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Operational notes on the inversion integrals in (29)

Since in the present setting the integrand is explicit in s, it is convenient to consider the

alternate, equivalent view of the s-integral as the inner one. The resulting k-integrand is a sum of

s-plane residues whose values and character depend on k. This integrand has a number of branch

points/cuts, including along the real k-axis, which complicate the process of carrying out the k-

integral as a contour integration. In addition, the inner square root in the s-solution has branch

points symmetrically placed in each of the four k-plane quadrants, and these branch points are

the sources of branch cuts that would render integral closure in the upper half k-plane as branch

cut integrations. Instead we opt to handle part of the k-integration directly – for |kr|>krc a cutoff

value for s-plane residue i, we calculate the long time limit of this part of the integral as zero

using the Riemann-Lebesgue lemma (Rudin 1987). Owing to the symmetries of the integrand

discussed below, we consider only the portion of the integral krc≥kr≥0 and carry it out as a

contour integration with a contour in the fourth quadrant that avoids the branch cut just described

in that quadrant, i.e., closer to the origin than the branch point, when possible. This additional

contour Γ begins asymptotically close to the origin (also a branch point) and ends asymptotically

close to krc. If the system contains a source point at s=±iω0 and if this contour encloses a point k:

sr(k)=0, then this point would allow for a change in character of the s-plane residue by virtue of

the merging of a pole of |A| with a source pole. As such, if in addition ki<0, it generates a pole in

the k-plane that gives rise to a convective instability.

If this contour Γ, which will in general be different for different s-plane residues i
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comprising additive terms in the k-plane integrand, can be chosen to pass exclusively through a

region having sr(k)≤0, then this term does not generate an absolute instability. Figure A.1b,

where the portions of both branches [2] and [3] shown derive from the same s-plane residue in

the k-integrand, illustrates such a case. Clearly,  any curve passing between the curves labeled 0

in the figure will satisfy this criterion. In figure A.1a, the portions of branches [1] and [3] shown

derive from different s-plane residues in the k-integrand, and thus need to be handled

independently in this matter. Branch [4], not shown, derives from the same s-plane residue in the

k-integrand as [1] and lies below and to the right and below the figure. A contour just below the

[1] curve labeled 0 and above [4] and above the branch cut (outside of this figure and shown in

later figures), is then a valid Γ for this s-plane residue, as is the contour from A.1b for the s-plane

residue discussed there. If, on the other hand, there is a point k*:k*i<0 and sr(k*)>0 at which

∂|A|/∂k=0 (equivalent to ds/dk|k* when ∂|A|/∂s≠0), this represents the merger of two branches,

e.g., roots [2] and [3] in figure A.2, of the same s-plane residue in the k-integrand. Here root [2]

has sr>0 for some k real close to zero and root [3] has sr(k)>0 only for ki<0. The contours for

sr<sr(k*), and in particular for sr=0, have a different topology than those for sr>sr(k*) (see figure

A.2), so that the region where sr<0 becomes disconnected. As a result the contour Γ must pass

through a region in the k plane where sr(k)>0. Let s*:=s(k*); as noted s*r>0. For example,  one

can integrate across this positive region along a contour (part of Γ), say, of si(k)=s*i that passes

through s* from one sr=0 branch to the other. If one changes variables from k to s one can see

that the resulting integral is equivalent to a branch cut integration in the variable s at the branch

point s*, with the branch cut to the left. This integration leads to a contribution that grows in time

proportional to es j (k*) t / t , i.e., it leads to an absolute instability. Figures A.1-A.4, discussed

below, search for such points. Thus the mechanics of searching for the possibility of absolute

instability by examining the parametrized k-plane plots of sr(k)=constant for decreasing non-

negative values of this constant turns out to be the same, irrespective of whether one considers

the k-integral or the s-integral as the inner one.

Merging Patterns in the k Plane (The origin of the absolute instability)

In each of the figures A.1-A.4 below, we plot curves that represent the solutions of the
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dispersion equation for values of k: s(k)=sr-iω; ω>0 parametrizes the curve (see below), i.e., the

images k(s) in the k-plane of vertical lines in the s-plane, and the arrows on each curve show the

direction of increasing ω. The curves/roots labeled [1], [2] lie in the upper, and those labeled [3],

[4] lie in the lower half k plane at large sr. In the region closer to the origin than the branch cut

shown in figures A.3 and A.4, roots [1] and [4] come from one s-plane residue in the k-integrand

and roots [2] and [3] from another. On reducing sr [1], [2] move down and [3], [4] move up and

can result in intersections. Upon further reducing sr, the topology of the continuous branches of

the image of the s-plane vertical lines changes and only a part of each continuous branch at lower

sr derive from branches [1] or [2] and part from [3] or [4]. We follow the pattern of mergings and

topology changes for V=2.00, 1.75, 1.50, 1.30, 1.00 and 0.50 in table 1 and associated figures.

