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1. Navier-Stokes Equations with Lorentz force term

In the assumption of low magnetic Reynolds number, the governing equations reduce
to the Navier-Stokes system for the velocity v and pressure p with the additional Lorentz
force:

∂v

∂t
+ (v · ∇)v = −

1

ρ
∇p + ν∇2v +

1

ρ
(j ×B0) , (1.1)

∇ · v = 0, (1.2)

where ν and ρ stand for kinematic viscosity and density of the fluid. The induced electric
current density is given by Ohm’s law

j = σ (−∇φ + v ×B0) . (1.3)

Neglecting displacement currents and assuming that the fluid is electrically neutral we
require that ∇ · j = 0. This leads to an equation for the electric potential φ:

∇2φ = ∇ · (v ×B0) . (1.4)

The problem is solved in a rectangular domain with periodicity conditions used in the
x- and y-directions following the assumption of flow homogeneity. The no-slip conditions
are imposed at the walls:

vx = vy = vz = 0 at z = ±d/2. (1.5)

The electric potential φ is also periodic in the x- and y-directions. Since no current flows
through the electrically insulating walls and the velocity v is zero at these walls, (1.3)
leads to

∂φ

∂z
= 0 at z = ±d/2. (1.6)

In the case of spanwise magnetic field, the basic velocity has the classical parabolic
profile

UH(z) = −
d2

8νρ

∂P0

∂x

(

1−
4z2

d2

)

(1.7)

with the basic pressure field PH(x) = (∂P0/∂x)x. Finally the basic potential field reads

φH(z) = −
d2B0

8νρ

∂P0

∂x

(

z −
4z3

3d2

)

. (1.8)

For the non-dimensionalization, the centerline velocity of the Poiseuille flow is used as
the velocity scale U :

U ≡ −
d2

8νρ

∂P0

∂x
. (1.9)
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The characteristic length is taken to be the channel half width L ≡ d/2. The imposed
magnetic field and the electric potential scale with B0 and LUB0, respectively. Finally
the units of time and pressure are taken as L/U and ρU2. The non-dimensional basic
velocity profile is

UH(z) = 1− z2, (1.10)

and the non-dimensional governing equations and boundary conditions become

∂v

∂t
+ (v · ∇)v = −∇p +

1

Re
∇2v + N (−∇φ× e + (v × e)× e) , (1.11)

∇ · v = 0, (1.12)

∇2φ = ∇ · (v × e) , (1.13)

vx = vy = vz =
∂φ

∂z
= 0 at z = ±1. (1.14)

Two non-dimensional independent parameters can be defined, namely the Reynolds num-
ber

Re =
UL

ν
= −

d3

16ν2ρ

∂P0

∂x
, (1.15)

and either the Hartmann number

Ha =
d

2δ
, where δ =

1

B0

√

ρν

σ
(1.16)

or the magnetic interaction parameter

N ≡
Ha2

Re
. (1.17)

2. Governing equations for the case of arbitrary orientation of the

magnetic field

Let us consider a channel flow subjected to a constant magnetic field B0 = B0e

of arbitrary orientation defined by the unit vector e = (ex, ey, ez). The quasi-static
approximation is applied following the assumption of low magnetic Reynolds numbers.
Equations (1.1) to (1.6) are the governing equations of the flow.

First, let us consider the basic flow, whose velocity field has only a streamwise compo-
nent UH(z). One can easily find the profile of a generalized Hartmann flow

UH(z) = −
1

σB2
0e2

z

∂P0

∂x

(

1−
cosh (2ezHa z/d)

cosh(ezHa)

)

(2.1)

with the Hartmann number defined as in (1.16). When the magnetic field is orthogonal to
the walls (e = (0, 0, 1)), one recovers the standard Hartmann flow (Hartmann & Lazarus
1937; Hartmann 1937). In that case, the Hartmann number quantifies the ratio between
the half channel width d/2 and the Hartmann layer thickness δ at which viscous and
electromagnetic forces are of the same order. When magnetic field is parallel to the walls
(ez = 0), one recovers the parabolic Poiseuille profile as was done in this paper for the
case of purely spanwise field e = (0, 1, 0).

The basic pressure field satisfies

PH(y, z) = −
ex

ez

∂P0

∂x

(

z −
d sinh (2ezHa z/d)

2ezHa cosh(ezHa)

)

. (2.2)
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The basic electric potential depends on z and linearly on y as

φH(y, z) = cy −
ey

σB0e2
z

∂P0

∂x

(

z −
d sinh (2ezHa z/d)

2ezHa cosh(ezHa)

)

(2.3)

where c is a constant ensuring that the net induced current in the spanwise direction is
zero. Here we implicitly assume the presence of electrically insulating walls at y → ±∞.

