Appendix to "On the stability of a compressible axisymmetric rotating flow in a pipe"

By Z. Rusak & J. H. Lee

Journal of Fluid Mechanics, vol. 501 (2004), pp. 25–42

This material has not been copy-edited or typeset by Cambridge University Press: its format is entirely the responsibility of the author.

Appendix A. Derivation of perturbation equations (30) and (31)

Elimination of pressure from (19) and (20) by cross differentiation in terms of x and y, respectively, followed by subtraction gives a relationship between ψ_1 , K_{1x} and ρ_1 :

$$\left(\frac{\psi_{1xx}}{2y} + \psi_{1yy}\right)_{t} + w_{0}\left(\frac{\psi_{1xx}}{2y} + \psi_{1yy}\right)_{x} - w_{0yy}\psi_{1x} + \frac{\omega K_{0}\rho_{0}}{2y^{2}}K_{1x} + \gamma M_{0}^{2}\left(\frac{\omega^{2}K_{0}^{2}}{4y^{2}}\rho_{1x} - 2w_{0}w_{0y}\rho_{1x} - w_{0}^{2}\rho_{1xy} - \int_{0}^{x}\rho_{1ytt}dx' - 2w_{0y}\rho_{1t} - 2w_{0}\rho_{1yt}\right) = 0.$$
 (A-1)

Solving (A-1) for K_{1x} and substituting in linearized θ -momentum equation (21) results in:

$$K_{1t} = \frac{\omega K_{0y}}{\rho_0} \psi_{1x} + \frac{2y^2 w_0}{\omega K_0 \rho_0} \left[\left(\frac{\psi_{1xx}}{2y} + \psi_{1yy} \right)_t + w_0 \left(\frac{\psi_{1xx}}{2y} + \psi_{1yy} \right)_x - w_{0yy} \psi_{1x} + \gamma M_0^2 \left(\frac{\omega^2 K_0^2}{4y^2} \rho_{1x} - 2w_0 w_{0y} \rho_{1x} - w_0^2 \rho_{1xy} - \int_0^x \rho_{1ytt} dx' - 2w_{0y} \rho_{1t} - 2w_0 \rho_{1yt} \right) \right] (A-2)$$

Elimination of K_1 from (A-1) and (A-2) by cross differentiation in terms of t and x, respectively, followed by subtraction, and multiplying by $\omega K_0 \rho_0 / (2y^2 w_0)$, gives

$$2\left(\frac{\psi_{1xx}}{2y} + \psi_{1yy}\right)_{xt} + \frac{1}{w_0}\left(\frac{\psi_{1xx}}{2y} + \psi_{1yy}\right)_{tt} + w_0\left(\frac{\psi_{1xx}}{2y} + \psi_{1yy}\right)_{xx} \\ + \left(\frac{\omega^2 K_0 K_{0y}}{2y^2 w_0} - w_{0yy}\right)\psi_{1xx} - \frac{w_{0yy}}{w_0}\psi_{1xt} \\ = -\gamma M_0^2 \left[\frac{\omega^2 K_0^2}{4y^2}\left(\rho_{1xx} + \frac{\rho_{1xt}}{w_0}\right) - 4w_{0y}\rho_{1xt} - 3\rho_{1ytt} - 3w_0\rho_{1xyt} \\ - \frac{1}{w_0}\int_0^x \rho_{1yttt} dx' - \frac{2w_{0y}}{w_0}\rho_{1tt} - 2w_0w_{0y}\rho_{1xx} - w_0^2\rho_{1xxy}\right].$$
(A-3)

Differentiation of (A-3) with respect to x gives (30).

Differentiating (22) with respect to x gives

$$\gamma M_0^2(\rho_0 T_{1xt} + \rho_0 w_0 T_{1xx}) = \frac{\gamma - 1}{\gamma} \left[\sqrt{2y} P_{0y} u_{1x} + \gamma M_0^2 (P_{1xt} + w_0 P_{1xx}) \right] - \rho_0 \sqrt{2y} T_{0y} u_{1x} (A-4)$$

From (16) we have $\rho_0 T_1 = P_1 - \rho_1 T_0$. Substituting this in (A-4) gives

$$M_0^2(P_{1xt} + w_0 P_{1xx}) - \gamma M_0^2 T_0(\rho_{1xt} + w_0 \rho_{1xx}) = \left(\frac{\gamma - 1}{\gamma} \frac{P_{0y}}{\rho_0} - T_{0y}\right) \sqrt{2y} \rho_0 u_{1x}.$$
 (A-5)

