

z

U ′ (U ′ + iW − κU ′2) , (2.11)

so that on gets the following four closed equations:

U ′ = −iW +
1

2
U ′St + κU ′2, (2.12)

W ′ = −iU, (2.13)

S′
t =

(

iU +
4

U ′

)

U + U ′W +
i

3
(χ2

x − χ2
z)St + iSn, (2.14)

S′
n = −iUW + iSt. (2.15)

As before, they can be written in the usual compact matrix form, now with

P =









0 −i 1
2U ′ 0

−i 0 0 0
(

iU + 4
U ′

)

U ′ i
3 (χ2

x − χ2
z) i

0 −Ui i 0









. (2.16)

The relevant anisotropic parameter entering the equations is χ2
x − χ2

z, for which a
realistic value is on the order of unity. As evidenced in figure 2, the corresponding values
of the functions A, B, C and D are not much affected by this anisotropy in the relevant
range of η0. This is particularly true for the coefficients C and D, as well as for the ratio
B/A as soon as η0 < 10−2. The normal stress anisotropy has thus a negligible influence
on ripple and dune formation.

3. A moving bottom

In order to investigate the effect of a moving bottom on the stress coefficients, we
consider a bottom profile of wavevector k, which is function of both position x and time
t:

Z(x, t) = ζ eσt ei(kx−ωt) . (3.1)

In this expression, σ represents the growth rate of the profile, and ω/k its phase velocity.
As discussed in Colombini & Stocchino 2005, this investigation is important as we wish
to use the present hydrodynamical study in the context of the formation and develop-
ment of bedforms, which do have a (small) growth rate and a (small) velocity. Following
expression (3.1), we modify those for the functions U , W , St and Sn by inserting the
extra-factor e(σ−iω)t, which now read:

ux = u∗

[

U + kζ eσt ei(kx−ωt) U
]

, (3.2)

(3.3)

uz = u∗ kζ eσt ei(kx−ωt) W , (3.4)
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Figure 3. Effect of the motion of the bottom. Stress coefficients A and B as a function of η0

for different values of the bottom growth rate σ (panels (a) and (b)), and different values of the
bottom pulsation ω (panels (c) and (d)). Arrows indicate increasing values of σ and ω. In panels
(a) and (b), grey dotted lines correspond to σ

ku∗

= 10, 5, 2, 1 and 0.5, the black dotted line

being for σ

ku∗

= 0.1. The black dashed line corresponds to σ

ku∗

= −0.1, the grey dashed lines

being for σ

ku∗

= −0.5, −1, −2, −5 and −10. In panels (c) and (d) grey dotted lines correspond

to ω

ku∗

= 2 and 1, the black dotted line being for ω

ku∗

= 0.1. The black dashed line correspond

to ω

ku∗

= −0.1, the grey dashed line being for ω

ku∗

= −1 and −2. For comparison, in all panels

the solid lines correspond to the static case σ = 0, ω = 0.

τxz = τzx = −ρ u2
∗

[

1 + kζ eσt ei(kx−ωt) St

]

, (3.5)

(3.6)

p + τzz = p0 + ρ u2
∗

[

χ2/3 + kζ eσt ei(kx−ωt) Sn

]

, (3.7)

(3.8)

τxx = ρ u2
∗

[

χ2/3 + kζ eσt ei(kx−ωt) Sxx

]

, (3.9)

(3.10)

τzz = ρ u2
∗

[

χ2/3 + kζ eσt ei(kx−ωt) Szz

]

. (3.11)
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In this new case, the linearised Navier-Stokes equations of section 3 in part 1 must
then be modified in the following manner:

S′
t =

(

σ

ku∗
− i

ω

ku∗
+ iU

)

U + U ′W + iSn + iSxx − iSzz , (3.12)

S′
n = −

(

σ

ku∗
− i

ω

ku∗
+ iU

)

W + iSt . (3.13)

