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Chapter 3

Analytical models for turbulent

canopy Hows

3.1 Introduction

The interesting flows that can be modelled using the concept of distributed force—
forests, urban areas, etc.—are generally characterised by large enough Reynolds num-
bers for the flow to be fully turbulent. Given such practical importance, the remaining
chapters of this thesis are concerned specifically with turbulent flow and dispersion
through a distributed force.

Turbulent flow field modelling in this thesis has two main objectives. Firstly
we aim to produce practical analytical models for the detailed perturbation velocities
and shear stresses within and above a region of distributed resistance. Such models
are developed by the following analyses in this chapter, and have been incorporated
into a working computer software package. The input to this computer package is
a description of the incident wind and of the distributed resistance; the output is a
two-dimensional array of perturbation flow quantities. In chapter 4 these models are
used to simulate a number of experiments on flow through a group of obstacles and
the simulation results are compared against the experimental data.

Secondly we aim to produce “equivalent” parameterisations, that usefully describe
¥ P q Y
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gy

broad aspects of the calculated flow ﬁelds in an accessible way. The most important
of such parameterisations calculates effective roughness parameters—displacement
height, roughness height and friction velocity—for the flow above a region of resis-
tance that varies slowly in the streamwise directiorn. Chapter 5 derives two equivalent
}1 parameterisations from the detailed flow field results of chapter 3 and indicates the

regions of the flow where these parameterisations are valid.

Figure 3.1: The two turbulent mixing length models used here. (a) The “standard”
mixing length (SML) model. (b) The “displaced” mixing length (DML) model.

A turbulent analysis requires a model for the turbulent stresses. If a standard
model such as mixing length or K~ is to be used, new effects particular to distributed
force flow or to the underlying canopy flow must be taken into account. For example,
Svensson & Higgkvist (1990) and Savill & Solberg (1994) add terms to the K-e
~ turbulent kinetic energy (TKE) equation to represent the shear production of TKE
In obstacle boundary layers.

In this chapter we use two variants of the mixing length model. The “standard”
; mixing length (SML) model (hgure 3.1a) assumes that the mean flow perturbations
due to 5 distributed force are too weak to alter the turbulence structure of the incident

bmlnda,ry layer flow. Hence the mixing length A, is proportional to height above the

i
|
|
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ground. In the “displaced” mixing length (DML) model (figure 3.1b), the flow domain
is divided into two. A constant mixing length within the canopy models intense small
scale turbulence due to the eddies shed from individual obstacles, while a linear mixing
length above, with a non-zero displacement height, models the blocking effect on
turbulent eddies of a strong shear layer such as might be produced at the rooftop level
of a group of obstacles. Thus the DML model assumes that individual obstacles and
large scale mean flow changes significantly alter the turbulence structure within and
above the obstacle canopy. The ideas behind these two contrasting turbulence models
are further discussed in §3.2 and §3.8. The sensitivity of our results to turbulence
modelling will be assessed by comparing results from these two models with each
other and with numerical simulations using the K—¢ closure.

For the SML turbulence model, the method of analysis of the perturbation flow
field follows that of Jackson & Hunt (1975), Sykes (1980), Hunt et al. (1988a) and
Belcher et al. (1990), developed by these authors in investigations of turbulent bound-
ary layer flow over changes in ground elevation and surface roughness. The key points

of this method are that

e the analysis is linear: we specify the form of the incident velocity upstream
of any distributed force and assume that any perturbations from this incident

profile are small;

e the flow domain is divided into dynamically distinct layers (described in §3.3):
turbulent shear stresses usually affect the mean flow perturbations only within

a thin layer near the ground (Townsend 1965);

e linear perturbations are calculated separately in each layer and then matched

with each other using the method of matched asymptotic expansions.

Rapidly varying force distributions, however, can make turbulent shear stresses sig-
nificant outside the thin stress layer near the ground (§3.4). This feature is specific
to the distributed force problem, because a distributed force extends vertically into

the flow domain, whereas the previously studied elevation and roughness changes are

I HCKHIALNITY
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surface perturbations. Hence separate analyses are presented for slowly varying (§3.5)
and rapidly varying (§3.6) force distributions. Sample results for the SML analysis
are presented in §3.7.

For the DML turbulence model (83.8), the upper part of the flow, where mixing
length increases linearly with height, is calculated using the same asymptotic method
but with extensions to allow for a non-zero displacement height. The lower part of the
flow, where mixing length is uniform, is calculated using the laminar viscous analysis
of §2.9. |

The chapter concludes in §3.9 by evaluating the sensitivity of the key features of
the calculated flow fields to the turbulence model.

3.2 The SML turbulent stress model

As in the laminar analyses of chapter 2, the region of distributed force is characterised
by horizontal and vertical extents L* and H*. The incident boundary layer flow is
understood to be developing slowly only on time scales longer than the time L*/ Uz
for flow to pass through the region of resistance, and the distributed force js taken
to lie within the lower 20% of the total boundary layer depth. Hence the incident
mean velocity profile is logarithmic (e.g. Panofsky & Dutton 1984, chapter 6) and

characterised by friction velocity u. and roughness height z}:
iy o g 2T
U(z*) = E]le;, (3.1)

where x ~ 0.41 is von Karman’s constant. Hence the mixing length model for the
undisturbed boundary layer shows that turbulent shear stress in the incident flow is

uniform:

T = pul. (3.2)

Throughout the analysis, capital letters denote incident flow quantities and lowercase
letters perturbation quantities.