Using (20) to express P_{1xt} and P_{1xx} in (A-5) and multiplying by $-\frac{1}{w_0}$ gives

$$\begin{split} \gamma M_0^2 \left[\left(\frac{T_0}{w_0} - 3M_0^2 w_0 \right) \rho_{1xt} + (T_0 - M_0^2 w_0^2) \rho_{1xx} - 3M_0^2 \rho_{1tt} - \frac{M_0^2}{w_0} \int_0^x \rho_{1ttt} dx' \right] \\ &= \left(M_0^2 w_{0y} - \frac{T_{0y}}{w_0} + \frac{\gamma - 1}{\gamma} \frac{P_{0y}}{\rho_0 w_0} \right) \psi_{1xx} - M_0^2 w_0 \psi_{1xxy} \\ &- \frac{M_0^2}{w_0} \psi_{1ytt} + M_0^2 \frac{w_{0y}}{w_0} \psi_{1xt} - 2M_0^2 \psi_{1xyt}. \end{split}$$
(A-6)

Differentiating (A-6) with respect to x gives (31).

Appendix B. Boundary conditions for (43) and (44)

The substitution of (42) into (32)-(41) gives boundary conditions for $\tilde{\phi}$ and $\tilde{\rho}$

$$\tilde{\phi}(x,0) = 0, \quad \tilde{\phi}(x,1/2) = \tilde{\phi}(0,1/2)$$
 (B-1)

for $0 \leq x \leq x_0$ and

$$\phi_{xx}(0,y) = 0, \tag{B-2}$$

$$\gamma M_0^2 w_0 \tilde{\rho}(0, y) = \tilde{\phi}_y(0, y), \tag{B-3}$$

$$\left(\frac{T_0}{w_0}\tilde{\phi}_y(0,y)\right)_y = \gamma M_0^2 \left(\frac{\sigma\phi_x(0,y)}{2y} + \omega^2 \frac{K_0^2}{4y^2 w_0}\tilde{\phi}_y(0,y)\right)$$
with $\tilde{\phi}(0,0) = \tilde{\phi}_y(0,0) = 0,$ (B-4)

$$\frac{\tilde{\phi}_{xxx}(0,y)}{2y} + \tilde{\phi}_{xyy}(0,y) + \left(\frac{\omega^2 K_0 K_{0y}}{2y^2 w_0^2} - \frac{w_{0yy}}{w_0}\right) \tilde{\phi}_x(0,y) + \sigma \frac{\tilde{\phi}_{yy}(0,y)}{w_0}$$

$$= -\gamma M_0^2 \left[\left(\frac{\omega^2 K_0^2}{4y^2 w_0} - 2w_{0y}\right) \tilde{\rho}_x(0,y) - w_0 \tilde{\rho}_{xy}(0,y) - 2\sigma \frac{w_{0y}}{w_0} \tilde{\rho}(0,y) - 2\sigma \tilde{\rho}_y(0,y) \right], \quad (B-5)$$

$$\sigma \frac{\tilde{\phi}_{xxx}(0,y)}{y w_0} + \sigma \frac{2 \tilde{\phi}_{xyy}(0,y)}{w_0} + \frac{\sigma^2}{w_0^2} \tilde{\phi}_{yy}(0,y) + \frac{\tilde{\phi}_{xxxx}(0,y)}{2y} - \sigma \frac{w_{0yy}}{w_0^2} \tilde{\phi}_x(0,y)$$

$$= -\frac{\gamma M_0^2}{2y} \left[\frac{\omega^2 K_0^2}{\omega_0^2} \left(\tilde{\rho}_{xx}(0,y) + \sigma \frac{\tilde{\rho}_x(0,y)}{\omega_0} \right) - 4\sigma w_{0y} \tilde{\rho}_x(0,y) - 3\sigma^2 \tilde{\rho}_y(0,y) \right]$$