Non-dimensionalization is performed using the same characteristic scales as in sec-
tion 1. The laminar profile now reads

UH(z) =
2

Ha2e2
z

(

1−
cosh (ezHa z)

cosh(ezHa)

)

. (2.4)

The equations for the velocity v, electric potential φ and pressure p are identical to
equations (1.10)–(1.14) with the proviso that e = (ex, ey, ez). The two integral conditions
(fixed streamwise volume flux Q per span width and zero total electric current in the
y-direction) have to be specified for the nonlinear equations.

For the linear problem we split the fields into the basic flow contribution, which is now
the generalized Hartmann flow (2.4), and three-dimensional perturbations in the form of
a monochromatic Fourier mode

(vp, φp, pp) = (û(z, t), v̂(z, t), ŵ(z, t), φ̂(z, t), p̂(z, t)) exp(iαx + iβy), (2.5)

where α and β are the wavenumbers in the streamwise (x) and spanwise (y) directions.
The evolution of infinitesimal perturbations is governed by the generalized linear sys-

tem
[

∂

∂t
+ iαUH(z)

]

û +
∂UH

∂z
ŵ + iαp̂−

1

Re

[

∂2

∂z2
− α2 − β2

]

û +

+N(1− e2
x)û−Nexeyv̂ −Nexezŵ + iβNezφ̂−Ney

∂φ̂

∂z
= 0, (2.6)

[

∂

∂t
+ iαUH(z)

]

v̂ + iβp̂−
1

Re

[

∂2

∂z2
− α2 − β2

]

v̂ +

+N(1− e2
y)v̂ −Neyexû−Neyezŵ − iαNezφ̂ + Nex

∂φ̂

∂z
= 0, (2.7)

[

∂

∂t
+ iαUH(z)

]

ŵ +
∂p̂

∂z
−

1

Re

[

∂2

∂z2
− α2 − β2

]

ŵ +

+N(1− e2
z)ŵ −Nezeyv̂ −Nezexû− iβNexφ̂ + iαNeyφ̂ = 0, (2.8)

iαû + iβv̂ +
∂ŵ

∂z
= 0, (2.9)

[

∂2

∂z2
− α2 − β2

]

φ̂− (iβex − iαey)ŵ + ex

∂v̂

∂z
− ey

∂û

∂z
+ iβezû− iαez v̂ = 0, (2.10)

with the boundary conditions:

û = v̂ = ŵ = 0,
∂φ̂

∂z
= 0 at z = ±1. (2.11)

The adjoint equations are
[

∂

∂τ
− iαUH(z)

]

ũ−
1

Re

[

∂2

∂z2
− α2 − β2

]

ũ +

+N(1− e2
x)ũ −Nexezw̃ −Neyexṽ − iαp̃− ey

∂φ̃

∂z
− iβezφ̃ = 0, (2.12)
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[

∂

∂τ
− iαUH(z)

]

ṽ −
1

Re

[

∂2

∂z2
− α2 − β2

]

ṽ − iβp̃ +

+N(1− e2
y)ṽ −Nexeyũ−Nezeyw̃ + iαezφ̃− ex

∂φ̃

∂z
= 0, (2.13)

[

∂

∂τ
− iαUH(z)

]

w̃ −
1

Re

[

∂2

∂z2
− α2 − β2

]

w̃ −
∂p̃

∂z
+

∂UH

∂z
ũ +

+N(1− e2
z)w̃ −Neyezṽ −Nezexũ + (iβex − iαey)φ̃ = 0, (2.14)

iαũ + iβṽ +
∂w̃

∂z
= 0, (2.15)

[

∂2

∂z2
− α2 − β2

]

φ̃ + Ney

∂ũ

∂z
− iβNezũ +

+(iβNex − iαNey)w̃ −Nex

∂ṽ

∂z
+ iαez ṽ = 0, (2.16)

with the boundary conditions

ũ = ṽ = w̃ = 0,
∂φ̃

∂z
= 0 at z = ±1 (2.17)

and τ ≡ −t.

3. Optimal perturbation method

Let us denote by qj(z, t), j = 1 . . . 5 the vector fields

(û(z, t), v̂(z, t), ŵ(z, t), p̂(z, t), φ̂(z, t)).

These quantities evolve according to equations (2.6)–(2.10) which will be formally written
here as Fj(q) = 0, j = 1 . . . 5.

To get the maximum amplification at a given time T , we maximize the perturbation
kinetic energy E(q(T ))

E(q(T )) ≡

3
∑

j=1

∫

qj(z, T ) ∗ q+
j (z, T )dz (3.1)

at time T with respect to the set of all possible initial perturbations q(0) such that
E(q(0)) = 1. Recall that the superscript + denotes complex conjugation and spatial
integration is performed over the entire channel width.