The final linear equation is then the same, but now with the modified matrix

P =













0 −i 1
2U ′ 0

−i 0 0 0
4
U ′

+ σ
ku∗

+ i
(

U − ω
ku∗

)

U ′ 0 i

0 − σ
ku∗

− i
(

U − ω
ku∗

)

i 0













. (3.14)

With the surface layer model described in section 4.1 (Part 1), the non-slip boundary
conditions on the bottom can be written as

U(0) = −U ′(0) and W (0) =
σ

ku∗
− i

ω

ku∗
. (3.15)

The result of the integration of this new system is shown in figure 3 for the shear coef-
ficients A and B. One can see that departure from the static case σ = 0 and ω = 0 is
noticeable only for values of σ

ku∗

and ω
ku∗

of order one. The effect of the wave propagation
of the bedform can be understood by a simple argument. When the bedforms propagate
upstream (ω < 0) the relative flow velocity seen by the structure is larger so that it
induces a larger shear stress modulation. As A+ iB is by definition the basal shear stress
rescaled by u2

∗, both A and B get larger. Reciprocally, when the bedforms propagate
downstream (ω > 0), these coefficients are reduced. Consistently with this argument, the
ratio B/A is only weakly affected by ω (not shown). The growth rate σ affects A and
B in opposite ways and thus changes the phase shift between the shear stress and the
topography. For σ > 0, A is increased while B is reduced. We have not been able to
interpret this behaviour in a simple way.

It is also interesting to investigate how the resonance is affected by the fact that the
bottom moves i.e. can grow or propagate. We display in figure 4 the amplitude of the
free surface |δ| as a function of kH for different values of the growth rate σ and the
pulsation ω. For positive growth rates σ, the Q-factor of the resonance gets smaller but
the resonant wavenumber is not affected. A bottom propagating at the velocity ω/k
moves the resonant peak along the kH-axis. For a positive propagation velocity ω/k
the surface velocity with respect to the bottom and thus the effective Froude number
get reduced. As a consequence, the resonant wavelength gets smaller – and kH larger.
Conversely, the peak moves to smaller wavenumber for an upstream moving bottom.

For ripples in water flows the dimensionless numbers σ
ku∗

and ω
ku∗

are respectively

on the order of 10−3 and 10−2. They would be even smaller for bedforms of larger
wavelength. These values are too small to lead to noticeable effects. The bedform motion
can thus be safely ignored in the hydrodynamical calculation and the effect of free surface
interpreted in terms of surface standing waves.
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Figure 4. Amplitude of the free surface |δ| as a function of kH for different values of the growth
rate σ (a) and the pulsation ω (b) of the bottom boundary. Arrows indicate increasing values
of σ and ω. These graphs have been computed with H/z0 = 104 and F = 0.8. In panel (a), the
grey dashed line is for σ

ku∗

= −1, the back dashed line for −0.1, the black dotted line for 0.1 and

the two grey dotted lines for 1 and 2. In panel (b), the two grey dashed lines is for ω

ku∗

= −5

and −2, the black dashed line for −0.1, the black dotted line for 0.1 and the three grey dotted
lines for 1, 2 and 5. For comparison, in all panels the solid lines correspond to the fixed case
σ = 0, ω = 0.

4. Effect of the mechanisms controlling the hydrodynamical

roughness

So far, the computation of the velocity and stress fields has been obtained without
any specification of the physics at the scale of z0, as the integration of equation (2.37)
of the main paper is started in the inner layer rather than on the bottom. This is of
course possible only if this layer is sufficiently thick, i.e. if ℓ (or λ) is much larger than
the thickness of the surface layer h0. We here discuss several ways to describe the flow
inside the surface layer, and investigate the subsequent effect on the shape of the stress
coefficients as functions of η0. These coefficients should be independent of the physics at
work in this surface layer when η0 is small enough, but we expect larger differences for
larger values of η0.