$$-\frac{-\frac{1}{w_{0}}\left[\frac{4y^{2}}{4y^{2}}\left(\rho_{xx}(0,y)+\delta\frac{1}{w_{0}}\right)-4\delta w_{0y}\rho_{x}(0,y)-3\delta \rho_{y}(0,y)\right]}{-3\sigma w_{0}\tilde{\rho}_{xy}(0,y)-\sigma^{2}\frac{2w_{0y}}{w_{0}}\tilde{\rho}(0,y)-2w_{0}w_{0y}\tilde{\rho}_{xx}(0,y)-w_{0}^{2}\tilde{\rho}_{xxy}(0,y)\right], (B-6)}$$

$$\gamma \left[\sigma \left(\frac{T_0}{w_0} - 3M_0^2 w_0 \right) \tilde{\rho}_x(0, y) + (T_0 - M_0^2 w_0^2) \tilde{\rho}_{xx}(0, y) - 3\sigma^2 M_0^2 \tilde{\rho}(0, y) \right] \\ = \sigma \frac{w_{0y}}{w_0} \tilde{\phi}_x(0, y) - \sigma^2 \frac{1}{w_0} \tilde{\phi}_y(0, y) - 2\sigma \tilde{\phi}_{xy}(0, y), \tag{B-7}$$

$$\tilde{\phi}_x(x_0, y) = 0, \qquad \sigma \tilde{\rho}(x_0, y) + w_0 \tilde{\rho}_x(x_0, y) = 0$$
 (B-8)

for $0 \le y \le 1/2$.

Appendix C. Analysis of imaginary parts of (43) and (44)

Substituting (60) into (43) and (44), collecting terms of the orders ϵ_I , σ_I , $\epsilon_I \sigma_R$, $\epsilon_I \Delta \Omega$ and neglecting terms of the orders $O(\sigma_R^2, \sigma_I^2, \sigma_R \sigma_I, \sigma_I \epsilon_R, \sigma_I \Delta \Omega)$ and higher gives

$$\begin{split} \epsilon_{I} \left\{ \frac{\phi_{Ixx}}{2y} + \phi_{Iyy} + \left(\frac{\Omega_{1}K_{0}K_{0y}}{2y^{2}w_{0}^{2}} - \frac{w_{0yy}}{w_{0}} \right) \phi_{I} + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}} - 2w_{0y} \right) \rho_{I} - w_{0}\rho_{Iy} \right] \right\}_{xxx} \\ + \sigma_{I} \left\{ \frac{2}{w_{0}} \left(\frac{\psi_{1cxx}}{2y} + \psi_{1cyy} \right) - \frac{w_{0yy}}{w_{0}^{2}} \psi_{1c} + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}^{2}} - 4\frac{w_{0y}}{w_{0}} \right) \rho_{Ic} - 3\rho_{1cy} \right] \right\}_{xx} \\ + \epsilon_{I}\sigma_{R} \left\{ \frac{2}{w_{0}} \left(\frac{\phi_{Ixx}}{2y} + \phi_{Iyy} \right) - \frac{w_{0yy}}{w_{0}^{2}} \phi_{I} + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}^{2}} - 4\frac{w_{0y}}{w_{0}} \right) \rho_{I} - 3\rho_{Iy} \right] \right\}_{xx} \\ + \epsilon_{I}\Delta\Omega \left\{ \frac{K_{0}K_{0y}}{2y^{2}w_{0}^{2}} \phi_{I} + \gamma M_{0}^{2} \frac{K_{0}^{2}}{4y^{2}w_{0}} \rho_{I} \right\}_{xxx} = 0, \quad (C-1) \\ \epsilon_{I} \left\{ \rho_{I} - \frac{1}{\gamma M_{0}^{2}(T_{0} - M_{0}^{2}w_{0}^{2})} \left[\left(M_{0}^{2}w_{0y} - \frac{T_{0y}}{w_{0}} + \frac{(\gamma - 1)M_{0}^{2}\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}} \right) \phi_{I} - M_{0}^{2}w_{0}\phi_{Iy} \right] \right\}_{xxx} \\ + \frac{\sigma_{I}}{T_{0} - M_{0}^{2}w_{0}^{2}} \left\{ \frac{T_{0} - 3M_{0}^{2}w_{0}^{2}}{w_{0}} \rho_{1c} - \frac{w_{0y}}{\gamma w_{0}} \psi_{1c} + \frac{2}{\gamma}\psi_{1cy} \right\}_{xx} \\ + \frac{\epsilon_{I}\sigma_{R}}{T_{0} - M_{0}^{2}w_{0}^{2}} \left\{ \frac{T_{0} - 3M_{0}^{2}w_{0}^{2}}{w_{0}} \rho_{I} - \frac{w_{0y}}{\gamma w_{0}} \phi_{I} + \frac{2}{\gamma}\phi_{Iy} \right\}_{xx} \\ + \epsilon_{I}\Delta\Omega \left\{ \frac{\gamma - 1}{\gamma(T_{0} - M_{0}^{2}w_{0}^{2}} \right\}_{xxx} = 0. \quad (C-2) \\ \end{array}$$