To keep track of the section of each branch which continues to the upper half k plane for large sr,

we denote the frequencies ω (the parameter along the branch curve) for which the root derives

from the upper half k plane by ωu and denote these intervals of ωu in table1 following the root

designation. For example, since the entire root [1] is in the upper half k-plane for large sr, we

write 1, ωu>0. Similarly, the entire root [3] moves to the lower half for large sr; hence 3, ωu =φ,

where φ is the null set. The condition for absolute instability implies that ω at the intersection,

ωa, should belong to ωu for precisely one of the intersecting roots. Also, we label each branch of

sr=constant that results when the constant is just below the sr value at merging by a combination

of the labels of the two branches that merged to form the given branch, with the branch donating

the lower ω values first. Many examples follow.

By examining the matrix in equation (26), one can show that the dispersion equation

φ(s,k;V)=|A| satisfies the symmetries φ(s,k;V)= φ (s*,k*;-V)* and φ (s,k;V)=-[ φ (s*,-k*;V)]*= [

φ (-s*,k*;V)]*, where * denotes complex conjugate. Thus if φ (sr+iω,kr+iki;V)=0, then φ (sr-iω,-

kr+iki;V)=0, or for a given sr the solution for si=-ω is a mirror image of si=ω about the imaginary

k axis. This symmetry permits us to only inspect ω>0, i.e., si<0.  Also, if sr=0, s*=-s. Hence if

φ(iω,kr+iki;V)=0, then φ (iω,kr-iki;V)=0 or, for purely imaginary s, the solutions in the upper and

lower half k planes are mirror images.

Figures A.1a,b show three roots of the dispersion equation in the k plane for V=2.0 with
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the value of sr labeling the curves and with ω parametrizing them, where s=sr-iω. In these and

subsequent figures A.1-A.4, a=2, γ=2 and β=1. At V=2 there is no merging of roots for sr≥0. The

intersections in the k plane of modes [1] and [3] are not mergings because, as noted, the portions

of these roots shown derive from different sj residues (and so they have different si values).

Modes [1] and [3] are shown in figure A.1a and modes [2] and [3] in figure A.1b. At sr=0, modes

[1] and [2] join the real k axis, to the right of critical values that, as noted earlier, are close to, but

not equal to 1 and 1/a, respectively. They only equal to 1 and 1/a at V=0.

In this paragraph, we consider the presence of a source Fi(s). The s-plane integration in

equation 29 would have one or more poles on the imaginary axis, whose residues could

contribute convective instability if ki<0 there. Modes [1] and [2] lie totally in the upper half k-

plane for sufficiently large sr and thus inside a contour Γ for the k-plane integration that runs

along the real k-axis. Upon decreasing sr modes [1] and [2] move down and mode [3] moves up.

At sr=0, where the s-plane pole or poles deriving from the forcing function reside, parts of these

modes lie in the lower half k-plane, i.e., ki(sr=0)<0 for these modes, and therefore the

corresponding k-integration contour must deform into the lower half plane around them; thus

these modes would contribute residues that grow axially in space (Bers 1983;  Briggs 1964; 

Huerre &Monkewitz 1990). Mode [3] is an evanescent mode, i.e., it does not contribute to

instability because it lies outside the contour of integration for the Fourier inversion. There is

another evanescent mode that will contribute to absolute instability at lower velocities. We call

this mode [4] and will show it in later figures. The spatial growth rate -ki of each convectively

unstable mode would change with disturbance frequency ω, with a maximum ki,max for each

mode i=1,2. For all frequecies the spatial growth rate of mode [1] is the higher.

On reducing the velocity to 1.75 (see figure A.2 and table 1), root [2] merges with

evanescent root [3] at the positive sr listed in the table. On further reducing sr, the curves split to

form [23] and [32], which are plotted in figure A.2 for sr=0. Clearly, for any k in the region

between [23] and [32] there is at least one solution s(k) for which sr>0. Thus, we choose Γ (not

shown) such that between curves [23] and [32] it is the mapping of si=si,m=-0.81. Since sr is

positive along at least part of the kj curve, the est in the residue of (29) guarantees that this

contributes exponential growth in time, i.e., an absolute instability. Root [1] appears in the figure
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to illustrate that it has not merged with any evanescent roots.

On further reducing the velocity, more modes becomes absolutely unstable, i.e., either the

curve Γ has to pass through two or more regions where sr(k)>0 along it or one must construct

different Γ curves for each of the two convectively unstable modes and they both have to pass

through regions where sr>0 along Γ.

