Appendix to "Fire whirls due to surrounding flame sources and the influence of the rotation speed on the flame height"

By Rui Zhou and Zi-Niu Wu

Journal of Fluid Mechanics, vol. 583 (2007), pp. 313–345

This material has not been copy-edited or typeset by Cambridge University Press: its format is entirely the responsibility of the author

On the validity of the numerical simulation

The codes of the FDS (fire dynamics simulator), developed by NIST, USA, have been released publicly and checked by various users (Ryder *et al.* (2006, 2004); Christensen & Icove (2004); Chow & Yin (2004); Chow & Zou (2005); Yi *et al.* (2005), etc.) to be reliable.

In order to see that the simulations are used realistically here, we reproduce the computations by Farouk *et al.* (2000) and the experimental observations by Satoh & Yang (1996).

Farouk *et al.* (2000) computed a fire source centrally located at the base of a square channel with corner gaps and vertical clearance. We have computed the same model. In figure 1, we display the time-averaged entrainment flux through the lateral gap, compared with figure 4 of Farouk *et al.* (2000). In figure 2, we display the velocity fields for a partially enclosed plume with the same gap ($d_c = 0.1$ m) width but different vertical clearances ($Z_c = 0.25$ and $Z_c = 0.125$ m), compared with figure 7 and figure 9 of Farouk *et al.* (2000), respectively. In figure 3, we display the time-averaged axial velocity profiles along the vertical direction with different d_c and Z_c , compared with figure 2, figure 5, figure 6 and figure 10 of Farouk *et al.* (2000). Our numerical results are in good agreement with those of Farouk *et al.* (2000), showing that we have used FDS correctly.

Satoh & Yang (1996) conducted experimental studies of a fire itself located in a square enclosure with symmetrical open gaps and measured the temperatures at two points: one near the bottom of the floor and the second well above the floor. For the first point, the measured temperatures oscillate about a mean value close to 700°C. For the second point, the mean of the temperatures was approximately 900°C. We have computed flow for the same configuration using FDS. In figure 4 we display the temperature history for the above two points obtained by our numerical simulation. These results are close to the experimental results of Satoh & Yang (1996), displayed in their figure 4.

REFERENCES

- CHOW, W. K. & YIN, R. 2004 A new model on simulating smoke transport with computational fluid dynamics. *Building Environ.* **39**, 611–620.
- CHOW, W. K. & ZOU, G. W. 2005 Correlation equations on fire-induced air flow rates through doorway derived by large eddy simulation. *Building Environ.* **40**, 897–906.
- CHRISTENSEN, A. M. & ICOVE, D. J. 2004 The application of nist's fire dynamics simulator to the investigation of carbon monoxide exposure in the deaths of three pittsburgh fire fighters. J. Forensic Sci. 49, 104–107.
- FAROUK, B., MCGRATTAN, K. B. & REHM, R. G. 2000 Large eddy simulation of naturally induced fire whirls in a vertical square channel with corner gaps. ASME Heat Transfer Div Publ HTD 366, 73–80.
- RYDER, N. L., SCHEMEL, C. F. & JANKIEWICZ, S. P. 2006 Near and far field contamination modeling in a large scale enclosure: Fire dynamics simulator comparisons with measured observations. J. Hazardous Mat. 130, 182–186.

FIGURE 1. Time-averaged entrainment flux through the lateral gap for a partial enclosed plume $(d_c = 0.1m, Z_c = 0.0)$.

FIGURE 2. Time-averaged velocity field at z = 0.6m for a partially enclosed plume. (a) $d_c = 0.1m$, $Z_c = 0.25m$. (b) $d_c = 0.1m$, $Z_c = 0.125m$.

- RYDER, N. L., SUTULA, J. A., C. F., SCHEMEL, HAMER, A. J. & VAN BRUNT, V. 2004 Consequence modeling using the fire dynamics simulator. J. Hazardous Mat. 115, 149– 154.
- SATOH, K. & YANG, K. T. 1996 Experimental observations of swirling fires. In Proc. 1996 ASME Intl Mechanical Engineering Congress and Exposition. Part 1 (of 4), pp. 393–400. ASME.
- YI, L., CHOW, W. K., LI, Y.Z. & HUO, R. 2005 A simple two-layer zone model on mechanical exhaust in an atrium. *Building Environ.* **40**, 869–880.

FIGURE 3. Time-averaged axial velocity profiles along the vertical direction (x = 0.5m, y = 0.5m) for partial enclosed plums with different d_c and Z_c .

FIGURE 4. Flame temperature after ignition. (a) First point (close to the floor). (b) Second point (well above the floor).