From (B-1)-(B-8), the boundary conditions for these equations are:

$$\phi_I(x,0) = 0, \quad \phi_I(x,1/2) = \phi_I(0,1/2)$$
 (C-3)

for $0 \le x \le x_0$ and

$$\phi_{Ixx}(0,y) = 0, \tag{C-4}$$

$$\gamma M_0^2 w_0 \rho_I(0, y) = \phi_{Iy}(0, y), \tag{C-5}$$

$$\epsilon_{I} \left\{ \left(\frac{T_{0}}{w_{0}} \phi_{Iy}(0, y) \right)_{y} - \gamma M_{0}^{2} \frac{\Omega_{1} K_{0}^{2}}{4y^{2} w_{0}} \phi_{Iy}(0, y) \right\} - \sigma_{I} \left\{ \gamma M_{0}^{2} \frac{\psi_{1cx}(0, y)}{2y} \right\} - \epsilon_{I} \sigma_{R} \left\{ \gamma M_{0}^{2} \frac{\phi_{Ix}(0, y)}{2y} \right\} - \epsilon_{I} \Delta \Omega \left\{ \gamma M_{0}^{2} \frac{K_{0}^{2}}{4y^{2} w_{0}} \phi_{Iy}(0, y) \right\} = 0$$
with $\phi_{I}(0, 0) = \phi_{Iy}(0, 0) = 0,$ (C-6)

$$\epsilon_{I} \left\{ \frac{\phi_{Ixxx}(0,y)}{2y} + \phi_{Ixyy}(0,y) + \left(\frac{\Omega_{1}K_{0}K_{0y}}{2y^{2}w_{0}^{2}} - \frac{w_{0yy}}{w_{0}} \right) \phi_{Ix}(0,y) \right. \\ \left. + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}} - 2w_{0y} \right) \rho_{Ix}(0,y) - w_{0}\rho_{Ixy}(0,y) \right] \right\} \\ \left. + \epsilon_{I}\sigma_{R} \left\{ \frac{\phi_{Iyy}(0,y)}{w_{0}} - 2\gamma M_{0}^{2} \left(\frac{w_{0y}}{w_{0}} \rho_{I}(0,y) + \rho_{Iy}(0,y) \right) \right\} \right\}$$

$$\begin{split} + \epsilon_{I} \Delta \Omega \left\{ \frac{K_{0} K_{0y}}{2y^{2} w_{0}^{2}} \phi_{Ix}(0, y) + \gamma M_{0}^{2} \frac{K_{0}^{2}}{4y^{2} w_{0}} \rho_{Ix}(0, y) \right\} &= 0, \quad (C-7) \\ \epsilon_{I} \left\{ \frac{\phi_{Ixxxx}(0, y)}{2y} + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1} K_{0}^{2}}{4y^{2} w_{0}} - 2w_{0y} \right) \rho_{Ixx}(0, y) - w_{0} \rho_{Ixxy}(0, y) \right] \right\} \\ + \sigma_{I} \left\{ \frac{\psi_{Icxxx}(0, y)}{yw_{0}} + \frac{2\psi_{Icxyy}(0, y)}{w_{0}} - \frac{w_{0yy}}{w_{0}^{2}} \psi_{Icx}(0, y) \\ &+ \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1} K_{0}^{2}}{4y^{2} w_{0}^{2}} - 4 \frac{w_{0y}}{w_{0}} \right) \rho_{Icx}(0, y) - 3\rho_{Icxy}(0, y) \right] \right\} \\ + \epsilon_{I} \sigma_{R} \left\{ \frac{\phi_{Ixxx}(0, y)}{yw_{0}} + \frac{2\phi_{Ixyy}(0, y)}{w_{0}} - \frac{w_{0yy}}{w_{0}^{2}} \phi_{Ix}(0, y) \\ &+ \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1} K_{0}^{2}}{4y^{2} w_{0}^{2}} - 4 \frac{w_{0y}}{w_{0}} \right) \rho_{Icx}(0, y) - 3\rho_{Icxy}(0, y) \right] \right\} \\ + \epsilon_{I} \sigma_{R} \left\{ \gamma M_{0}^{2} \frac{K_{0}^{2}}{4y^{2} w_{0}} \rho_{Ixx}(0, y) \right\} = 0, \quad (C-8) \\ \epsilon_{I} \rho_{Ixx}(0, y) + \frac{\sigma_{I}}{T_{0} - M_{0}^{2} w_{0}^{2}} \left\{ \frac{T_{0} - 3M_{0}^{2} w_{0}^{2}}{w_{0}} \rho_{Icx}(0, y) - \frac{w_{0y}}{\gamma w_{0}} \phi_{Ix}(0, y) + \frac{2}{\gamma} \phi_{Ixy}(0, y) \right\} = 0, \quad (C-9) \\ \phi_{Ix}(x_{0}, y) = 0, \quad \sigma_{I} \rho_{Ic}(x_{0}, y) + w_{0} \epsilon_{I} \rho_{Ix}(x_{0}, y) + \epsilon_{I} \sigma_{R} \rho_{I}(x_{0}, y) = 0 \quad (C-10) \end{split}$$

