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Appendix A. Basic State

We obtain here the scaling laws given in section 3 which provide the evolution of a purely
conductive basic state. It is recalled that the basic temperature field is initialy uniform
i.e. θ0(z, t = 0) = 0 and satisfies a heat equation

∂θ0
∂t

=
∂2θ0
∂z2

(A 1)

with the boundary conditions

∂zθ0 = 0 at z=0, ∂zθ0 +Bi θ0 +Bi = 0 at z=1. (A 2)

Due to the evaporation, a cooled layer of characteristic thickness δ(t) develops from the
upper surface. Equation (A 1) provides the standard estimate

δ0(t) ∼ min(
√
t, 1). (A 3)

In the following, we determine the scaling laws for the two extreme cases Bi ≪ 1 and
1 ≪ Bi.

A) Case Bi ≪ 1

Since θ0(z, t) is initially zero, it remains small during a period of time t . τ1 (the time
τ1 is determined below and shown to be much larger than 1). Diffusion in the liquid and
evaporation terms thus dominate in the free-surface boundary condition (A 2). Such a
balance can be expressed in terms of order of magnitude as follows

∆θ0(t)

δ0(t)
∼ Bi (A 4)

One thus obtains using equation (A 3)

∆θ0 ∼ Bi
√
t, δ0(t) ∼

√
t for 0 .

√
t . 1, (A 5)
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During this time interval, the cooling layer has not reached the bottom at z = 0 so that
temperature field θ0 reads in terms of orders of magnitude

|θ0| ∼ ∆θ0 ∼ Bi
√
t for 0 .

√
t . 1. (A 6)

Thereafter the thickness remains constant δ0(t) ∼ 1 and the following condition holds

∆θ0(t) ∼ Bi, δ0(t) ∼ 1 for 1 . t . τ1. (A 7)

During this latter time interval, the heat equation (A 1) can be used with scaling (A 7)
to get the temperature field θ0 in terms of orders of magnitude

|θ0| ∼ Bi t, for 1 . t . τ1. (A 8)

These equations are valid if evaporation dominates heat transfer in the gas phase. This
requires that |θ0| ≪ 1 and determines the value τ1 ∼ Bi−1. For τ1 . t, the temperature
field θ0 relaxes towards the steady uniform temperature equal to θ0(z, t) = −1. Since the
temperature gradient is equal to zero in that regime, all the energy due to evaporation
is transfered by convection in the gas phase.

B) Case 1 ≪ Bi

For small times, the condition |θ0| ≪ 1 holds and an analysis similar to the one performed
for the case Bi ≪ 1 is valid leading to

∆θ0 ∼ Bi
√
t, δ0(t) ∼

√
t for 0 . t . τ2, where τ2 ∼ Bi−2. (A 9)

The value of τ2 is obtained by determining the time when ∆θ0 ∼ 1. At that time, the
heat flux in the gas phase becomes of the same order of the evaporation. During this
time interval, the cooling layer has not reached the bottom at z = 0 so that temperature
field θ0 reads in terms of orders of magnitude

|θ0| ∼ ∆θ0 ∼ Bi
√
t for 0 . t . Bi−2. (A 10)

For Bi−2 . t, a new regime begins where the surface temperature remains constant
|θ0(z = 1, t)| ∼ 1 while the cooled layer thickness keeps increasing

∆θ0 ∼ 1, δ0 ∼
√
t for time Bi−2 . t . 1. (A 11)

This regime ends when δ0 ∼ 1 at time t ∼ 1. Thereafter the temperature decreases in
the whole layer thickness to reach the steady state regime θ0(z, t) = −1.
The case Bi ∼ 1 is the limiting case of the two previous ones. The equation (A 5) is valid
until t ∼ 1, when the cooled layer thickness and the surface temperature both reach their
extremum. Thereafter the temperature decreases in the whole layer thickness, to reach
the steady state.

Appendix B. Obtaining the Adjoint Equations

Let us denote by qj(z, t), j = 1, . . . , 4, the components of the vector field

(û(z, t), ŵ(z, t), θ̂(z, t), p̂(z, t)).