Following Townsend (1965), turbulent stress perturbations are modelled by the

S AT IR A e e DA
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equation
*

ax*"
in which kz* is the SML model turbulent mixing length. Equation (3.3) is the linear

T = 2pu.kz"

(3.3)

perturbation of the mixing length model for total shear stress, namely

g a0 |08
= pr" T — .
Oz* |0z*

The factor of two in (3.3) arises because (3.4) makes total shear stress 7* quadratic

(3.4)

in the total streamwise velocity gradient 04*/0z*. _

The normal stress perturbations 7f; and 73, are far less important dynamically
than the shear stress 775 (also written here as 7*). The flow within the thin layer
where turbulent stress perturbations are non-negligible is largely determined by the
balance of streamwise momentum, which is influenced by the vertical gradient of 75
and the streamwise gradient of 7. Given that 77y and 775 are of similar order (as S
established by numerous experiments, e.g. Laufer 1955), the thinness of the turbulent S
stress layer makes 97y, /0z* negligible in comparison with d7{5/02*. In terms of the 8
ratio ¢ between vertical and streamwise length scales in this layer, the normal stress
75, makes only an O(€?) correction to the flow.

The vertical normal stress 73, affects streamwise momentum transfer only indi-
rectly, as it gives rise to a pressure variation across the thin layer at O(€) and hence
to an O(e€) correction to the streamwise velocity perturbation. This is omitted in
the analysis below, even though corrections of similar order are included, because it
exhibits no new interesting physics and because the analysis clearly indicates how an
arbitrary number of further such corrections could be incorporated if so desired.

Thus closure models for 7; and 733 are not used in the following analysis. If
models were required, for example to calculate further corrections to the asymptotic
results below, then observations would suggest proportionality: 7f; = —arj; and
T4s = —[7{5. Appropriate values for @ and §, measured in the laboratory and in the
atmosphere, are given by Townsend (1976, Table 5.2).

All quantities in the following analysis will be non-dimensionalised using the length

L*, advective velocity scale U* = U*(H*) and fluid density p, with the exception of
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turbulent shear stresses which scale on 2 and so are conveniently non-dimensionalised

by the incident shear stress pu?. Dimensional quantities are marked with an asterisk.

3.3 Asymptotic flow structure

3.3.1 The domain of importance of turbulent stresses

Implicit in the derivation of the mixing length model (3.3) is the idea that turbulent
eddies are in a state of “local equilibrium” (Townsend 1961), such that there is enough

time for turbulent eddies to move and transfer momentum before the mean flow has

changed much. If, however, the mean flow changes too rapidly, eddies are distorted

by the mean flow changes before there is time to establish the local equilibrium. The

analogy with molecular diffusion then breaks down. In the limit of very rapidly chang-

ing mean flow, rapid distortion theory (RDT) can be used to model the turbulence.

Following Britter et al. (1981) and Belcher et al. (1993), the height I* of an inner

Sl

region within which (3.4) applies is established by comparing time scales for turbulent
eddy diffusion and for distortion of the mean flow.
Consider boundary layer flow past an obstacle of length L*. The time taken for a

fluid particle or an eddy to be advected past the obstacle at a height z* is
= L*/U*(2"). (3.5)

t; decreases with height because the wind speed increases. The mean flow is distorted
most somewhere near the obstacle, while far upstream and downstream the pertur-
bations tend to zero. Hence ¢} is also the characteristic time scale for mean flow

distortion.

A turbulent equilibrium time ¢} is determined by the turbulent length scale, which
according to the mixing length theory is the height above the ground, and the char-

acteristic velocity fluctuation u,.. The equilibrium time scale is therefore

2 . (3.6)
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{7 increases with height as the typical eddy size increases. because more time is required

to mix momentum over greater distances,

The two time scales t; and 1 are of similar order at a height /* defined implicitly
by

B e B

- Ot iy { h? —_— R a‘{L
U)o

-

(3.7)

-

In !?:L region z* < I" where the equilibrium time 7 is less than the advection time, the

local lequilibrium hypothesis is appropriate and the perturbation turbulence closure
| ;

(3.3) can be used. For 2™ > [*, 17 > t; and so turbulence is governed by RDT.

RDT|implies that perturbation turbulent stresses are O(¢?). where ¢ is the ratio of

turbulent velocity u. to characteristic advection velocity UZ. It follows that these

rapidly distorted eddies have no effect on the leading order mean flow perturbations.

"hus consideration of these two time scales divides the flow domain inte two

regions at an approximate height [*. In the inner region, i.e. == < [*, turbulent

stress perturbations are significant and can be modelled by the mixing length closure
(3.3). In the outer region, z* > I", turbulent stresses do not affect the mean flow
perturbations at leading order, indicating that the outer region flow perturbations are

effectively controlled by inertia gradients and pressure forces.

Belcher et al. (1993} have shown that this layered turbulence model is signifi

s

cantly more accurate than using a mixing length model throughout the flow domain

when | applied to the calculation of pressure drag on a low hill: the results of their

e vy
e

linear| asymptotic analysis are comparable with those of numerical simulations using a

secongl-order turbulence closure. If an SML closure is used incorrectly outside the inner

. | . . g
regionl, turbulent stress appears to affect the mean flow perturbations at O(¢). where

8 ¢ is LEL:\ ratio of turbulent friction velocity to the advective velocity scale. Belcher ef
- al. used rapid distortion theory outside the inner region to show that turbulent stress
o

.

. in fact affects mean flow perturbations only at O(¢%).
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3.3.2 The use of Fourier analysis
|

Following Lighthill (1957) and many others, the application of Fourier analysis to the
linearised distributed force problem allows arbitrary force distributions to be treated
by the Fourier synthesis of a set of harmonic distributions. The inconvenience of
inverse Fourier transformation at the end of the analysis is far outweighed by the
simplification that results from reducing partial differential equations in two or three
independent variables to ordinary differential equations in just one vertical r(mrdiria te.

Moreover, in the distributed force problem the reponse of the incident flow is quite
different, depending on whether the force distribution varies rapidly or slowly in the
streamwise direction, i.e. according to the ratio between streamwise variation length

|

scale and force distribution height. Fourier analysis provides a formal method for
separating out these differently behaving components of an arbitrary force distribu-
tion. This is an important extra consideration for the distributed force and rrmgh;ums
change problems because the imposed flow disturbance can include a wide s;}erl:irmu
of streamwise wavenumbers (consider the step change in roughness).