for $0 \le y \le 1/2$.

Two integrations with respect to x of (C-1) and (C-2) and the use of boundary conditions (C-4) and (C-7)-(C-10) result in

$$\begin{split} \epsilon_{I} \left\{ \frac{\phi_{Ixx}}{2y} + \phi_{Iyy} + \left(\frac{\Omega_{1}K_{0}K_{0y}}{2y^{2}w_{0}^{2}} - \frac{w_{0yy}}{w_{0}} \right) \phi_{I} + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}} - 2w_{0y} \right) \rho_{I} - w_{0}\rho_{Iy} \right] \right\}_{x} \\ + \sigma_{I} \left\{ \frac{2}{w_{0}} \left(\frac{\psi_{1cxx}}{2y} + \psi_{1cyy} \right) - \frac{w_{0yy}}{w_{0}^{2}} \psi_{1c} + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}^{2}} - 4\frac{w_{0y}}{w_{0}} \right) \rho_{Ic} - 3\rho_{1cy} \right] \right\} \\ + \epsilon_{I}\sigma_{R} \left\{ \frac{2}{w_{0}} \left(\frac{\phi_{Ixx}}{2y} + \phi_{Iyy} \right) - \frac{w_{0yy}}{w_{0}^{2}} \phi_{I} + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}^{2}} - 4\frac{w_{0y}}{w_{0}} \right) \rho_{I} - 3\rho_{Iy} \right] \right\} \\ + \epsilon_{I}\Delta\Omega \left\{ \frac{K_{0}K_{0y}}{2y^{2}w_{0}^{2}} \phi_{I} + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}^{2}} - 4\frac{w_{0y}}{w_{0}} \right) \rho_{I} - 3\rho_{Iy} \right] \right\} \\ + \epsilon_{I}\Delta\Omega \left\{ \frac{K_{0}K_{0y}}{2y^{2}w_{0}^{2}} \phi_{I} + \gamma M_{0}^{2} \frac{K_{0}^{2}}{4y^{2}w_{0}} \rho_{I} \right\} \\ + \epsilon_{I}\Delta\Omega \left\{ \frac{K_{0}K_{0y}}{2y^{2}w_{0}^{2}} \phi_{I} + \gamma M_{0}^{2} \frac{K_{0}^{2}}{4y^{2}w_{0}} \rho_{I} \right\} \\ + \frac{\sigma_{I}}{\gamma M_{0}^{2}(T_{0} - M_{0}^{2}w_{0}^{2}} \left\{ \frac{T_{0} - 3M_{0}^{2}w_{0}^{2}}{w_{0}} \rho_{I} - \frac{w_{0y}}{2} \psi_{I} + \frac{2}{\gamma}\psi_{1cy} \right\} \\ + \frac{\epsilon_{I}\sigma_{R}}{T_{0} - M_{0}^{2}w_{0}^{2}} \left\{ \frac{T_{0} - 3M_{0}^{2}w_{0}^{2}}{w_{0}} \rho_{I} - \frac{w_{0y}}{\gamma w_{0}} \psi_{I} + \frac{2}{\gamma}\psi_{1cy} \right\} \\ + \epsilon_{I}\Delta\Omega \left\{ \frac{\gamma - 1}{\gamma (T_{0} - M_{0}^{2}w_{0}^{2})} \frac{K_{0}^{2}}{4y^{2}w_{0}} \phi_{I} \right\}_{x} = \sigma_{I}f_{2}(y) + \epsilon_{I}\sigma_{R}f_{3}(y), \quad (C-12)$$