To find the maximum amplification at a given time t1, we maximize the perturbation
norm E(q(t1))

E(q(t1)) ≡
3

∑

j=1

Cj

∫

qj(z, t1)q
+

j (z, t1)dz (B 1)
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at time t1 with respect to the set of all possible initial perturbations q(0) such that
E(q(0)) = 1. It is recalled that the integration is performed over the entire layer depth
and the superscript + denotes complex conjugation. Coefficients Cj are weight coefficients
chosen to put emphasis on temperature or velocity acoording to the case considered. To
analyse the initial perturbation in velocity, the kinetic energy norm EV is used and one
takes C1 = C2 = 1 and C3 = 0. To analyse the initial perturbation in temperature, the
temperature norm ET is used and C1 = C2 = 0 and C3 = 1.
The variation δE(q(t1)) with respect to a variation δq(0) of the initial perturbation is to
be evaluated. This computation cannot be performed in a straightforward manner since
the energy E(q(t1)) can be explicitly written in terms of q(t1) but only implicitely in
terms of q(0). It is known via several constraints: normalization of q(0) and time integra-
tion over the interval [0, t1] of equations (3.8)–(3.10). These dynamic equations relating
q(0) to q(t1), are formally written here as Fj(q) = 0, j = 1 . . . 4. This optimization with
constraints necessitates the introduction of Lagrangian multipliers, the so-called adjoint
fields q̃(t) ≡ (ũ(z, t), w̃(z, t), θ̃(z, t), p̃(z, t)).
More specifically, a Lagrangian function L is defined, which depends on direct q(t) and
adjoint q̃(t) variables over the interval [0, t1], and a normalization scalar s0:

L(q, q̃, s0, t1) = E(q(t1))− s0(E(q(0))− 1)−
4

∑

j=1

∫ t1

0

dt (〈Fj(q(t)), q̃j(t)〉+ c.c.) .(B 2)

where c.c. means complex conjugate and 〈·, ·〉 stands for the scalar product

〈a1, a2〉 ≡
∫

â1(z)â
+

2 (z)dz. (B 3)

When q(t) satisfies the constraints (direct problem plus normalization at t = 0), all terms
but the first one on the r.h.s. of equation (B 2) are zero and, by consequence, L = E and
δL = δE. At this stage, the adjoint variables and the quantity s0 are left unspecified.
Formally the variation δL reads as

δL =
3

∑

j=1

Cj

(
∫

q+j (z, t1)δqj(z, t1)dz − s0

∫

q+j (z, 0)δqj(z, 0)dz

)

(B 4)

−
4

∑

j=1

∫ t1

0

dt[〈δFj(q(t)), q̃j(t)〉+ 〈Fj(q(t)), δq̃j(t)〉] + c.c..

The expression 〈Fj(q(t)), δq̃j(t)〉 in equation (B 4) is zero if the governing equations
Fj(q) = 0 are satisfied during the time interval [0, t1]. The main idea then amounts to
rewriting quantity 〈δFj(q(t)), q̃j(t)〉 in terms of δqk(t). This is done by integrating by
parts in space or time. After some tedious algebra, the following identity

4
∑

j=1

∫ t1

0

dt〈δFj(q(t)), q̃j(t)〉 =
4

∑

j=1

[

∫ t1

0

dt〈F̃j(q̃(t), q), δq(t)〉] + (B 5)

+
1

Pr

2
∑

j=1

[

∫

q̃+j (z, t1)δqj(z, t1)dz −
∫

q̃+j (z, 0)δqj(z, 0)dz]

+

∫

q̃+3 (z, t1)δq3(z, t1)dz −
∫

q̃+3 (z, 0)δq3(z, 0)dz +B(δq, q̃)

can be established, where F̃j is an expression containing spatial or time derivatives of q̃.
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Note that the second, third and fourth r.h.s terms originate from integrations by parts
of time derivatives in equations (3.8)–(3.10) and terms B(δq, q̃) are generated from the
boundary terms resulting from integrations by parts of spatial derivatives. These latter
terms hence involve only quantities δq and q̃ evaluated at the boundaries z = 0 and
z = 1.