In a Fourier analysis, it is appropriate to calculate the height [ separately for i;t;u*.lz
Fourier component of the force distribution, taking the Fourier wavelength 27?/&%' as

the horizontal length scale for advection. Thus, from (3.7}, at each wavenumber &~

we define (k") implicitly by
® |
k1" In 'fj": ~ 27K, (3.8)
ey

This wavenumber dependent scaling leads naturally to the physical picture described
in §1.5. The impact and exit regions of the flow correspond to short wavelength d¢om-
ponents of the force distribution. For these Fourier components " is small mmpL&.rml
to the height of the force distribution and most of the perturbation flow will be 'zJ_wis-
cid as the physical arguments of §1.5 suggest. By contrast, in the array interior|and
far wake regions. which correspond to long wavelength components, [* is largniamj
well above the top of the force distribution: hence turbulent stresses are crucial to the
dynamics of these regions.

To fix the value of [* the right hand side of (3.8) is chosen to be 1. Note that
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this choice is slightly different to that made by Hunt ef al. (1988a) and Belcher et al.
(199()) and is made here for notational convenience. Since I” is interpreted as an order
of magnitude estimate for the transition height between inner and outer regions, the
choice of this O(1) constant in no way affects the results. Thus I* is defined implicitly

by

R W R S e R

Bl = = 1, (3.9)

(]

o

At vary small wavenumbers (3.9) gives the inner region height [* increasing without
limit. In practice I must be limited by that fraction of the incident boundary layer
depth in which there is local equilibrium, typically about one fifth of the total bound-
ary layer depth. Denoting this limiting height by &%, there is a critical wavenumber
k* below which {* as defined by (3.9) would exceed é. &7 is given by

.y —1
kr ((!' In «{:) _ (3.10)

*a

To estimate a typical value for k7 in the atmospheric boundary layver, we take ¢° =

bb i S

200m| and z} = 0.1m, giving k2 = 6.6 x 10~*m™" or a critical horizontal scale of about

o

10km. This restriction is always significant for the smallest woods and villages as well
as the largest cities and forests because, assuming that all of a force distribution acts

in the same direction, the zero wavenumber Fourier component is larger in magnitude

than jany non-zero wavenumber component:

=1 [ fwetedal < [ 1f)ldr = 1£O). (3.11)

In a numerical implementation of the results of the present analysis, (3.9) is modified

to give g
. b4 P — ¥
[* = é" tanh = where k7] 1n <=L {3.12) .

The value of I* given by (3.12) differs negligibly from that of (3.9) when £* > k7. &

so the physical reasoning behind (3.9) is preserved until [* approaches 6% then the

modified definition (3.12) ensures that the stronger constraint [* < é7 is obeyed.
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3.3.3 The asymptotic small parameter ¢

The small parameter ¢ of the analysis is defined as the ratio between turbulent velocity
scale u. and advective velocity scale U]:

= %l 3.18)
¢ ; a1
I s E '

Non-dimensionalisation of the advective velocity scale, U = [I*(H*). gives the rela-
tion
17 )
€lp — == 1, (3.14)

~

This is perhaps a more useful definition of € since it relates the small parameter directly
to the geometry of the problem. (3.14) shows that the condition for ¢ to be small fis
equivalent to the condition that there should be a clear separation of scales hetween
z, and H. The surface roughness could also be modelled as a part of the distributed
force. Therefore a clear separation of scales between z, and H is required for the
surface roughness to be treated consistently as a roughness length rather than as a
force distribution.

Equation of (3.9) and (3.14) gives a relation between ¢ and kl:

Kl _In(H/z) . In(H/l) 1 g o
e In(l/z,) O In{l/z) 1 —eln(H/ (3.15)

Hence kI = O(¢) as long as 1 — ¢In(H/1) = O(1). which is true unless 1 is as small
as Olz,). Typically the smallest significant wavelengths of the force distribution are
O(H ), and for such small scales [ ~ XA = O(H). Overall. therefore. it is safe to scale
kl = Of¢). which shows that ¢ also characterises the ratio of vertical to horizontal

length scales in the inner region.
3.3.4 Subdividing the inner region
A velocity scale for the inner region is defined by

/
Up= Uiy = eln - (3.16)

s
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and then the incident velocity in the inner region may be written

U(z)=U;+eln- (3.17)

m-iz;

Hence U(z) = Ui+ O(e) thrimghcmz the inner region except very near the ground
where = ~ z,. Therefore the mn(’*r region is divided into two sub-layers. In the inner

| .
surface layer (ISL), = ~ z,, the natural O(1) vertical coordinate is (; = z/% and

|

the incident velocity profile is U/(z) = €In{; = O(e). The shear stress layer (S5L) is
defined ak the rest of the inner region. Here the O(1) vertical coordinate is { = z/1
and the icident velocity is U(z) = Up+ O(¢). The need to subdivide the inner region

in this way was first recognised by Sykes (1980) and will be clarified in §83.5.2-3.5.3.
|

3.4 Effects of stroqllg force gradients

The remark made in §3.1, th:%,t rapidly varying force distributions can make turbulent
stresses significant outside ofi the thin stress layer near the ground, is a manifestation
of the falct that a distributed force can impose new vertical length scales upon the
flow. Since the basic physics of distributed body forces is that force gradients create
. vorticity| (§2.2), new length scales are most clearly defined by locations within the
force distribution where the force gradient is strong.

When significant new vertical length scales exist, a mathematical problem for the
SML analysis arises because the asymptotic flow structure of §3.3 implicitly ignore
all vertical length scales except height above the ground. Although a general force
distribution may have sevora:l places where the force gradient 0 f/dz becomes large, the
issues involved are demn'nstr,%ated most clearly by consideration of a force distribution
that is slowly varying up to a height A and zero above h, so that there is a single

discontinuous change in distributed force at = = h.
|
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3.4.1 Mathematical resolution of flow discontinuities in the outer

region

The analysis of chapter 2 showed that in inviscid flow force discontinuities at height
h lead to discontinuities in the streamwise velocity at height £, This result is equally
valid for a force discontinuity in the outer region of the proposed turbulent flow strue-

|
ture. Therefore, given the dependence (3.9) of inner region height { on wavenumber
k. for any height 2 there will be a range of wavenumbers such that the discontinuity

|
lies in the outer region. Hence the Fourier components of perturbation velocity in this

|
wavenumber range will be discontinuous at z = h.