Here

$$f_{1}(y) = \frac{\phi_{Iyy}(0,y)}{w_{0}} - \frac{w_{0yy}}{w_{0}^{2}}\phi_{I}(0,y) + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}^{2}} - 2\frac{w_{0y}}{w_{0}} \right) \rho_{I}(0,y) - \rho_{Iy}(0,y) \right],$$

$$f_{2}(y) = -\frac{1}{T_{0} - M_{0}^{2}w_{0}^{2}} \left(2M_{0}^{2}w_{0}S(y) + \frac{w_{0y}}{\gamma w_{0}}\Phi(y) - \frac{2}{\gamma}\Phi_{y}(y) \right),$$

$$f_{3}(y) = -\frac{1}{T_{0} - M_{0}^{2}w_{0}^{2}} \left(2M_{0}^{2}w_{0}\rho_{I}(x_{0},y) + \frac{w_{0y}}{\gamma w_{0}}\phi_{I}(x_{0},y) - \frac{2}{\gamma}\phi_{Iy}(x_{0},y) \right).$$

(C-13)

Solution of (C-12) for $\epsilon_I \rho_{Ix}$, substitution of the result in (C-11), multiplication by $(T_0 - M_0^2 w_0^2)/T_0$ and an additional integration with respect to x gives (61).

Appendix D. Analysis of real parts of (43) and (44)

Substituting expansions (60) into (43) and (44) and neglecting terms of the orders $O(\sigma_R^2, \sigma_I^2, \sigma_R \epsilon_R, \sigma_I \epsilon_I, \sigma_R \Delta \Omega)$ and higher gives

$$\begin{aligned} \epsilon_{R} \left\{ \frac{\phi_{Rxx}}{2y} + \phi_{Ryy} + \left(\frac{\Omega_{1}K_{0}K_{0y}}{2y^{2}w_{0}^{2}} - \frac{w_{0yy}}{w_{0}} \right) \phi_{R} + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}} - 2w_{0y} \right) \rho_{R} - w_{0}\rho_{Ry} \right] \right\}_{xxx} \\ + \sigma_{R} \left\{ \frac{2}{w_{0}} \left(\frac{\psi_{1cxx}}{2y} + \psi_{1cyy} \right) - \frac{w_{0yy}}{w_{0}^{2}} \psi_{1c} + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}^{2}} - 4\frac{w_{0y}}{w_{0}} \right) \rho_{1c} - 3\rho_{1cy} \right] \right\}_{xx} \\ + \Delta\Omega \left\{ \frac{K_{0}K_{0y}}{2y^{2}w_{0}^{2}} \psi_{1c} + \gamma M_{0}^{2} \frac{K_{0}^{2}}{4y^{2}w_{0}} \rho_{1c} \right\}_{xxx} = 0, \quad \text{(D-1)} \\ \epsilon_{R} \left\{ \rho_{R} - \frac{1}{\gamma M_{0}^{2}(T_{0} - M_{0}^{2}w_{0}^{2})} \left[\left(M_{0}^{2}w_{0y} - \frac{T_{0y}}{w_{0}} + (\gamma - 1)M_{0}^{2} \frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}} \right) \phi_{R} - M_{0}^{2}w_{0} \phi_{Ry} \right] \right\}_{xxx} \\ + \frac{\sigma_{R}}{T_{0} - M_{0}^{2}w_{0}^{2}} \left\{ \frac{T_{0} - 3M_{0}^{2}w_{0}^{2}}{w_{0}} \rho_{1c} - \frac{w_{0y}}{\gamma w_{0}} \psi_{1c} + \frac{2}{\gamma} \psi_{1cy} \right\}_{xxx} \\ - \Delta\Omega \left\{ \frac{(\gamma - 1)}{\gamma(T_{0} - M_{0}^{2}w_{0}^{2})} \frac{K_{0}^{2}}{4y^{2}w_{0}} \psi_{1c} \right\}_{xxx} = 0. \quad \text{(D-2)} \end{aligned}$$