To solve this problem, the variation δE(q(T )) with respect to a variation δq(0) of
the initial perturbation, should be evaluated. Unfortunately, this computation cannot be
performed in a straightforward manner. Indeed, the energy E(q(T )) is explicitly known in
terms of q(T ) but only implicitely in terms of q(0) via several constraints: normalization
of q(0) and more importantly, the integration over time interval [0, T ] of the equations
Fj(q(t)) = 0, which relate q(0) to q(T ).

This optimization with constraints necessitates the introduction of Lagrangian multi-
pliers. In the present case, these multipliers are the so-called adjoint fields

q̃(t) ≡ (ũ(z, t), ṽ(z, t), w̃(z, t), p̃(z, t), φ̃(z, t)) (3.2)

and a normalization scalar γ.
A Lagrangian function L is first defined that depends on direct q(t) and adjoint q̃(t)
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variables for t ∈ [0, T ], and γ:

L(q, q̃, γ, T ) = E(q(T ))− γ(E(q(0))− 1) (3.3)

−
5

∑

j=1

∫ T

0

dt (〈Fj(q(t)), q̃j(t)〉+ 〈q̃j(t), Fj(q(t))〉) .

Here 〈·, ·〉 stands for the scalar product

〈a1, a2〉 ≡

∫

â1(z) ∗ â+
2 (z)dz. (3.4)

Note that, when q(t) satisfies the constraints (direct problem plus normalization at t = 0),
all terms but the first one on the r.h.s. of equation (3.3) are zero and, by consequence,
L = E and δL = δE. In addition, at this stage, the adjoint variables and the quantity γ
are left unspecified.

Let us now write down formally the variation δL as

δL =

3
∑

j=1

(
∫

q+
j (z, T )δqj(z, T )dz − γ

∫

q+
j (z, 0)δqj(z, 0)dz

)

(3.5)

−

5
∑

j=1

∫ T

0

dt[〈δFj(q(t)), q̃j(t)〉+ 〈Fj(q(t)), δq̃j(t)〉] + c.c.,

where c.c. means comlex conjugate. The expression 〈Fj(q(t)), δq̃j(t)〉 in equation (3.5) is
zero if the governing equations Fj(q) = 0 are satisfied on the time interval [0, T ]. The
main idea is to rewrite quantity 〈δFj(q(t)), q̃j(t)〉 in terms of δqk(t). This can be done by
using integrations by parts in space or time. After some tedious algebra, the following
identity

5
∑

j=1

∫ T

0

dt〈δFj(q(t)), q̃j(t)〉 =

5
∑

j=1

[

∫ T

0

dt〈F̃j(q̃(t), q), δq(t)〉] (3.6)

+
3

∑

j=1

[

∫

q̃+
j (z, T )δqj(z, T )dz −

∫

q̃+
j (z, 0)δqj(z, 0)dz] + B(q, q̃)

can be established. F̃j is an expression containing spatial or time derivatives of q̃ and
depends on q. Note that the second r.h.s term originates from integration by parts of time
derivatives in equations (2.6)–(2.10) and terms B(q, q̃) are generated from the boundary
terms resulting from integration by parts of spatial derivatives. They, thus, involve only
quantities q and q̃ evaluated at the boundaries z = ±1.

At this stage, it is relevant to use the freedom of the Lagrangian multipliers to enforce
several constraints: (i) equations F̃j(q̃(t), q) = 0, j = 1 . . . 5 are to be satisfied, which
defines the evolution equations (2.12 – 2.16) for q̃ similar to Fj(q(t)) for q, and (ii)
B(q, q̃) = 0 are to be satisfied, which can be ensured by imposing boundary conditions
(2.17) on q̃, again the counterpart of boundary conditions (2.11) on q. This defines a new
system which should be simulated as the direct problem. When this system is satisfied,
the variation δL reads

δL =
3

∑

j=1

(
∫

(q+
j (z, T )− q̃+

j (z, T ))δqj(z, T )dz (3.7)
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−

∫

(γq+
j (z, 0)− q̃+

j (z, 0))δqj(z, 0)dz

)

+ c.c.

It is easily seen from equations (2.12 – 2.16) that the adjoint system must be integrated
backwards in time. Let us thus choose as initial condition for the adjoint variables at
time t = T

q̃j(z, T ) = qj(z, T ), j = 1 . . . 3 (3.8)

and at time t = 0

γqj(z, 0) = q̃j(z, 0), j = 1 . . . 3 (3.9)

so that the normalization is satisfied. When all these constraints are satisfied, δL =
0, which means that an optimal perturbation is attained. One may use an iteration
procedure which is schematically illustrated by a diagram

q(z, 0)
Fj(q)=0
−→ q(z, T )

↑ ↓

q̃(z, 0)
F̃j(q̃)=0
←− q̃(z, T )

(3.10)

When the iterative process has converged, an initial optimal perturbation for time T is
found.
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