Such unphysical flow discontinuities betray a limitation of the asymptotic ﬂowl

structure as described in §3.3. What happens physically is that in any region of high |

|
flow gradients, turbulent stresses become large and dynamically important. Mathe- |
matically, therefore, turbulent stresses must be retained in the governing equations |
near any point of potential discontinuity. To reflect this, the asymptotic flow structure |
must be modified so as to include new turbulent stress layers around any height where
strong force gradients occur outside the inner region.

Hence the analysis of the SML model is presented in two parts. The slowly varying
analysis of §3.5 is valid at smaller wavenumbers for which any strong force gradients
lie well within the inner region. The rapidly varying analysis of §3.6 considers the
idealised case of a uniform foree distribution which vanishes discontinously at a height |
within the outer region, for which a new shear stress layer is added to the flow structure |
around the discontinuity. By comparing the analyses of §3.5 and §3.6, it becomes clear |

how their results can be blended together to allow a practical treatment of any number |

of force discontinuities anywhere within the flow domain,

3.4.2 Effect of a strong elevated shear layer on turbulence

As well as the asymptotic flow structure, the SML turbulence model also ignores any
vertical length scales other than height above the ground. This is a physical limitation

of the SMIL model that is addressed by the more general DML turbulence model in
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the analysis of §3.8.

3.5 Analysis of slowly varying force distributions

3.5.1 Governing equations

We begin with the steady, incompressible, Reynolds averaged Navier Stokes equations
for total (i.e. undisturbed + perturbation) pressure, velocities and turbulent stresses,

supplemented by a distributed force in the streamwise momentum equation:

Pt IRV = VR oS, (3.18)
v.it = 0. (3.19)

The total velocity is the sum of the undisturbed streamwise flow (U/*,0) and the
perturbation velocities (u™,w”) due to the force 1f*. Similarly, p* = P* + p~ and
7" = T" 477, but in the undisturbed boundary layer there are no gradients of pressure
or turbulent stress, so the constant pressure P* is dynamically irrelevant and the
constant stress tensor T™ serves only to define the friction velocity u,. Expanding
flow quantities into their undisturbed and perturbation parts, neglecting the normal
turbule]

t stress perturbations, and linearising the inertia terms by assuming that

ju*(z")| <« U*(z"). we obtain in component form

S N T

33 - du” . ai= ap‘ B o= i
ot ks = = (3.20)
.3; 81!," apw 8?"
{ {‘ = e : <
Eji p( 8;}:" + 323 637* ? ( 3.21 )
{ P

=t = © (3.22)

The coordinates and physical quantities in these equations are non-dimensionalised

using the characteristic length and velocity scales defined in §3.2:

k*=k/L", x" = 1 x,

ur=UU, [r=pUf/L", (3.23)

w=Ulu, p=pUlp, = puln.
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The non-dimensionalised equations read

ou oU 0Op 4 5071

Uoe Y0z T = %oz I (3:24)
ow 0p 5 .07
Ve t0s = " o2 (3:25)
ou Ow
a—m-l-—a? = 0. (3.26)

The factor €2x? = (u./U})? appears here because the stress and inertia terms are
non-dimensionalised using different velocity scales. Now the physical quantities in

(3.24)—(3.26) are expressed in terms of their Fourier transforms, for example

u(z,z) = ]m u(k, z)e**dk. (3.27)

MR IR

Note that a physical quantity is represented by the same symbol in both real and

11N

Fourier space; where there is any ambiguity as to whether the real space or Fourier

space quantity is intended, the intention is clarified by writing the argument list

SR AR

explicitly as in (3.27). After a set of transformations like (3.27), (3.24)—(3.26) become

ikUu+wU' +ikp = k%7 — f, (3.28)
kUw+p = Erlikr, (3.29) %
iku+w = 0. (3.30)

Here the primes denote vertical differentiation 8/0z.

Throughout the analysis that follows, it is convenient to assume that the wavenum-
ber k is non-negative; this saves a lot of notational trouble involving |k| and sgn k.
This assumption is not restrictive since u(z,z), p(z,z) etc. are real, and so their
Fourier transforms for negative k may be obtained from those for non-negative k via
the Hermitian relationship u(—k) = [u(k)]* (where the asterisk here denotes complex
conjugation).

It is not possible to solve (3.28)—(3.30) exactly. Further progress must be made by
considering the behaviour of (3.28)—(3.30) in each layer of the flow structure defined

in §3.3 and applying the turbulence closure and approximations that are appropriate

to each layer.

ot e
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3.5.2 The shear stress layer

The natural vertical coordinate for the shear stress layer is ( = z/l. Turbulent
shear stresses are modelled by the eddy viscosity closure (3.3), which after non-

dimensionalisation (3.23) takes the form

T = —6'5;. (331)

Rewriting (3.28)—(3.30) in terms of (, making use of this turbulence closure, and

writing the incident wind velocity as U = U; + €ln (, we obtain

ikl(U + elnQ)u + ew/C + iklp = 2er?(Cu’) — Lf, (3.32)
k(Ui + el Qw +p = 2ikles (), (3.33)
iklu+w = 0. (3.34)

Recall that kl, which multiplies many of the terms here, is O(¢). These equations
are to be solved asymptotically in the limit € — 0. The perturbation velocities and

pressure are expanded as asymptotic series in €:

w = u,+eup + Cug e (3.35)
w = ewy+Ewyt - (3.36)
p = poteprt E€pat+--- (3.37)