From (B-1)-(B-8), the boundary conditions for these equations are:

$$\phi_R(x,0) = 0, \quad \phi_R(x,1/2) = \phi_R(0,1/2)$$
 (D-3)

for $0 \le x \le x_0$ and

$$\phi_{Rxx}(0,y) = 0, \tag{D-4}$$

$$\gamma M_0^2 w_0 \rho_R(0, y) = \phi_{Ry}(0, y), \tag{D-5}$$

$$\epsilon_R \left\{ \left(\frac{T_0}{w_0} \phi_{Ry}(0, y) \right)_y - \gamma M_0^2 \frac{\Omega_1 K_0^2}{4y^2 w_0} \phi_{Ry}(0, y) \right\} - \sigma_R \left\{ \gamma M_0^2 \frac{\psi_{1cx}(0, y)}{2y} \right\} = 0$$

with $\phi_R(0, 0) = \phi_{Ry}(0, 0) = 0$. (D-6)

$$\epsilon_{R} \left\{ \frac{\phi_{Rxxx}(0,y)}{2y} + \phi_{Rxyy}(0,y) + \left(\frac{\Omega_{1}K_{0}K_{0y}}{2y^{2}w_{0}^{2}} - \frac{w_{0yy}}{w_{0}} \right) \phi_{Rx}(0,y) + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}} - 2w_{0y} \right) \rho_{Rx}(0,y) - w_{0}\rho_{Rxy}(0,y) \right] \right\}$$

$$+\Delta\Omega\left\{\frac{K_0K_{0y}}{2y^2w_0^2}\psi_{1cx}(0,y) + \gamma M_0^2\frac{K_0^2}{4y^2w_0}\rho_{1cx}(0,y)\right\} = 0, \qquad (D-7)$$

$$\epsilon_R\left\{\frac{\phi_{Rxxxx}(0,y)}{2y} + \gamma M_0^2\left[\left(\frac{\Omega_1K_0^2}{4y^2w_0} - 2w_{0y}\right)\rho_{Rxx}(0,y) - w_0\rho_{Rxxy}(0,y)\right]\right\}$$

$$+\sigma_R\left\{\frac{\psi_{1cxxx}(0,y)}{yw_0} + \frac{2\psi_{1cxyy}(0,y)}{w_0} - \frac{w_{0yy}}{w_0^2}\psi_{1cx}(0,y)$$

$$+\gamma M_0^2\left[\left(\frac{\Omega_1K_0^2}{4y^2w_0^2} - 4\frac{w_{0y}}{w_0}\right)\rho_{1cx}(0,y) - 3\rho_{1cxy}(0,y)\right]\right\} = 0, \qquad (D-8)$$

$$+ \frac{\sigma_R}{T_0 - M_0^2 w_0^2} \left\{ \frac{T_0 - 3M_0^2 w_0^2}{w_0} \rho_{1cx}(0, y) - \frac{w_{0y}}{\gamma w_0} \psi_{1cx}(0, y) + \frac{2}{\gamma} \psi_{1cxy}(0, y) \right\} = 0,$$
 (D-9)

$$\phi_{Rx}(x_0, y) = 0, \qquad \sigma_R \rho_{1c}(x_0, y) + \epsilon_R w_0 \rho_{Rx}(x_0, y) = 0$$
 (D-10)

for $0 \le y \le 1/2$.

Two integrations of (D-1) and (D-2) with respect to x and the use of boundary conditions (D-4), (D-7)-(D-10) result in

