
Appendix to “Numerical simulations of boundary-layer bypass

transition due to high-amplitude free- stream turbulence”

By V. Ovchinnikov, M. M. Choudhari & U. Piomelli

Journal of Fluid Mechanics, vol. 613 (2008), pp. 135–169

This material has not been copy-edited or typeset by Cambridge University

Press: its format is entirely the responsibility of the author.

A.1. Evolution of the integral length scale of the FST

In figure 20 we show the evolution of the FST integral length scale L33 com-
puted by integrating the spanwise autocorrelation function of the spanwise
velocity component. In the figure we also compare our data to power law
fits of the form y = C (x − x0)

1/2 (Roach 1987), assuming that L33 is an
adequate approximation to L11. It can be seen that in both cases SLS and
T3B, L33 grows more slowly than the corresponding power law. One possi-
ble explanation is that the finite size of the computational domain prevents
natural growth of free-stream eddies.

A.2. Reynolds stress profiles in curvilinear coordinates

In this section we compare the evolution of the Reynolds stresses along the
curvilinear coordinate of the super-elliptical leading edge for the symmetry-
line and full-domain cases. In figures 23a and 23c we compare mean velocity
profiles for cases SLSs/f and T3Bs/f, respectively, and in figures 23b and 23d,
Reynolds stresses. We use the notation 〈ηη〉 and 〈ξξ〉 to denote Reynolds
stress components tangent and perpendicular to the surface. Note that at
the tip of the superellipse, s = 0, 〈ηη〉 and 〈ξξ〉 correspond to 〈vv〉 and 〈uu〉,
respectively, which denote Reynolds stress components in rectilinear coordi-
nates. Away from the leading edge axis, 〈ηη〉 and 〈ξξ〉 approach 〈uu〉 and
〈vv〉. The figures suggest that the differences in the evolution of the stream-
wise Reynolds stress 〈uu〉 downstream of the leading edge can be explained
by different levels of the tangential Reynolds stress 〈ηη〉 at the leading edge
(where it corresponds to 〈vv〉). It is zero for cases SLSs and T3Bs because
of the symmetry condition.

A.3. TKE budget

In this section we discuss the budget of the TKE across the transitional
region. Figure 24 shows the development of the TKE budget corresponding
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Figure 20: Evolution of the FST integral length scale L33 inside the boundary
layer; T3B; SLS; ⋄ Power law: y = C (x − x0)

α with α = 0.5
x0 = −370, C = 0.7; +Power law: y = C (x − x0)

α with α = 0.5 x0 = −75,
C = 0.26;

Figure 21: Instantaneous stagnation line and tangential velocity contours at
n=0.03; (a) case SLSf; (b) case T3Bf; n denotes the wall-normal coordinate.
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Figure 22: Evolution of the stagnation point in the middle of the domain.
(a) case SLSf, z = 11.5; (b) case T3Bf, z = 33;
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Figure 23: Wall-normal and streamwise Reynolds stress along the leading
edge surface at n ≃ 0.03 where n is the wall-normal coordinate. (a) Tangen-
tial velocity; SLSs ; SLSf (b) tangential Reynolds stress, 〈ηη〉.

wall-normal Reynolds stress, 〈ξξ〉. For each Reynolds stress component,
the upper curve corresponds to case SLSf, and the lower curve, to case SLSs.
The left axis corresponds to 〈ηη〉, and the right axis, to 〈ξξ〉. (c) same as (a)
but for the T3B cases; (d) same as (b) but for the T3B cases.
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Figure 24: Budgets of the TKE at various locations; T3Bs case. All terms
are normalized by U∞ and R. (a) x = 25, Rex = 12, 500, δ99 = 1.12; (b)
x = 100, Rex = 50, 000, δ99 = 2.41; (c) x = 193, Rex = 91, 500, δ99 = 4.36;
(d) x = 260, Rex = 123, 250, δ99 = 6.13. Symbols: channel-flow DNS by
Moser et al. 1999; lines: present simulation. +, : production; ,

Dissipation; △ , Turbulent transport; × , Pressure diffusion;
⋄ , Viscous diffusion.