At this stage, the freedom of the Lagrangian multipliers can be used to impose some
added constraints on the adjoints fields q̃, namely: (i) equations F̃j(q̃(t)) = 0, j = 1 . . . 4,
which are similar to Fj(q(t)) for q and define the evolution equations (3.15)–(3.17); and
(ii) boundary conditions B(δq, q̃) = 0, which are the counterpart of boundary conditions
(3.10)–(3.12) on q and define the boundary conditions (3.18)–(3.19) for q̃. This new
system can be simulated as the direct problem. It is easily seen that the adjoint system
(3.15)–(3.19) must be integrated backwards in time. When it is satisfied, the variation
δL reads

δL =

2
∑

j=1

(
∫

(Cjq
+

j (z, t1)−
1

Pr
q̃+j (z, t1))δqj(z, t1)dz (B 6)

−
∫

(s0Cjq
+

j (z, 0)−
1

Pr
q̃+j (z, 0))δqj(z, 0)dz

)

+

∫

(C3q
+

3 (z, t1)− q̃+3 (z, t1))δq3(z, t1)dz

−
∫

(s0C3q
+

3 (z, 0)− q̃+3 (z, 0))δqj(z, 0)dz + c.c.

Two relations can be still imposed, a first one at time t = t1 which relates q̃j(z, t1) and
qj(z, t1) and a second one at time t = 0 which relates q̃j(z, 0) and qj(z, 0). These two
constraints are satisfied so that δL = 0 and are defined precisely below according to the
norm and Prandtl number. The condition δL = 0 means that an optimal perturbation is
attained. However this process should be self-consistent : one uses the iteration procedure
(3.20). When the iterative process has converged, an initial optimal perturbation for time
t1 is found.

A) Finite Prandtl and zero initial temperature perturbations

If one considers only initial perturbations in velocity field so that variation of temperature
field δq3(z, 0) is zero, it is consistent to use the norm EV , i.e., C1 = C2 = 1 and C3 = 0.
Equation (B 6) then naturally leads to the relation

q̃j(z, t1) = Prqj(z, t1), j = 1, 2 ; q̃3(z, t1) = 0 (B 7)

at time t = t1 and the relation

qj(z, 0) =
1

Pr s0
q̃j(z, 0), j = 1, 2 ; q3(z, 0) = 0 (B 8)

at time t = 0, where s0 is chosen such that the normalization condition E(q(0)) = 1 is
satisfied.

B) Finite Prandtl and zero initial velocity perturbations

When considering only initial perturbations in temperature field so that δq1(z, 0) =
δq2(z, 0) = 0, it is consistent to use the norm ET , i.e., C1 = C2 = 0 and C3 = 1.
Equation (B 6) then leads to the relation

q̃j(z, t1) = 0 j = 1, 2 ; q̃3(z, t1) = q3(z, t1) (B 9)
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at time t = t1 and

qj(z, 0) = 0, j = 1, 2 ; q3(z, 0) =
1

s0
q̃3(z, 0) (B 10)

at time t = 0 so that the normalization is satisfied.
C) Infinite Prandtl number
For the infinite Prandtl number, the norm ET is chosen since the velocity is slaved to
the temperature field in that instance, hence C1 = C2 = 0 and C3 = 1. The equations
are then identical to the previous case except that only the equation for temperature
appears, i.e.,

q̃3(z, t1) = q3(z, t1), (B 11)

and at time t = 0

q3(z, 0) =
1

s0
q̃3(z, 0) (B 12)

so that the normalization is satisfied.

Appendix C. Numerical Method.