$$\epsilon_{R} \left\{ \frac{\phi_{Rxx}}{2y} + \phi_{Ryy} + \left(\frac{\Omega_{1}K_{0}K_{0y}}{2y^{2}w_{0}^{2}} - \frac{w_{0yy}}{w_{0}} \right) \phi_{R} + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}} - 2w_{0y} \right) \rho_{R} - w_{0}\rho_{Ry} \right] \right\}_{x} \\ + \sigma_{R} \left\{ \frac{2}{w_{0}} \left(\frac{\psi_{1cxx}}{2y} + \psi_{1cyy} \right) - \frac{w_{0yy}}{w_{0}^{2}} \psi_{1c} + \gamma M_{0}^{2} \left[\left(\frac{\Omega_{1}K_{0}^{2}}{4y^{2}w_{0}^{2}} - 4\frac{w_{0y}}{w_{0}} \right) \rho_{1c} - 3\rho_{1cy} \right] \right\} \\ + \Delta \Omega \left\{ \frac{K_{0}K_{0y}}{2y^{2}w_{0}^{2}} \psi_{1c} + \gamma M_{0}^{2} \frac{K_{0}^{2}}{4y^{2}w_{0}} \rho_{1c} \right\}_{x} = 0, \quad (D-11)$$

$$\epsilon_{R} \left\{ \rho_{R} - \frac{1}{\gamma M_{0}^{2} (T_{0} - M_{0}^{2} w_{0}^{2})} \left[\left(M_{0}^{2} w_{0y} - \frac{T_{0y}}{w_{0}} + (\gamma - 1) M_{0}^{2} \frac{\Omega_{1} K_{0}^{2}}{4y^{2} w_{0}} \right) \phi_{R} - M_{0}^{2} w_{0} \phi_{Ry} \right] \right\}_{x} + \frac{\sigma_{R}}{T_{0} - M_{0}^{2} w_{0}^{2}} \left\{ \frac{T_{0} - 3M_{0}^{2} w_{0}^{2}}{w_{0}} \rho_{1c} - \frac{w_{0y}}{\gamma w_{0}} \psi_{1c} + \frac{2}{\gamma} \psi_{1cy} \right\} - \Delta \Omega \left\{ \frac{(\gamma - 1)}{\gamma (T_{0} - M_{0}^{2} w_{0}^{2})} \frac{K_{0}^{2}}{4y^{2} w_{0}} \psi_{1c} \right\}_{x} = \sigma_{R} f_{2}(y).$$
(D-12)

Here $f_2(y)$ is defined in (C-13). Also, the conditions in (D-5) and (D-6) can be solved and show that

$$\epsilon_R \phi_R(0, y) = \sigma_R \gamma M_0^2 \frac{\pi}{4x_0} \int_0^y \exp(\alpha(y')) \left[\int_0^{y'} g(y'') \exp(-\alpha(y'')) \, dy'' \right] \, dy',$$

$$\gamma M_0^2 w_0 \rho_R(0, y) = \sigma_R \gamma M_0^2 \frac{\pi}{4x_0} \exp(\alpha(y)) \left[\int_0^{y'} g(y'') \exp(-\alpha(y'')) \, dy'' \right]$$
(D-13)

where

$$\alpha(y) = -\int_0^y p(y')dy', \quad p(y) = \frac{w_0}{T_0} \left(\frac{T_0}{w_0}\right)_y - \gamma M_0^2 \Omega_1 \frac{K_0^2}{4y^2 T_0}, \quad g(y) = \frac{\Phi(y)}{y} \frac{w_0(y)}{T_0(y)}.$$

Note that $\phi_R(0, y) = 0$ when $M_0 = 0$. Also, note that in the general case $\phi_R(0, 1/2)$ is now determined and may not be zero. For example, in the case of a solid-body rotation

profile where $K_0 = 2y$ and $w_0 = T_0 = 1$ we find $p(y) = -\gamma M_0^2 \Omega_1$, $\alpha(y) = \gamma M_0^2 \Omega_1 y$, and then

$$\phi_R(0,y) = \gamma M_0^2 \frac{\pi}{4x_0} \int_0^y \exp(\gamma M_0^2 \Omega_1 y) \left[\int_0^{y'} \frac{\Phi(y)}{y} \exp(-\gamma M_0^2 \Omega_1 y'') \, dy'' \right] \, dy'.$$
(D-14)

Examples of calculating $\phi_R(0, y)$ according to (D-14) are shown in Fig. D-1 for various Mach numbers. It is clear that $\phi_R(0, 1/2)$ is not zero.

Solving (D-12) for $\epsilon_R \rho_{Rx}$ and substituting in (D-11), multiplying by $(T_0 - M_0^2 w_0^2)/T_0$, and integrating again with respect to x gives (63).

Figure 1: D-1: Solutions of $\phi_R(0, y)$ for a solid-body rotation flow at various Mach numbers.