We first present a convenient phenomenological model of geometrically induced rough-
ness, which does not involve additional parameters. We then consider the case of a viscous
surface layer. Inspired from the aeolian transport properties, we finally discuss the focus
point assumption as a possible way to describe the situation in which the surface layer
is governed by the presence of sediment transport.

4.1. Geometrically induced roughness

For an hydrodynamically rough bottom, the ‘small scale’ roughness elements are larger
than the viscous sub-layer. They are submitted to a turbulent drag from the fluid and
reciprocally, their presence slows down the flow. The exchanges of momentum in the
surface layer are thus dominated by the turbulent fluctuations. Following Richards 1980
and others, a convenient phenomenological model is to define the mixing length involved
in the turbulent closure as L = z0+z−Z. In this way, L is still essentially the geometrical
distance to the bottom, except that it cannot be smaller than the roughness length. This
choice reflects, in an intuitive manner, the physical picture one can infer from experiments
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Figure 5. Shear stress coefficients A and B (dashed lines) computed with the phenomenological
model of geometrically induced roughness (4.1). For comparison, the solid lines display the
reference case shown in figure 4 of the main paper.

or simulations where square-shaped roughness elements are glued on a flat wall (see e.g.
Perry et al. 1969).

With this expression for the mixing length, the integration of starting equations in the
uniform and steady case gives

ux =
u∗

κ
ln

(

1 +
z

z0

)

, (4.1)

where the lower boundary condition ux = 0 can now be taken in z = 0. This expression
is well approximated by the pure logarithmic profile as soon as z is larger than, say, few
z0. In other words, for this model, h0 ∼ z0.

The above description of the linear analysis, and in particular the expression of the
matrix P and the vector S involved in equation (2.37) of the main paper, in the case of
a wavy bottom is still valid, but now with the following expression for the function

U(η) =
1

κ
ln

(

1 +
η

η0

)

. (4.2)

The solution of this equation can again be written as a linear superposition ~X = ~Xs +
St(0) ~Xt + Sn(0) ~Xn, where these three vectors are solutions of

d

dη
~Xs = P ~Xs + ~S with ~Xs(0) =









− 1
κη0

0
0
0









, (4.3)

d

dη
~Xt = P ~Xt with ~Xt(0) =









0
0
1
0









, (4.4)

d

dη
~Xn = P ~Xn with ~Xn(0) =









0
0
0
1









. (4.5)

This decomposition ensures the requirement that both components of the velocity vanish
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Figure 6. Shear stress coefficients A and B computed with a viscous surface layer. Dotted line:
Rt = 125; Dashed line: Rt = 1. As in figure 5, the solid lines display the reference case shown
in figure 4 of the main paper.

on the bottom, leading to W (0) = 0 and U(0) = −U ′(0) = −1/(κη0). As in the previous
section, the coefficients St(0) and Sn(0) are found by the upper boundary conditions.

The coefficients A and B resulting from this integration are displayed in figure 5. One
can see that, for η0 < 10−3, they are not very much different from those obtained in the
previous section. However, one can notice significant differences for η0 > 10−2. As the
mixing length in the surface layer is larger in this case (L ∼ z0) than in the asymptotic
case (L ∼ z − Z), the turbulent ‘diffusion’ is more efficient. This results into a larger
phase advance for the shear stress, see figure 5c. For practical purposes and for later use
in the second part of this paper, a very good empirical fit of the coefficients A and B is
obtained by expressing them as a function of and R = ln 2π

η0

:

A = 2 +
a1 + a2R + a3R

2 + a4R
3

1 + a5R2 + a6R4
and B =

b1 + b2R + b3R
2 + b4R

3

1 + b5R2 + b6R4
(4.6)

with {a1, a2, a3, a4, a5, a6} = {1.0702, 0.093069, 0.10838, 0.024835, 0.041603, 0.0010625},
{b1, b2, b3, b4, b5, b6} = {0.036989, 0.15765, 0.11518, 0.0020249, 0.0028725, 0.00053483}.