For the numerical solution, the direct and adjoint equations are reformulated as fourth-
order problem in a streamfunction-like approach. The incompressibility constraint is
thereby satisfied automatically, and the pressure and horizontal velocity are eliminated
from the equations. For finite Prandtl number, the direct equations take the form

1

Pr

∂

∂t
η̂ =

[

∂2

∂z2
− k2

]

η̂ −Rak2θ̂, (C 1)

η̂ =

[

∂2

∂z2
− k2

]

ŵ, (C 2)

∂

∂t
θ̂ + ŵ

∂θ0
∂z

=

[

∂2

∂z2
− k2

]

θ̂. (C 3)

The boundary conditions are

ŵ =
∂ŵ

∂z
=

∂θ̂

∂z
= 0 at z = 0 (C4)

and

ŵ = 0, η̂ + k2Maθ̂ = 0,
∂θ̂

∂z
+Biθ̂ = 0 at z = 1. (C 5)

The adjoint fields satisfy the system

1

Pr

∂

∂τ
η̃ =

[

∂2

∂z2
− k2

]

η̃ − k2θ̃
∂θ0
∂z

, (C 6)

η̃ =

[

∂2

∂z2
− k2

]

w̃, (C 7)

∂

∂τ
θ̂ =

[

∂2

∂z2
− k2

]

θ̂ +Raw̃ (C 8)

with the boundary conditions

w̃ =
∂w̃

∂z
=

∂θ̃

∂z
= 0 at z = 0 (C9)
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and

w̃ = η̃ = 0,
∂θ̃

∂z
+Biθ̃ +Ma

∂w̃

∂z
= 0 at z = 1. (C 10)

These equations are discretized in time with a backward Euler method for the diffusive
terms. The product term with the basic temperature profile is treated with the explicit
Euler method. For the direct problem the solution at the new time level n+1 is obtained
by solving the following equations in sequence:

[

∂2

∂z2
− k2 − 1

∆t

]

θ̂n+1 = − θ̂n

∆t
+ ŵn ∂θ

n
0

∂z
, (C 11)

[

∂2

∂z2
− k2 − 1

Pr∆t

]

η̂n+1 = − η̂n

Pr∆t
+Rak2θ̂n+1, (C 12)

[

∂2

∂z2
− k2

]

ŵn+1 = η̂n+1. (C 13)

The boundary equations for η̂ are given in terms of ŵ. To satisfy them, the solution of
the second and third equation is represented by the linear combination

η̂n+1 = η̂P + λη̂1 + µη̂2, (C 14)

ŵn+1 = ŵP + λŵ1 + µŵ2, (C 15)

where the solution with subscript P is a particular solution of the η̂-equation (C 12) with
η̂P = 0 on the boundaries z = 0 and z = 1. The functions with subscripts 1 and 2 satisfy
the homogeneous η̂-equation with zero right hand side and two linearly independent
boundary conditions, which we choose as

η̂1(z = 1) = η̂1(z = 0) = 1, (C 16)

η̂2(z = 1) = −η̂2(z = 0) = 1. (C 17)

The boundary conditions ∂ŵ/∂z = 0 at z = 0 and η̂ + k2Maθ̂ = 0 at z = 1 determine
the coefficients λ and µ in the linear combination. We note that the functions ŵP , ŵ1

and ŵ2 satisfy zero boundary conditions at z = 0 and z = 1.
The adjoint solution at the new time level n+1 is likewise found by solving the equations

[

∂2

∂z2
− k2 − 1

Pr∆τ

]

η̃n+1 = − η̃n

Pr∆τ
− k2θ̃n

∂θn0
∂z

, (C 18)

[

∂2

∂z2
− k2

]

w̃n+1 = η̃n+1, (C 19)

[

∂2

∂z2
− k2 − 1

∆τ

]

θ̃n+1 = − θ̃n

∆τ
−Raw̃n+1 (C 20)