For V=1.50 (figure not shown; see table 1), roots [2] and [3] again merge. It represents

absolute instability, i.e., ωa belongs to ωu for root [2] only. On further reducing sr, the new

sr=constant curves [23] and [32] result. The part of [32] for ωu>0.66 was in the upper half k and

the rest was in the lower half k-plane for large sr. However, unlike in figure A.2, here a second

intersection takes place for sr>0, between [23] and [1] at the value noted in table 1. This also

causes absolute instability because ωa=0.69 belongs to ωu for mode [1] only. (If ωa at this second

intersection were less than that for the first intersection, ωa would belong to ωu for both roots and

hence the merger would not cause absolute instability.) This merger takes place just beneath the

branch cut (see below) where that part of root [1] derives from the same s-plane residue as the

parts of root [2] above the branch cut. It thus still represents a point at which ∂A/∂k=0. The new

sr=constant curves upon reducing sr are [123] and [231]. There are no further mergers for sr>0.

Figure A.3 and table 1 show the mergings at V=1.30. The first merger takes place

between root [1] and root [3], not between roots [2] and [3] as for V=1.50 and 1.75. (Small

circles in figures A.3 and A.4 indicate the points of merger.) It represents absolute instability

because ωa=0.60 belongs to ωu for mode [1] only. On reducing sr these roots split to form [13]

and [31]. The next merger takes place between [31] and [2] at sr=0.042. Note, as was the case for

V=1.50 in the last paragraph, this merger takes place below the branch cut (indicated by

asterisks) and is thus a point at which ∂A/∂k=0. It also causes absolute instability because

ωa=0.56 belongs to ωu for [2] only. After splitting these roots form [231] and [312]. On reducing

sr further to 0.017, [231] intersects with [4]. For this merger ωa=1.12 belongs to ωu for mode

[231] only. Thus, this merger is also absolutely unstable. After the merger the roots split into

[2314] and [4231] and no further mergers occur for positive sr.

At V=1 (figure not shown; see table 1) the merging pattern is again different. There are
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three mergings and each one is again absolutely unstable. The first one is between [1] and root

[3] at sr=0.12. It represents absolute instability because ωa=0.46 belongs to ωu only for mode [1].

On reducing sr these roots split to form [13] and [31]. This merger is similar to the one at V=1.30

but the next one is different. It takes place between [31] and [4] at sr=0.10. It also causes absolute

instability because ωa=0.47 belongs to ωu for only [31]. After splitting these roots form, [431]

and [314]. On reducing sr further, the third merging occurs at sr=0.072 between [314] and [2].

ωa=0.41 belongs to ωu for mode [2] only. Thus, this merger is also absolutely unstable. After the

merger the roots split into [2314] and [3142] (not shown) with no subsequent s>0 mergers.

Figure A.4 and table 1 show the mergings at V=0.50. The first merging is between  [1]

and root [4] at sr=0.24. It represents absolute instability because ωa=0.35 belongs to ωu for mode

[1] only. On reducing sr these roots split to form [14] and [41]. The next merger takes place

between [14] and [3] at sr=0.22. It also causes absolute instability because ωa=0.25 belongs to ωu

for [41] only. After splitting the sr=0 curves become [314] and [143] On reducing sr further to

0.12, a third merging between [314] and [2] occurs. ωa=0.19 belongs to ωu for mode [2] only.

Thus, this merger is also absolutely unstable. After the merger the sr=constant curves become

[3142] and [2314] with no subsequent s>0 mergers.

At V=0.10 (not shown) the first merger is similar to that at V=0.50. There the second

merger is between [14], ωu<ωa,1 and [3,]ωu=φ, where ωa,1=0.35 is the frequency at the first

merger. This second merger is absolutely unstable if the frequency ωa,2 at merger lies in the range

of ωu for [14], i.e., ωa,2<ωa,1. But this is not the case for V=0.10 and hence the second merger

does not cause absolute instability here. It results in [314], φ and [143], ωu<ωa,1. The third merger

between [2], ωu>0 and [314], φ (and not [314], ωa,2<ωu<ωa,1 as before) is still absolutely unstable.

At V=0 the merging pattern is the same as at V=0.10. What is unique, however, is that

the two mergings (the first and the third) which give rise to absolute instability, i.e., which take

place for sr>0, take place on the real k axis. Recall the dispersion equation sn+iknV=g(kn). At V=0

and k real, s=g(kr), which is simply the equation for the temporal roots. As noted in the

Introduction, the temporal roots are purely real when unstable. The merging of roots requires, in

addition, ds/dk= d(g(k))/dk=0 at V=0, which, as stated in the text, is just the condition for the
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maximum temporal growth rate.