4.2. A viscous surface layer

In hydraulically smooth situations, it is natural to expect that, very close to the bottom,
the flow must be laminar and thus described by the equation

τ = ν
dux

dz
= u2

∗, (4.7)

whose solution is

ux(z) =
u2
∗

ν
z. (4.8)

We thus neglect here the possibility of a phase shift across the viscous surface layer.
The transition from viscous to turbulent regime is governed by the Reynolds number
R = z ux

ν and occurs at a typical value Rt ≃ 125. The surface layer thickness can then
be easily computed as h0 = ν

u∗

√
Rt. At z = h0, both viscous and turbulent expressions

for the velocity must coincide:

uh ≡ u∗
√

Rt =
u∗

κ
ln

h0

z0
. (4.9)
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From this equality, we can deduce the hydrodynamical roughness seen from the inner
layer, due to this viscous surface layer:

z0 =
ν

u∗

√

Rt e−κ
√
Rt . (4.10)

In the case of a sand bed, the transition between the hydrodynamically smooth and
rough regimes occurs when the viscosity induced roughness (Eq. 4.10) is of the order of
the geometrically induced roughness (z0 ∼ d/10).

With the corresponding value for η0 = kz0, we solve equation (2.37) of the main
paper in the usual manner, writing the solution in the form of the linear superposition
as described above, except that the integration is started at the initial value η = kh0, in
which we impose that the velocity is parallel to the bed and equal to uh. At linear order,
this leads to

U(kh0) = −U ′(kh0), (4.11)

W (kh0) = iuh/u∗ = iU(kh0). (4.12)

The resulting shear stress coefficients A and B are displayed in figure 6. As one can
expect, in comparison to the reference case, they are smaller for larger values of Rt,
and all different curves collapse as η0 → 0. The viscous diffusion of momentum is less
efficient than that induced by turbulent fluctuations. Moreover, in the Stokes regime,
for Reynolds numbers much smaller than 1, the kinematic reversibility leads to a shear
stress in phase with the topography. Consistently, it can be observed in figure 6c that
the phase advance is reduced in the hydrodynamically smooth regime.

Experiments in the hydraulically smooth regime have been performed by Zilker et al.
1977, Zilker & Hanratty 1977, Abrams & Hanratty 1985, who measured the ionic mobility
between two nearby electrodes. This current is assumed to be related, without any spatial
or temporal lag, to the basal shear stress. The measured phase shift between the signal
and the bottom topography could reach values as high as 80◦. This would correspond
to B/A = tan(80π/180) ≃ 5.67. Within the present model, the phase shift remains
much lower than the measured 80◦. This unexpected high value has been interpreted as
the signature of a lag of the laminar-turbulent transition with respect to the Reynolds
number criterion R = Rt. Further experiments based on a different measure principle
are needed to understand this discrepancy.

This viscous surface layer model is an effective way to take bedload transport into
account. As a matter of fact, transported particles are not passive and exert a stress
on the fluid. Close to the transport threshold, their influence on the flow is negligible.
However, as their concentration increases, transport induces a negative feedback on the
flow, which should be taken into consideration in the hydrodynamics description. The
simplest model of multi-layer sheet flow would be a Newtonian fluid whose viscosity
increases with the concentration of moving sediments. In this large shear velocity regime,
one thus expects a decrease of the phase-lag responsible for the ripples instability and
possibly, a restabilisation of the bed.