The continuity equation (3.34) shows that there is no leading order vertical velocity
perturbation, hence w, has been omitted. The vertical momentum equation (3.33)
shows that any pressure variation in the SSL must be O(€?); hence p, = p; = 0.
There are two mechanisms which give rise to a pressure perturbation in turbulent
flow through a distributed force. The first is an inviscid mechanism. In the inviscid
analysis, we found that the flow perturbations can be characterised as outflow from a
source balanced by a constant velocity deficit in the wake of the force distribution. A
pressure perturbation is associated with the source flow part of the inviscid solution.
In the turbulent flow analysis, the outer region is quasi-inviscid and we shall see that

a large part of the inner region also acts inviscidly, so this inviscid mechanism for

S TR R e PR UL L
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pressure perturbation is just as important for turbulent flow as it is for inviscid flow.
A simple scaling analysis shows that this inviscid pressure perturbation is O(fH /),
where 7 is the distance in real space from the measurement point to the centroid of
the force distribution (the apparent origin of the source flow); this is formally O(1) so
far as our asymptotic expansion in € is concerned.

The second mechanism is due to turbulent stress effects in the inner region, which
give rise to an extra vertical velocity perturbation at z ~ [. This extra vertical velocity
perturbation appears to the outer region like a wavy surface. An associated pressure
perturbation is induced in the outer region, in the same way as in hill flow, and this
pressure is transmitted back to the inner region. The extra vertical velocity at z = l
turns out, however, to be O(€?), so the corresponding pressure perturbation is much
weaker then that produced by the inviscid mechanism.

Substituting (3.35)—(3.37) into (3.32)—(3.34) we can identify the following equa-
tions at O(¢) and O(€?):

iklUm, — 2e62(Cul) = —1f —iklpo, (3.38)
ikIUy — 2ek2(Cl) = —ikluoln ¢ — ewr /¢ — iklpy, (3.39)
p,+epy = 0, (3.40)

iklUpwy + epy, = 2ikl&*Cu, (3.41)
ikluo+ew) = 0, (3.42)

ikluy + ewy = 0. (3.43)

The first of these equations governs the leading order streamwise perturbation velocity

u,. By means of a change of variables, defining the new Bessel function coordinate Z

by
s 20k
JBin/4 _fi?E (3.44)

(3.38) is transformed into the Bessel equation

Z

Il

wo Yo g M P
ug t %= T, (3.45)

Hi

LT T M U
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Solutions to (3.45) are expressed in terms of the Bessel functions Jo(Z) and K,(—12)
(Abramowitz & Stegun 1972, chapter 9). This somewhat unusual combination is
advantageous for two teasons. Firstly, J,(Z) and K,(—:Z) are respectively expo-
nentially large and exponentially small as |Z| — oo, which is useful when matching
with the outer region. Secondly, J,(Z) and K,(—iZ) are related to the Kelvin func-
tions: | J,(Z) = ber(Z) + ibei(Z) and K,(—iZ) = ker(Z) + ikei(Z) where Z =
Z exp(!—3é7r/4) = |Z|, which is useful in practical implementations of the theory be-
cause ber(Z) etc. are real.

The general solution of (3.45) is
= ALAZY B K A=12) - % (3.46)
1

+% " 2 () DK o(=iZ) - Jo(Z)Eo~iZ)} dZ,
| JZo

where A, and B, are to be determined by matching with the inner surface layer below
and the outer region above. The SSL and outer region coordinates are related to each
other by ¢ = kz/(kl) = kz x O(¢™!), so an O(1) coordinate for the matching region is
given by

Ni= ¢ kz where O-<a<l; (3.47)
In the matching region |Z| therefore becomes large like €*~1, so the terms in (3.46)
containing J,(Z) are exponentially large as ¢ — 0. Anticipating that there are no
exponentially large terms in the outer region solution to match this behaviour, it

follows that the coefficients in (3.46) of J,(Z) must cancel as | Z| — oo. This matching

condition fixes A,:
?: [s's}
Aot — f 2 (VK o(—iZ')dZ" = 0. (3.48)
kU; Jz,
At O(e) the governing equation for u; is (3.39). The general solution is
4 = AJ(Z)+ BiK,(~iZ) — % (3.49)

1

/ “y (£ + ) Lo 2) Ko =i2) ~ To(Z)Ko(-i2)} dZ',

TR0z

TTITRTRTT
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where flw} = iku,In( and fl(w) = ewy/z. The particular integrals in (3.49) are
formally the same as additional force distributions, so we could think of the corrections

as contributing to an effective total force distribution
fa=FrefD+efi + e+ (3.50)

The leading order pressure p, is determined by the original force distribution f, and
in the same way the first order pressure perturbation may be split into two parts and
ascribed to fl(U) and fl{w). Thus the first order streamwise velocity up can be divided

into three components:

U = ‘U.l )+ H(U) —I-‘ ‘Hr( ], (351)
where
P = BiKo(—iZ), (3.52)
WV =:ﬁ%um—ﬂ? (3.53)
YT ] 71O {12V K (=iZ') - Jo(Z)Ko(~i2)} dZ',
o = A&“’JocZ)—f-’é; (3.54)
o f 7§ (J(2)Ko(—iZ') = Jo(Z)Ko(~i2)} dZ'.

Then A&U) and A{lw} are determined by equations similar to (3.48), while B, is to be
determined by matching with the ISL.