in the given sequence. The solution for w̃n+1 and η̃n+1 must again be represented as
a linear combination with auxiliary functions satisfying the homogeneous η̃-equation in
order to satisfy the boundary conditions.
Discretization in space is realized with an expansion in Chebyshev polynomials (see
Canuto et al. (1988)). Product terms with the perturbation and the basic state are
calculated in physical space by a fast cosine transform. The Helmholtz equations for the
variables η̂, ŵ, θ̂ and the adjoint variables η̃, w̃, θ̃ reduce to essentially tridiagonal linear
systems. The boundary conditions are treated with the tau method, which produces two
filled rows in the matrix representation. The limit of infinite Prandtl number requires no
changes in the solution procedure.
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The basic temperature profile is computed with the same numerical method as the per-
turbations, i.e. using the backward-Euler method and a Chebyshev polynomial expansion
with the same time step and number of polynomials. The entire field θ0(z, t) is stored in
an array in order to speed up the backward integration of the adjoint equations.
The code was tested for infinite Prandtl number with a stationary basic temperature
profile. It was verified that exponential growth of the optimal perturbations appeared at
the proper threshold values of Ma ≈ 79.6 for pure Marangoni convection with Bi = 0
(Pearson 1958) and for Ra ≈ 1100 for pure Rayleigh convection with fixed temperature
on the free surface (Chandrasekhar 1961) For this verification, the boundary condition
at the bottom was changed to constant temperature.

Appendix D. Analysis of Stability for the Marangoni case

D.1. The approach for the Marangoni case (Ra = 0).

This section presents an approach valid for infinite Prandtl number, which evaluates the
evolution in terms of orders of magnitude. It is based on two hypotheses which make the
analysis tractable. First the initial perturbation of wavenumber k in the x direction is
only a temperature perturbation i.e. û(z, t = 0) = ŵ(z, t = 0) = 0 and the temperature

perturbation θ̂(z, t = 0) is uniform along the z-direction. Second, the flow is supposed
unstable i.e. convection sets in, if there exists a time and a region in the flow in which the
advection term in equation (3.10) becomes greater or equal to the two diffusion terms
which tend to damp the initial perturbation.
Practically, one first determines the orders of magnitude for temperature perturbations
when the system is in a stable regime or near the critical curve, i.e., when the term corre-
sponding to advected heat transfer ŵ ∂θ0

∂z
in equation (3.10) can be neglected, according

to the second hypothesis. Thereafter one computes the order of magnitude of the term

k2θ̂ i.e., the diffusion in the x-direction, and of the term ∂2θ̂
∂z2 , i.e., the diffusion in the

z-direction, corresponding to the stable regime. This is done in subsection D.2. On the
other hand, the order of magnitude for velocity ŵ is found in subsection D.3, as well as
the corresponding advection term, ŵ ∂θ0

∂z
.

Since the velocity is computed using the temperature perturbation field estimated for
the stable configuration, this approach is consistent only if the advection term remains
much smaller than one of the diffusion terms. The sets of parameters Ma,Bi, Pr that
give consistent results for each time and mode are considered in the ”stable” domain.
Otherwise, if there exists a time and a mode of wavenumber k such that the advection
term is larger in order of magnitude than the two diffusion terms, the corresponding set
of parameters is associated with a situation where convection sets in (subsection D.4).
The scaling laws for critical parameters are then derived by solving the resulting set of
inequalities (subsection D.5).

D.2. Scaling Analysis for the Temperature Perturbation Field

As mentioned in the previous paragraph, we determine the orders of magnitude for
temperature perturbations by neglecting the advected heat transfer ŵ ∂θ0

∂z
in equation

(3.10). One thus obtains

∂θ̂

∂t
−
[

∂2

∂z2
− k2

]

θ̂ = 0 (D1)

The temperature perturbation field also satisfies the boundary conditions

∂θ̂

∂z
+Bi θ̂ = 0, at z = 1, (D 2)
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∂θ̂

∂z
= 0 at z = 0. (D 3)

The cooling due to evaporation imposes that a thermal boundary layer for the tempera-
ture perturbation θ̂(z, t) develops. One can easily check that the solution

θ̂(z, t) = a0(1 + θ0(z, t)) exp(−k2t) (D 4)

satisfies the above system and the condition of uniformity at t = 0. Note that a0 is
simply the initial amplitude of the temperature perturbation which is taken to be equal
to one in the sequel. From the above equation, it is readily seen that the thickness of the
thermal boundary layer for the perturbation field θ̂(t) is equal to δ0(t) and that the scale

of variation in the z-direction of the perturbed field θ̂(z, t) denoted by ∆θ̂ satisfies

∆θ̂(t) ∼ ∆θ0(t) exp(−k2t) (D 5)

The scale θ̂s of the perturbed field θ̂(z = 1, t) on the surface satisfies according to
equation (D 2)

θ̂s ∼
1

Bi

∆θ̂(t)

δ0(t)
(D 6)

Using the results of Annex A, it is straightforward to find the following estimates:
For Bi ≪ 1 :

∆θ̂(t) ∼ Bi
√
t exp(−k2t), θ̂s ∼ exp(−k2t), θ̂ ∼ exp(−k2t) for 0 .