4



to the T3Bs case. The terms are given by
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The quantities on the right side of (1), which is derived from the Reynolds-
Averaged Navier-Stokes (RANS) equations, are referred to, respectively, as
advection, production, dissipation, pressure work, viscous diffusion, and tur-
bulent transport.

The sum of the computed terms in the budgets was very small throughout
the computational domain, indicating good convergence. For example, in
the fully-turbulent region, the maximum imbalance was 3% of the maximum
production.

Our focus is on the T3B case but the differences from the other cases
will be noted. The data are normalized by the free-stream velocity and the
LE radius (both constant outer-coordinate scales), and thus are not in wall
units. This choice was made in order to separate the effects of the mean
flow evolution (which enters through the change in uτ ) from the evolution
of the budget terms, which involve higher-order moments. The figure illus-
trates that the boundary layer TKE production maximum is initially near
the middle of the laminar boundary layer. As the perturbed-laminar bound-
ary grows, the peak in the production slowly moves farther away from the
wall, consistent with the boundary-layer growth, up to the onset of transi-
tion at x = 100; beyond this location, it moves rapidly toward the wall. In
the transitional and turbulent regions, the location of the production peak
approximately coincides with the location of the maximum urms. This maxi-
mum is due primarily to low-frequency modes of the streamwise velocity, as
shown in the next section. At x = 25, (Rex ≃ 12, 500), the only active terms
in the budget are the production, viscous diffusion, and viscous dissipation.
The viscous terms balance each other at the wall, and together balance the
production in the middle of the boundary layer. At x = 100, (Rex ≃ 50, 000)
(plot b), the magnitudes of the budget terms are, on the average, 40% of
their turbulent values at x = 260, (Rex = 123, 250). The viscous diffusion
and dissipation have increased in magnitude near the wall, and the growing
production is now balanced, in addition, by the turbulent transport and the
advection (not shown for clarity of the plot). By x = 193, (Rex = 91, 500),
the budget is nearly that of a turbulent near-wall flow. At this and at the
final location, x = 260, (Rex = 123, 250), we have also plotted the turbulent
channel data of Moser et al. (1999) obtained at Reτ = 395 for comparison
(the use of channel rather than boundary layer data for comparison is jus-
tified because the near-wall behavior of the two flows is very similar). To
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convert the channel data to outer coordinates, we used the local uτ and ν
from our simulation. The comparison in figure 24d shows that a turbulent
equilibrium is fully established. An examination of the TKE budgets for
cases SLSs & SLSf revealed a qualitatively similar development, except that
the levels of production and the corresponding balancing terms were higher in
the transitional region, in correlation with higher boundary-layer urms levels,
as discussed in the next section. The perturbed laminar stage was character-
ized by a linear-like growth of the production peak, located approximately in
the middle of the boundary layer. Across the breakdown stage, the produc-
tion peak moved rapidly toward the wall, accompanied by a sharp increase
in the magnitudes of the dissipation, diffusion and turbulent transport. In
the fully-turbulent region, the budgets collapsed with the data of Moser et

al. (1999).
Thus, despite a potentially different transition mechanism, the statistics

behave similarly in cases SLS and T3B, and the changes involved are rather
subtle. This observation underlines the value of detailed flow visualizations
to supplement statistical quantities.

A.4. Transition in the SLS cases

In this section we provide additional details on the transition in the SLS
case. Two-dimensional slices parallel to the wall, shown in figure 25, track
the development of the streak that was shown in figure 18a. The first column,
a – e, shows contours of the streamwise velocity fluctuation in an xz-plane,
and the second column, b – f, contours of the wall-normal velocity fluctuation.
In this, as in all similar figures, the plane is located in the lower regions of
the transitional boundary layer. Time is normalized with T = R/U∞.