3.5.3 The inner surface layer

In the inner surface layer the natural vertical coordinate is (; = z/z,. Using the
turbulence closure (3.31) and rewriting (3.28)~(3.30) in terms of the ISL coordinate

(;, we obtain

ikz,Uu + ew/( + thzop = 2e62(Civ) — 2. f, (3.55)

ikz,Uw+p = 2ek%ikz G, (3.56)

ikzou+w = 0, (3.57)
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primes now indicate differentiation with respect to {;. From (3.12) and (3.14) we can
calculate the order of kz,: .
kz, = % < ee"U‘f‘, (3.58)
i.e. kz, is exponentially small as € — 0. We could therefore solve (3.55)-(3.57) for the
perturbation velocities and pressure expressed as asymptotic series in the small pa-
rameter kz,. However, the SSL analysis contains only algebraically small corrections;
hence there will be nothing small enough to match any O(kz,) corrections from the
ISL. It is sufficient therefore to calculate only the leading order ISL solution, which
should match the leading order solution in the SSL and all its algebraically small
corrections (Belcher 1990). |
To obtain the leading order solution (denoted by the subscript i) we neglect all

terms that are O(kz,). The streamwise momentum equation reduces to
2ex%(Gul) = 2of- (3.59)

When integrated once (3.59) gives the ISL shear stress:

2z Ou;

H= o, i T 32 / f(")dz'. (3.60)

'3 z

The turbulent stress above a group of obstacles is transmitted to the ground partly
through obstacle drag and partly through shear stresses at the ground. (3.60) describes
the {transfer of drag force between these two mechanisms in the absence of other
dynamical contributions to the streamwise momentum balance. A second integration

gives the leading order streamwise velocity:

€T B
w; = —1

T f f(#)n Zds'. (3.61)

Reynolds stress gradients are of great practical importance in determining near-
surface transport processes such as heat transfer and deposition of pollutants. In the
absence of any force in the ISL, (3.60) shows that the turbulent shear stress is constant

across the layer. But the ISL is a transcendentally thin layer, so the constancy of 1;

does not exclude the possibility of algebraically large stress gradients existing in the
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ISL. The unscaled streamwise momentum equation (3.28) gives

ek’ = f + ikuieln zi - %E : u;(2") dz' + ikp;. (3.62)

o Zo

Substituting for the ISL streamwise perturbation u; (3.61) and ignoring terms involved
the distributed force f (which in practical flows is small very near the ground), we
find that

Er2r! = ke’ [1112 i, 28 —z—"] + ikp;. (3.63)

2 2 - z

Equation (3.63), which was also obtained by Hunt et al. (1988a) by a different method,
shows that there is an O(1) turbulent stress gradient at the ground that matches
the streamwise pressure gradient. In the leading order SSL solution this pressure
gradient is balanced by the force distribution and streamwise accelerations and the
most significant turbulent stress gradient is O(e). Thus, following Hunt et al. (1988a),
the ISL may be characterised as a layer where the stress gradient increases dramatically

from O(€) to O(1), as the balance of streamwise momentum changes to meet the

surface boundary condition.

3.5.4 Matching the ISL and SSL

To match (3.46) and (3.52)(3.54) with the ISL solution (3.61), it is convenient to

separate out the terms of the SS1, solution that are non-zero at z = 2z,:

te = Aodo(Zo)+ BoKo(—iZo) — pa (3.64)
+Ao {JO(Z) - Jo(Zo)} + Bo {-Ko(_"':z) ™= Ko(_izo)}

i 12
557 | 2T A DKA=i2) = I Z)Ko(~iZ)} dZ'.

The ISL coordinate (; is related to the SSL coordinate ¢ by

z Z

4 o €
fi= T= 2 e = (e (3.65)

(]

this shows that in the SSL, where ¢ = O(1), the ISL coordinate would be very large,
O(exp(U1/€)). An O(1) coordinate ¢ for the ISL/SSL matching region is defined by

¢ = Ce*Uile where 0<a<l. (3.66)

ATFEDOFT
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(a =0 gives ¢ = (, placing us in the SSL, while a = 1 gives ¢ = (;, placing us in the
ISL, so an intermediate value of & corresponds to a matching region between these two
layers.) In the matching region, |Z| ~ ¢ > is exponentially small like exp(—al;/(2¢)),
so it is appropriate to use small argument expansions (Abramowitz & Stegun 1972,

§69.6 and 9.1) for the Bessel functions in (3.64):

WZ) = 1-;22+0(2%), (3.67)
K (—iz) = - {7 i “;Z} {1 E ZTZ} - Z; +O(Z42*mZ).  (3.68)

Using these small argument expansions for the non-constant terms in (3.64), we find

that the leading order SSL solution in the matching region takes the form

. o Bo 1 z ,
Uy & AoJo(Za) + BoKo(_zzo) = JETI = ?]ﬂ ;z' + @fz f(zr) In gdz" (3'69)

Similarly, the first order corrections become

& . B
W~ BiK,(-i%)- Fh >, (3.70)
A n Oz Py [ e (3.71)
- T T Uy ' 2ex? J,, 1 P ‘
(w) z
w) w) P 1 W) 1 z !
’Ug ) ~ A% Jo(Zo)_ IT;-I_ 5&3[% fl( )(z)ln;;dz, (3-72)

The highest order term of the ISL solution (3.61) is O(e¢). Hence ma_,tching with the
ISL means that all the O(1) or higher terms of (3.69)—(3.72) must add to zero. Now
K,(=iZ,) ~In(z,/1) = O(e™1), so part of the ugd) correction becomes O(1) as z/l — 0

and contributes to this leading order match:
A (B % 6B K (=i%:) — g—" =0. (3.73)
i

In (3{_73), Ao, Jo(Z,), By, By, po and U; are all O(1), while K,(—iZ,) is O(e™'); at
O(e™) it follows that B, = 0 and hence that we must reject the term in K (—%Z) as

a part of the leading order solution. The remaining terms of (3.73), namely

Po
7 =0, (3.74)

AoJo(Zo) + EBI Ko(_iZo) =

e vy EXTa iR

s

T
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determine the first order coefficient B; in terms of A, and p,.