√
t . 1, (D 7)

∆θ̂(t) ∼ Bi exp(−k2t), θ̂s ∼ exp(−k2t), θ̂ ∼ exp(−k2t) for 1 . t . Bi−1. (D 8)

For 1 ≪ Bi :

∆θ̂(t) ∼ Bi
√
t exp(−k2t), θ̂s ∼ exp(−k2t), θ̂ ∼ exp(−k2t) for 0 . t . Bi−2, (D 9)

∆θ̂(t) ∼ exp(−k2t), θ̂s ∼
exp(−k2t)

Bi
√
t

, θ̂ ∼ exp(−k2t), for Bi−2 . t . 1. (D 10)

D.3. Scalings for the Velocity Field in the Bénard-Marangoni problem (Ra = 0).

The equation of the vorticity field can be easily deduced from equations (3.8) and (3.9).
Denoting by ω̂ the y-component of vorticity, we obtain the diffusion equation

1

Pr
∂tω̂ = ∂2

z ω̂ − k2ω̂ (D 11)

For infinite Prandtl number, this equations simplifies

∂2
z ω̂ − k2ω̂ = 0 (D12)

The vorticity is slaved to the temperature evolution via the boundary condition at the
free surface given by equation (3.11) :

ω̂ + ikMaθ̂ = 0 at z = 1. (D 13)

Equation (D 12) plus the forcing (D 13) defines an hydrodynamic boundary layer δH . It
is easily seen that the proper scaling reads

δH ∼ min(1/k, 1) (D 14)

The hydrodynamic boundary layer either reaches the bottom, i.e., δH ∼ 1, or the diffusion
term along x becomes of the same order of the diffusion term along z and δH ∼ 1/k.
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From equation (3.11), a relation between θ̂s and the order of magnitude of velocity û can
be found :

û ∼ kδH Ma θ̂s(t). (D 15)

The order of magnitude of the vertical component ŵ of velocity is provided via mass
conservation

ŵ ∼ kδH û ≡ (kδH)2 Ma θ̂s(t). (D 16)

D.4. Condition for the onset of convection for the Marangoni flow (Ra = 0)

To describe the time evolution of perturbations, one must distinguish two regions along
the z direction i.e. inside and outside the thermal boundary layer. Outside the layer
(δ0 . 1−z . 1), the advection term in equation (3.10) is zero since the basic temperature
field θ0(z, t) vanishes : hence diffusion dominates and perturbations are always damped.
Instability thus only arises inside the thermal layer (0 . 1− z . δ0).
To determine the onset of instability, one first compares the order of magnitude of the
advection and the diffusion along the x-direction in the thermal layer

ŵth∆θ0
δ0

, k2θ̂ (D 17)

where ŵth denotes the order of magnitude of the vertical velocity in the thermal boundary
layer, and second the order of magnitude of the advection term and of the diffusion term
in the z-direction

ŵth∆θ0
δ0

,
∆θ̂

δ20
(D 18)

The existence of a convection onset thus implies that there exists a time and a mode of
wavenumber k for which the two conditions

ŵth(
∆θ0
δ0

) & k2θ̂ and ŵth(
∆θ0
δ0

) &
∆θ̂

δ20
(D 19)

hold. We need quantity ŵth since it explicitely appears in the above inequalities. Two
possibilities should be considered at each time : δ0(t) . δH or δH . δ0(t). In the first
case, the thermal layer is included in the hydrodynamic layer and one may use the scaling
ŵth ∼ δ0

δH
ŵ. In the second case ŵth ∼ ŵ. Using equation (D 16), this implies that the

scaling ŵth is such that

ŵth ∼ min

(

1,
δ0
δH

)