The breakdown as an asymmetric streak wiggle at (x, y) = (104, 14) , t =
136 (figure 25a–b). No definite symmetry or asymmetry, however, could
be detected in the spot itself. This is most likely due to a higher level
of background turbulence than present in the simulations of Brandt et al.

(2004). The natural spreading rate of this spot is difficult to estimate because
of the limiting size of the simulation box. At x = 142, t = 211 (figure 25e–f),
fifty units downstream of the initial instability, the spot occupies two thirds
of the spanwise domain.

In figure 26 we track the development of the streak shown in figure 18b
into a turbulent spot. The instability originates as a wiggle in a low-speed
streak at position (x, y) = (77, 13) , t = 238 (figure 26a–b), and displays
prominent lateral (i.e. spanwise) symmetry in the u- and v-velocity com-
ponents up to x ≃ 127, t = 313 (figure 26e–f). The w-component is anti-
symmetric (not shown). Its development farther downstream is disorderly,
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Figure 25: Contours of the velocity fluctuations for a turbulent spot of the
first type (see figures 18a,b). Case SLSs; y = 0.4; a), c), e) streamwise
velocity fluctuation; b), d), f) wall-normal velocity fluctuation; a), b) t = 136;
c), d) t = 186; e), f) t = 211.

and by x = 180, t = 391 (figure 26g,h), it has merged with the turbulent
front. In its overall appearance, this spot is similar to the ones shown by
Jacobs & Durbin (2001) and Brandt et al. (2004) in figures 9 and 11 of these
references, respectively.

A qualitative comparison of SLSs/f flow fields is made in figure 28, which
shows instantaneous contours of the streamwise velocity fluctuation in the
xz-plane inside the boundary layer. Higher-amplitude near-wall disturbance
environment near the leading edge is seen for case SLSf, and the correspond-
ing boundary layer appears more disturbed throughout the domain, consis-
tent with the more rapid transition. Aside from the differences in the overall
perturbation levels, the two flow fields are very similar. This suggests that
the underlying transition mechanism is the same in both instances and ap-
pears to be accompanied by Klebanoff modes.

A.5. Turbulent spots in the T3Bf case

Figures 29a,b correspond to a young turbulent spot from the T3Bf simula-
tion, and should be compared with figures 16e,f, respectively, which show a
turbulent spot in a similar stage of development for case T3Bs.
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Figure 26: Contours of the velocity fluctuations for a turbulent spot of the
second type. Case SLSs; y = 0.4; a), c), e), g) streamwise velocity fluctuation;
b), d), f), h) wall-normal velocity fluctuation; a), b) t = 238; c), d) t = 296;
e), f) t = 313; g), h) t = 391.
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Figure 27: Normalized profiles of urms across the boundary layer; δ∗ is the
local displacement thickness; a) Case SLSs; b) Case SLSf; • x = 4, △ x = 8,
◦ x = 12, ∗ x = 15, x = 54, x = 73; self-similar profiles
from wind tunnel measurements of Matsubara & Alfredsson (2001);
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Figure 28: Contours of the streamwise velocity fluctuation inside the bound-
ary layer; (a) Case SLSs; (b) Case SLSf; y = 0.04.

Figure 29: Contours of velocity fluctuations for a turbulent spot of the first
type. Case T3Bf; y = 0.68; a) streamwise velocity fluctuation; b) wall-normal
velocity fluctuation.
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A.6. Instability of horseshoe vortices
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Figure 30: Contours of velocity fluctuations illustrating the breakdown of a horseshoe vortex in the T3Bs simulation;
y=0.68. Top: streamwise velocity fluctuation, u′; middle: wall-normal velocity fluctuation, v′; bottom: spanwise
velocity fluctuation, w′; a) t=295, b) t=309, c) t=315, d) t=322.
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Figure 30 shows a magnified view of a horseshoe vortex undergoing break-
down to turbulence. This vortex is visible in figure 17f, at (x, z) = (80, 28).
Oscillations in the wall-normal fluctuation velocity, v′, are the most pro-
nounced feature of the breakdown.
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