4.3. The focus point assumption

An alternative manner to take the feedback of the transport on the flow into account
can be achieved in analogy with the aeolian case, which provides the archetype of such a
situation. In this case, it has been shown that the moving grains slow down the flow in
the transport layer, whose thickness h0 is independent of the shear velocity u∗. Note that
in the subaqueous case, the transport layer thickness is observed to gently increase with
the shear stress (Abbott & Francis 1977, Fernandez Luque & van Beek 1976) close to



12

(a) (b) (c)A B B/A
12

10

8

6

4

2

0

1

0.8

0.6

0.4

0.2

0

6

5

4

3

2

1

0

10-10 10-5  
100

η0
10-10 10-5  

100
η0

10-10 10-5  
100

η0

u
h

u
h

u
h

Figure 7. Shear stress coefficients A and B computed in the presence of a ‘focus point’ at height
h0, where the velocity is uh, as a function of η0. A and B are larger for larger values of uh/u∗

(1, 2, 5 and 10). However, the ratio B/A is less sensitive to this parameter, up to η0 ≃ 10−3.
Again, the solid lines display the reference case of figure 4 (main paper).

the threshold, in the erosion limited regime. Above h0, the effect of the particles on the
flow is negligible and one recovers the undisturbed logarithmic velocity profile, but with
a roughness larger than that without transport. Below h0, the flow velocity is reduced
and is independent of u∗ (Ungar & Haff 1987, Andreotti 2004). As shown experimentally
by Bagnold 1941, the velocity vertical profiles measured for different shear velocities thus
cross at the ‘focus point’ z = h0 and ux = uh. At this point we have

uh

u∗
=

1

κ
ln

h0

z0
, (4.13)

which means that the effective roughness in the logarithmic region, due to this transport
layer, is

z0 = h0 e−κuh/u∗ (4.14)

To determine the flow field in such a situation, the crucial point is to compare h0 with
the thickness of the inner layer ℓ, i.e. the size of the constant stress plateau (see figure 2
of the main paper). If h0 is larger than ℓ, it means that one cannot reduce the transport
issue to a relationship between the sediment flux and the basal shear stress only. In that
case, the whole vertical velocity profile, which depends on the entire bottom elevation, is
involved. Conversely, for h0 < ℓ, one can account for transport by modifying the bottom
boundary conditions as follows. Following what we have done in the previous sub-section,
we can impose that the fluid velocity at z = Z + h0 is parallel to the bed and equal to
uh. At the linear order, we then get:

U(kh0) = −U ′(kh0) (4.15)

W (kh0) = iuh/u∗ = iU(kh0). (4.16)

The result of this choice is shown for the stress coefficients in figure 7 for various values
of uh/u∗. A and B are larger for increasing focus velocities, or equivalently larger focus
altitude. As in the viscous surface layer case, all curves collapse for η0 → 0 because ℓ
gets larger in this limit (see equation (2.48) of the main paper). Interestingly, as far as
bedforms are concerned, the ratio B/A is much less sensitive to variations of uh/u∗, at
least in the region η0 < 10−3.

Finally, it should be noted that the focus point model only applies to the momentum
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limited transport regime. Close to the transport threshold, in the erosion limited regime,
the feedback of the particle transport on the flow is negligible and the transport should
not to be taken into account in the hydrodynamical calculation.

4.4. Concluding remarks

For these three dynamical mechanisms controlling the hydrodynamical roughness z0, we
have seen that the asymptotic regime is recovered when the surface layer thickness h0

is smaller than the inner layer thickness ℓ. As ℓ is much smaller than the wavelength
λ (for standard bedforms, ℓ/λ = O(10−3)), this constitutes a rather restrictive condi-
tion. Whenever h0 is larger than ℓ, specific hydrodynamic models should be derived to
determine the relations between stresses and topography.

The phase shift between the basal shear stress and the topography originates from
the interplay between inertia and shear stress. The different models of surface layer
correspond to different ways of mixing momentum in the direction normal to the wall.
Although the argument is general, one sees that the precise value of the phase shift is
rather sensitive to the physical origin of the momentum fluxes. In particular, viscous
diffusion leads to a much smaller phase advance than turbulent mixing.