ŵ = min

(

1,
δ0
δH

)

(kδH)2 Ma θ̂s. (D 20)

It is now possible to rewrite inequalities (D 19) as

min

(

1,
δ0
δH

)

δ2H Ma θ̂s(
∆θ0
δ0

) & θ̂ and min

(

1,
δ0
δH

)

(kδH)2 Ma θ̂s∆θ0 &
∆θ̂

δ0
(D 21)

D.5. Derivation of scaling laws

One must now introduce the various expressions previously obtained for ∆θ0, δ0, θ̂, ∆θ̂,
θ̂s, δH inside instability conditions D 21. The expressions for δ0 and ∆θ0 are obtained in
section (A), the expressions for θ̂, ∆θ̂ and θ̂s in section (D.2), the expression for δH in
section (D.3). To ease the discussion, three separate cases are studied :
A) Bi ≪ 1 , B) 1 ≪ Bi and t . Bi−2, C) 1 ≪ Bi and Bi−2 . t.
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A) Case Bi ≪ 1

First let us recall from Annex A, that the following relations hold :

δ0(t) ∼ min(
√
t, 1) and

∆θ0(t)

δ0(t)
∼ Bi. (D 22)

From section D.2, one easily verifies that the temperature perturbation field is such that

∆θ̂ ∼ Biδ0θ̂s and θ̂ ∼ θ̂s (D 23)

Using equations (D 22) and (D 23), condition (D 21) can be transformed into

min

(

1,
δ0
δH

)

Ma Bi δ2H & 1 and min

(

1,
δ0
δH

)

δ0 Ma k2 δ2H & 1 (D 24)

Note that only the period t . 1/Bi should be considered here since, for 1/Bi . t, the
basic state has relaxed to a uniform temperature.
To ease the discussion, two separate cases must be considered for the wavenumber k,
namely k . 1 and 1 . k.
• k . 1
In that instance, δH ∼ min(1/k, 1) = 1 (see equation (D 14)) leading to the equality
min(1, δ0

δH
) ∼ δ0. Condition (D 24) reads

δ0 Ma Bi & 1 and δ20 Ma k2 & 1 (D 25)

The smallest Marangoni number i.e. the critical Marangoni number which satisfies such
inequalities, is obtained for δ0(t) ∼ 1 i.e. for 1 . t. Condition (D 25) becomes

Ma &
1

Bi
and k2 &

1

Ma
(D 26)

From the above onditions, one easily gets the critical value

Mac ∼ 1/Bi, with
√
Bi . kc . 1 and 1 . tc . 1/Bi. (D 27)

• 1 . k.
In that instance, δH ∼ min(1/k, 1) = 1/k. Since the two functions min(1, kδ0) and
min(1, kδ0)δ0 are both increasing functions of δ0 when δ0 . 1/k, the critical Marangoni
must be obtained when 1/k . δ0 for which min(1, kδ0) = 1. Conditions (D 24) become

Ma Bi & k2 and Ma δ0(t) & 1 (D 28)

A straigthforward discussion directly leads to the conditions

Mac ∼ 1/Bi and kc ∼ 1 and 1 . tc . 1/Bi. (D 29)

which is a limiting case of condition (D 27). As a consequence, the critical conditions in
the case Bi ≪ 1 corresponds to condition (D 27).

B) Case 1 ≪ Bi and t . Bi−2.

From results obtained on the basic flow, it is easily seen that relations (D 22), (D 23)
and thus (D 24) still hold. Moreover note that the largest value of δ0(t) is obtained at
the largest time t ∼ Bi−2: δ0(Bi−2) ∼ Bi−1. One must consider the three cases k . 1,
1 . k . Bi and Bi . k.
• k . 1
In that case, δH ∼ min(1/k, 1) = 1 and condition (D 25) is again satisfied. The critical
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Marangoni number, is obtained for the largest possible value of δ0(t) i.e. δ0(Bi−2) =
Bi−1. Condition (D 25) now reads

Ma & 1 and Ma k2 & Bi2 (D 30)