Supplementary Material Figure Captions

Figure A.1a and A.1b. Curves in the k plane of constant sr and varying si (=-iω) for roots lying in

the upper (labeled [1] and [2]) and lower (labeled [3]) k plane for large sr. The values of sr on the

individual loci are indicated in the figure, and the arrows indicate increasing ω which

parametrizes the curves. V=2, a=2, β=1 and γ=2. For V=2, no merging occurs for roots

originating in the opposite half-planes for sr greater or equal to zero.

Figure A.2 Curves in the k plane of constant sr and varying sI (=-iω) for roots lying in the upper

(labeled [1] and [2]) and lower (labeled [3]) k plane for large sr. The curves [2] and [3]  have

merged to form [23] and [32] for a positive value of sr which then split to form the branches

shown for sr=0. V=1.75, a=2, β=1 and γ=2.

Figure A.3 Curves in the k plane of constant sr and varying sI (=-iω) for roots lying in the upper

(labeled [1] and [2]) and lower (labeled [3] and [4]) k plane for large sr. Asterisks represent the

branch cut of the integrand and the small circles the points of merger. The curves [1] and [3]

merge to form [13] and [31] for a positive value of sr one of which [31] then further merges with

[2] to form [231] and  [312] again for positive sr. The [231] branch then merges with [4] to form

[2314] and [4231]. V=1.3, a=2, β=1 and γ=2.

Figure A.4 Curves in the k plane of constant sr and varying sI (=-iω) for roots lying in the upper

(labeled [1] and [2]) and lower (labeled [3] and [4]) k plane for large sr. . Asterisks represent the

branch cut of the integrand and the small circles the points of merger. The curves [1] and [4]

merge to form [14] and [41] for a positive value of sr one of which [14] then further merges with

[3] to form [143] and  [314] again for positive sr. The [314] branch then merges with [2] to form

[3142] and [2314]. V=.5, a=2, β=1 and γ=2.
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Table 1: Summary of merging patterns for decreasing non-dimensional velocities V

V s at
merg-
ing

k at
merg-
ing

merging
roots

merg
ing
root
s

post
merging
roots

post
merging
roots

ωu figure
number

2.00 none none none none none none none A.1a,b
1.75 0.0008

-0.81i
0.61-
.041i

2, ωu>0 3,
ωu=φ

23,
ωu<0.81

32,
ωu>0.81

0.81 A.2

1.50 .021-
0.66i

0.54-
0.10i

2, ωu>0 3,
ωu=φ

23,
ωu<0.66

32,
ωu>0.66

0.66 not
shown

0.0044
-0.69i

0.47-
0.22i

23,
ωu<0.66

1,
ωu>0

123,
ωu<0.69

231,
ωu<0.66,
ωu>0.69

0.69 not
shown

1.30 0.049-
0.60i

0.46-
0.22i

1, ωu>0 3,
ωu=φ

13,
ωu<0.60

31,
ωu>0.60

0.60 A.3

0.042-
0.56i

0.51-
0.10i

31,
ωu>0.60

2,
ωu>0

312,
ωu>0.56

231,
ωu<0.56,
ωu>0.60

0.56 A.3

0.017-
1.12i

1.21-
0.22i

231,
ωu<0.56
ωu>0.60

4,
ωu=φ

2314,
ωu<0.56,
0.60<ωu<
1.12

4231,
ωu>1.12

1.12 A.3

1.00 0.11-
0.46i

0.44-
0.218i

1, ωu>0 3,
ωu=φ

13,
ωu<0.46

31,
ωu>0.46

0.46 not
shown

0.10-
0.47i

1.00-
0.219i

31,
ωu>0.46

4,
ωu=φ

314,
0.46<ωu<
0.47

431,
ωu>0.47

0.47 not
shown

0.072-
0.41i

0.47-
0.099i

314,
0.46<ωu

<0.47

2,
ωu>0

3142,
ωu>0.41

2314,
ωu<0.41,
0.46<ωu<
0.47

0.41 not
shown

0.50 0.24-
0.35i

0.78-
0.22i

1, ωu>0 4,
ωu=φ

14,
ωu<0.35

41,
ωu>0.35

0.35 A.4

0.22-
0.25i

0.43-
0.18i

14,
ωu<0.35

3,
ωu=φ

143,
ωu<0.25

314,
0.25<ωu<
0.35

0.25 A.4

0.12-
0.19i

0.41-
0.75i

314,
0.25<ωu

<0.35

2,
ωu>0

3142,
ωu>0.19

2314,
ωu<0.19,
0.25<ωu<
0.35

0.19 A.4
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Fig. A2
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Fig. A3
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Fig. A4