Since all corrections in the ISL are exponentially small, it is necessary to show
that the leading order solution in the ISL matches the leading order solution and
all its algebraically small corrections in the SSL. For this purpose it is convenient to
lump together all contributions to an additional distributed force for the first order

correction—
fi= f(U) fl(w}: P (U) +p(w) Ay = A&U) + AE‘”) (3.75)

__and similarly for all higher order corrections. The nth order corrections are given =
by a set of equations like (3.70)—(3.72) and matching at O(e™) with the ISL and with

the outer region gives

Ando(Zo) + €Bri1 Ko~ zZ)—-—— = 0, (3.76)

An +— f 2 (2 Ko(~iZ)dZ' = 0. (3.77)

There are algebraic contributions to the ground shear stress from all orders:

bk et e &

Tw = _Bl —¢By — €B3 — (3.78)

= 0( ) Po
B ./ 1z )K( zZ) T UK, (—iZ,)

+ O(e). (3.79)

Here we have used (3.48) and (3.74) to express the ground shear stress in terms of the
distributed force and the inner region pressure Po.
The shear stress gradient in the §SL is easily obtained by inspection of the stream-

wise momentum equations that u, and wuq satisfy; thus

Gzﬁz_‘;_;_ = ikU(uo+euw)+ f+ ik(po + €p) + w1 U’ — &ikln Cuy + O(€)

= ikUu+ f+ikp+wU' + 0(€?). (3.80)

It follows that u, and u; have associated stress gradients which match the ISL stress
gradient to O(€?); clearly the stress gradient of the next order velocity perturbation

u, will improve the match to O(€®), and so on.
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Finally we consider the particular integrals over distributed force f that appear
in (3.61) and (3.69), and the additional force integrals that contribute to higher order
corrections like (3.71). The former integrals match exactly. Corrections arising from
the latter integrals are algebraically small within the SSL, but become exponentially
small in the ISL/SSL matching region. Note that all contributions to additional
distributed forces contain the factor k. Then in the matching region defined by (3.66)
the typical force integral becomes

[t m S de! = kiemte /q5 () g d' = O(ee™V/%),  (3.81)

which is exponentially small. Hence the only O(e") SSL corrections that remain
O(¢™) in the matching region are contributions to the constant turbulent stress and
are matched by the ISL’s 7, as given by (3.78).

Jackson & Hunt (1975), in their analysis of flow over a low hill, did not subdivide
their inner region, but instead used solutions like those of the SSL here all the way
down to the ground. Consider applying the ground boundary condition u(z,) = 0 to
the SSL solution. At O(1), (3.46) gives

A, + BoKo(—iZs) — po/ Ui = 0. (3.82)

A,, B, p, and U; are by definition O(1), but Ko(—iZ,) ~ In /z, = O(e™'). Hence B,
must be zero. Since A, and p, are not free to be determined by (3.82) with B, =0, it
follows that the leading order SSL solution cannot satisfy %o(2,) = 0. Hence the need
for an inner surface layer very close to the ground.

Put more formally, the SSL solution cannot satisfy the ground boundary condition
because the ground at z = 2, lies far below the region where the definition of the SSL,
z/l = O(1), is reasonable. In the SSL, functions of the O(1) layer coordinates ( and Z
ought themselves to be O(1); but as z — 2z, we have ¢ = z/l = O(exp(—Ui/e)) < O(1)
and consequently Ko(—iZ) = O(¢7') > O(1).

Therefore, as first recognised by Sykes (1980) and later developed by Hunt et al.
(1988a), correct treatment of the ground boundary condition is impossible without an

ISL analysis.
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3.5.5 SSL shear stress and vertical velocity perturbations

The scaling of shear stress means that nth order streamwise velocity perturbations
are associated via the turbulence closure model (3.31) with (n—1)th order shear stress

perturbations. Thus the shear stress perturbation 7 is expanded as
T = E_IT_I =+ To + €Ty b g (383)

By differentiation of (3.45) (with B, = 0) and (3.70), the shear stress profiles associ-
(cf)

ated with u, and u; ' are
; Z
1= —ADZJl(Z)—;—fT—/Z Z'f(Z)V{W(Z)K,(=iZ") + iJ(Z')K\(—iZ)} dZ', (3.84)
1JZs
) = iB1 ZK1(—iZ). (3.85)

The corresponding vertical velocity perturbations are conveniently calculated by using

continuity to rewrite the streamwise momentum equations as

— U — sy = —iklp, —1f, (3.86)
— Ul — 27 = 0. (3.87)

Hence by integration,
eUiwy = tkpo(z—2) + /: () d7' — er*{r_1 + AcZ,J1(Z,)}, (3.88)
Ul = —er?{r) — a’BlaZoKl(—iZo)}. (3.89)

(

At the top of the inner region, where the shear stresses 7_; and Tod) decay exponen-
tially, equation (3.88) shows that there is no first order contribution to the vertical
velocity from Reynolds stress effects. This means that although turbulent stress ef-
fects are important at leading order within the SSL, they make no contribution to the
leading order match with the outer region. The terms in (3.88) which do contribute to
a vertical velocity at the top of the inner region represent purely inviscid behaviour.
At second order Reynolds stress effects produce a perturbation vertical velocity whose

limiting value is

eﬁwgd) — K2 B1 Z,K1(~iZ,) /U1 = —€K* B /U = €K1y, [ Ul (3.90)
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3.5.6 Discussion of the inner region solutions

The leading order solutions {u,,7-1, w;} represent a largely inviscid response to the
applied distributed force. Leading order Reynolds stresses are significant within the
SSL but not at its lower or upper boundaries. The streamwise perturbation velocity
u, tends to a constant non-zero value as z/l — 0, hence the leading order solution
alone does not match with the ISL.

At O(e€) there are three first order corrections, labelled (cf), (U) and (w). The
(cf) correction behaves logarithmically as z/l — 0, giving a ground shear stress and
combining with the leading order solution to match with the ISL. At leading order, i
therefore, the sum u,+ eugd] is a uniformly valid approximation for the complete inner |
regiomn.

The (U) and (w) corrections are conveniently represented as perturbations result-
ing from additional distributed forces. They arise respectively from approximating
the incident velocity U(z) as a constant, U(z) = Ui, and from neglect of the O(¢)
incident velocity shear dU/dz, and are calculated as the results of additional force |
distributions efl[U) = ¢iku,In( and {fl(w) = e?w1/z.