A straigthforward discussion directly leads to the critical conditions for instability

Mac ∼ Bi2 with kc ∼ 1 and tc ∼ Bi−2 (D 31)

• 1 . k . Bi
In that instance, δH ∼ min(1/k, 1) = 1/k. Conditions (D 24) become

min(1, kδ0(t)) k
−2 Ma Bi & 1 and min(1, kδ0(t)) δ0(t) Ma & 1 (D 32)

The critical Marangoni number, is obtained for the largest possible value of δ0(t) obtained
at the largest time i.e. t = Bi−2 for which δ0(Bi−2) = Bi−1. As a consequence

min(1, k/Bi) k−2 Ma Bi & 1 and min(1, k/Bi) Bi−1 Ma & 1 (D 33)

For this wavenumber interval, min(1, k/Bi) = k/Bi and equation (D 33) becomes

k−1 Ma & 1 and k Bi−2 Ma & 1 (D 34)

This leads to the critical conditions for instability

Mac ∼ Bi with kc ∼ Bi and tc ∼ Bi−2 (D 35)

• Bi . k
In that case, δH ∼ min(1/k, 1) = 1/k and conditions (D 32) are verified. Again the critical
Marangoni number, is obtained for the largest time i.e. t = Bi−2 corresponding to the
largest possible value of δ0(t). Moreover, for this wavenumber interval, min(1, kδ0(t)) = 1
and equation (D 32) becomes

k−2 Ma Bi & 1 and Bi−1 Ma & 1 (D 36)

This leads to the same critical conditions (D 35) for instability:

Mac ∼ Bi with kc ∼ Bi and tc ∼ Bi−2 (D 37)

C) Case 1 ≪ Bi and Bi−2 . t . 1

First let us recall from results on the basic flow that the following relation holds:

δ0(t) ∼
√
t and ∆θ0(t) ∼ 1 (D 38)

From section D.2, one easily verifies that the temperature perturbation field is such that

∆θ̂ ∼ Biδ0θ̂s and θ̂ ∼ ∆θ̂ (D 39)

Using equations (D 38), (D 39), conditions (D 21) can be transformed into

min

(

1,
δ0
δH

)

δ−2

0 δ2H Ma Bi−1 & 1 and min

(

1,
δ0
δH

)

δ2H k2 Ma Bi−1 & 1 (D 40)

At this stage, two possibilites should be considered : k . 1 and 1 . k.
• k . 1
In that case, δH ∼ min(1/k, 1) = 1 and min(1, δ0

δH
) ∼ δ0. Conditions (D 40) become

δ−1

0 Ma Bi−1 & 1 and δ0 k2 Ma Bi−1 & 1. (D 41)
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By multiplying both conditions, one gets:

Ma & Bi k−1. (D 42)

This implies that kc ∼ 1 and Mac ∼ Bi. Introducing the latter two equalities back into
equation (D 41) provides δ0 = 1 i.e. tc ∼ 1. Finally the critical conditions can be written
as

Mac ∼ Bi with kc ∼ 1 and tc ∼ 1. (D 43)

• 1 . k
In that instance, δH ∼ min(1/k, 1) = 1/k. If one introduces the new variable ξ ≡ kδ0,
conditions (D 40) read

Ma & BiF (ξ) and Ma & BiG(ξ) (D 44)

in which

F (ξ) ≡ ξ2 min(1, ξ)−1 with G(ξ) ≡ min(1, ξ)−1. (D 45)

A straightforward analysis of these two functions shows that the critical Marangoni is
reached for ξ = 1 hence Mac ∼ Bi. Moreover, since 1/Bi . δ0 . 1 in this time interval,
a large bandwith of modes k are equivalent leading to the following critical conditions
for instability:

Mac ∼ Bi with 1 . kc . Bi and tc ∼ k−2
c (D 46)

Finally, by taking the lowest Marangoni numbers of the conditions (D 31)-(D 35)-(D 43)-
(D 46), one deduces the true critical conditions for 1 ≪ Bi, namely

Mac ∼ Bi with 1 . kc . Bi and tc ∼ k−2
c . (D 47)
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