5. A friction force closure

Several of the free surface effects can be recovered within a simple friction force model,
for which analytical expressions of the linear solution of the flow can be derived. In
particular, the resonance condition as well as the behaviour of the basal stress coefficients
A, B, C and D for kH → 0 can be found and interpreted.

5.1. Reference state

We start from the Navier-Stokes equations for a perfect flow, with a crude additional
turbulent friction term as an approximation of the stress derivatives:

∂xux + ∂zuz = 0, (5.1)

ux∂xux + uz∂zux = −∂xp + g sin θ − Ω
ux

H
ux, (5.2)

ux∂xuz + uz∂zuz = −∂zp − g cos θ − Ω
2ux

H
uz, (5.3)

Physically, the force applied to a fluid particle is directly related to the relative velocity
with respect to the ground. At an angle θ, the following plug flow is an homogeneous
solution of the above equations:

ux = u =

√

gH sin θ

Ω
, (5.4)

uz = 0 , (5.5)

p = g cos θ(H − z). (5.6)

In order to estimate the value of the friction coefficient, one can make use of the fact
that typical turbulent velocity vertical profiles are logarithmic. However, as the logarithm

varies slowly when z is much larger than z0, we write u ∼ 1
H

∫H

0 dz ux(z) ∼ u∗

κ

(

ln H
z0

− 1
)

.

Identifying the shear stress on the bottom as u2
∗ = gH sin θ, we finally get with the

relation (5.4)

Ω ∼
(

κ

ln H
z0

− 1

)2

. (5.7)
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line to the imaginary one. The velocity disturbance decreases exponentially over one wavelength
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For H/z0 in the range 103-104, we get a typical value for Ω on the order of few 10−3. We
now normalize quantities by u and H and get a single non-dimensional (Froude) number:

F =
u√

gH cos θ
. (5.8)

5.2. Disturbance

The starting equations can be linearised around the above reference state. Looking a the
flow over a corrugated bottom Z(x) = ζeikx, it is easy to show that the solution is of the
following form

ux = u + ukζeikx
[

−a+ekz + a−e−kz
]

, (5.9)

uz = uikζeikx
[

a+ekz + a−e−kz
]

, (5.10)

p = g cos θ(H − z) + u2(kH − i2Ω)
ζeikx

H

[

a+ekz − a−e−kz
]

, (5.11)

where a+ and a− must be determined by the boundary conditions. This exponential form
is characteristic of potential flows. In figure 8, we display for comparison the velocity
vertical profiles computed with the full model. The exponential behaviour is found in the
outer region where the Reynolds stress can be neglected.

5.3. Boundary conditions

We require that the velocity normal to the bottom vanish. Following the notations of the
main part of the paper, we define ∆ such that the free surface is at the altitude H +∆. It
is a material line where the pressure vanishes. The three boundary conditions are then:

uz(z = 0) = iukζeikx, (5.12)

uz(z = H) = iuδkζeikx, (5.13)

p(z = H) =
u2

HF2
δζeikx, (5.14)
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Figure 9. The phase (a) and amplitude (b) of the rescaled free surface deformation δ = ∆/ζ
as a function of kH for F → 0 (dotted dashed line), F = 0.2 (dashed line), F = 0.4 (thin
solid line), F = 0.6 (long dashed line), F = 0.8 (dotted line) and F = 1 (solid line), and
H/z0 = 103. Crossing the resonance, the phase shifts from 0 to π. These plots are very similar
to those displayed in figure 16 of part 1, where the very same quantities are computed with the
full model.

where, as before, δ is defined as ∆(x) = δζeikx. The constants a+ and a−, as well as δ
are thus solutions of

a+ + a− = 1 , (5.15)

a+ekH + a−e−kH = δ , (5.16)

a+ekH − a−e−kH =
δ

(kH − i2Ω)F2
, (5.17)

from which we get:

a+ =
1

2

[

1 − (kH − i2Ω) tanhkH − 1
F2

(kH − i2Ω)− 1
F2 tanh kH

]

, (5.18)

a− =
1

2

[

1 +
(kH − i2Ω) tanhkH − 1

F2

(kH − i2Ω)− 1
F2 tanh kH

]

. (5.19)

From these analytical expressions, one can compute the phase and amplitude of the
rescaled free surface deformation δ, see figure 9. They reproduce very well the results of
the full model (see Part 1). As one can see from the above expressions, the amplitude of
the surface deformation is maximum when kH − 1

F2 tanh kH = 0. This situation corre-
sponds to the resonance of the surface waves with the bottom undulations. In figure 10,
we display variations of δ with F and kH , computed with the full model.

5.4. Basal shear stress and pressure

The shear stress is not part of the variables of this model, but we can consistently define
it as τ = −Ωu2

x. Looking at the shear stress τb and normal stress pb on the bottom, in
accordance with the notations of the paper, we introduce the coefficients A, B, C and D
as

τb = −Ωu2
[

1 + (A + iB)kζeikx
]

, (5.20)

pb = gH cos θ + Ωu2(C + iD)kζeikx, (5.21)
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which gives

A = 2

[

(kH)2 + 4Ω2 + 1
F4

]

tanh kH − 1
F2 kH [tanh2 kH + 1]

(

kH − 1
F2 tanh kH

)2
+ 4Ω2

, (5.22)

B =
2Ω

F2

[tanh2 kH − 1]
(

kH − 1
F2 tanh kH

)2
+ 4Ω2

, (5.23)

C =
1

2Ω

(

−A − 2ΩB

kH

)

, (5.24)

D =
1

2Ω

(

−B +
2ΩA

kH

)

. (5.25)

It is worth noting that the friction force model predicts negative values of B for any kH .
This means that there is always a phase delay of the shear stress with respect to the
bottom, which is a clear disagreement with the full solution. In order to fix this flaw, one
would need to empirically introduce an imaginary part to Ω. Finally, this discrepancy
shows that a precise description of the phase between the basal friction and the relief
is a subtle and difficult issue that fully justifies the use of a more rigorous but heavier
formalism.

6. Stream function

To compute the streamlines, we introduce the so-called stream function Ψ(x, z), defined

by ∂Ψ/∂x = −uz and ∂Ψ/∂z = ux. This function is such that ~u · ~∇Ψ = 0, so that the
iso-contours Ψ = Cst precisely show the streamlines. Using the continuity equation, it is
easy to show that a solution is Ψ =

∫

dz̆ ux. This integral is computed between z̆ = Z (the
bottom) and z̆ = z. We note ξ = η− kZ the rescaled distance to the bottom. Restricting
to the linear order, with the relation U1 = iW ′

1, we end up with

Ψ =
u∗

k

{

(ξ + η0)U(ξ) − 1

κ
ξ + kζeikx [iW1(ξ) + U(ξ)]

}

, (6.1)
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where the function U is given by the expression (4.2).
In the situation with a free surface, one can use the following representation for the

field f :

f = f̄(ξ) + kζeikxf̃1(ξ), with ξ = ηH
z − Z

H + ∆ − Z
. (6.2)

This curvilinear variable ξ vanishes on the bottom z = Z, and ξ = ηH at the surface
z = H + ∆. The new function f̃1 is related to those of the non-shifted representation f̄
and f1 as:

f̃1(ξ) = f1(ξ) +

(

1 + (δ − 1)
ξ

ηH

)

f̄ ′(ξ). (6.3)

For f = ux, we have f̄ = U and f1 = U1 = iW ′
1. Consequently, the new stream function

is

ΨFS =
u∗

k

{

(ξ + η0)U(ξ) − 1

κ
ξ + kζeikx

[

iW (ξ) + U(ξ) + (δ − 1)
ξU(ξ)

ηH

]}

. (6.4)

One can check that the free surface is indeed a streamline itself, as one of the top boundary
conditions is W1(ηH) = iU(ηH)δ.
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