Further evaluation of the general expressions (3.71) and (3.72), for the flow per-
turbations due to ffl(U} and f](w), is not attempted here since (i) the results would not
be very illuminating and (ii) a practical implementation of this analysis can compute
these expressions using the leading order results already presented (but for additional
O(¢) force distributions). It will be necessary, however, to consider all the O(e) cor-

rections at the top of the inner region when matching with the outer region.

3.5.7 Analysis of the outer region

Take the curl of (3.28)(3.30) and neglect the turbulent stress gradients, to obtain the

governing equations for the outer region,

UU f."
iF.. . 2 o e
w (k + U)w T (3.91)
ikUu+wU' +ikp = —f, (3.92)
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ikUw+p = 0, (3.93)
iku4+w’ = 0. (3.94)
Equations (3.92)~(3.94) may be used to calculate the perturbation pressure and stre-

amwise velocity once (3.91) has been solved for the vertical velocity w. For a loga-

rithmic boundary layer, the incident shear term in (3.91) may be written

U'w —ew
=g (3.95)
so it is appropriate to solve (3.91) by writing w as an asymptotic series in €:
w = w, + ew; + Ewy + ... (3.96)
Substitute (3.96) into (3.91) and group terms of similar order, then
!
w! — kPw, = %—, (3.97)
—w
wi — kK?wy, = -zz—Uﬂ (3.98)
and so on. The general solution to (3.97) is
k2 z f(2') coshk(z — 2’
wo = Coe ™™ + Dye™ + LO 1) U(z’% ) dz', (3.99)

where the lower limit of the integral has been chosen for later convenience. Then by
continuity the leading order streamwise velocity is

") sinh k(z — z')
U(z")

. Z
b= —iCoe_kz 400,54 %— 4 zf Iz dz, (3.100)

and the leading order pressure is

¥ 2z ! . b ool
s % — Uu, = iUC,e~" — iU D€ — wf Jio'yenkMa - 7) 0

i)

(3.101)

The constant D, is determined by applying the upper boundary condition that w,
must be bounded as kz — co. This means that the terms in exp(kz) must cancel each

other above the force distribution, hence

b+ 1 [ {)emti)

! -
A o) d7 = 0. (3.102)
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It remains to determine the other constant C, and the inner region pressure p, by

matching
At firs

(3.99)—(3.101) with the corresponding SSL solutions.

t order, (3.98) shows that the O(e) vertical velocity correction can be rep-

resented as the result of a secondary force distribution ef; defined by

This corre

fl =—w,/2% (3.103)

ction is similar to the (w) correction in the inner region.

3.5.8 Matching the inner and outer regions

The detailed matching of the inner and outer regions is analysed by focusing on the

vertical ve

locity perturbation w. Matching is a two-part process. The complementary

functions of the inner and outer solutions contain constants of integration that remain

to be dete

rmined by matching and by applying boundary conditions. The particular

integrals, on the other hand, are already fully specified. The matching process includes

checking that the particular integrals are mutually consistent, which provides a useful

check on t

he individual layer analyses.

The shear stress layer is defined by 2/l = O(1), so kz = O(e) in the SSL, while

in the out

overlap re

Hence the
The SSL 1

which is 1

er region kz = O(1). Therefore an O(1) matching coordinate, x, for the

gion between the SSL and the outer region is defined by
kz 5.y, where 0<a<1. (3.104)
outer region coordinate kz is small in the overlap region where xy = O(1).
Bessel function coordinate Z in the overlap region is
7 - exp(:?:'n'/tl) 2Uékz _ exp(fw/éi)v,mfa/z_l, (3.105)
arge.

Consider the behaviour of the SSL vertical velocities (3.88) and (3.89) in the

overlap re

gion. For large |Z|, K,(—iZ) and K1(—iZ) tend exponentially to zero while
(cf)

Jo(Z) and J1(Z) become exponentially large. Thus 75"’ is negligible. 7_; is also

T -:r--:--'f e

ekl

e

e e e i e B
T —— e - .
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negligible if the matching region lies above the top of the force distribution, since the
J1(Z) terms in (3.84) cancel each other (this condition determines A,).
If the matching region does contain any distributed force, 7_; can be rewritten:

iZJy(Z) [®
kU,

ZKy(—iZ)
kU

e Z' (VK o(—iZ") dZ'+ fz 25V 0,2 dZ'. (3.106)

As discussed in §3.4, the present analysis applies to slowly varying force distributions
for which any strong force gradients 0f/dz lie well within the inner region. Hence
f(2) does not vary rapidly in the matching region. Then the exponential behaviour
of the Bessel functions in (3.106) means that the two integrals derive mainly from ' -
contributions very close to Z’ = Z, and 7_; can be evaluated approximately in the

matching region by moving f(z) outside the integrals. Hence (3.106) becomes

T

 Z,J1(Z.)ZK\(=iZ)f(2) (|2
~ o : (3.107) i

which is exponentially small. Hence 7_; is also negligible in the matching region even E

if the force distribution extends above the inner region.

PR

Thus the vertical velocity that matches at O(¢) and O(€?) with the outer region is

ikpo(z—2,) . [* (&) ,, . i€K*B1Z,K1(~i2,)
Ui ¥ 2w U e U '

(cf)

f e + ezwz e

(3.108)

]
Ly

Similar arguments applied to u, and u&d} show that the SSL streamwise perturbation
velocity for matching with the outer region is

wn P
°TRU U

(3.109)
which could equally have been obtained from (3.108) by continuity.

The inner/outer region matching is enhanced by consideration of the various O(¢)
corrections to the inner and outer region solutions. In the outer region, the O(¢)
correction due to neglect of incident velocity shear is represented as the result of an

secondary force distribution given by (3.103). Noting the exponential behaviour of
w,, partial integration of (3.103) gives

F = “’? {1+ 0(k2)}; (3.110)
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hence as kz — 0 the first order correction in the outer region matches with the (w)
correction in the inner region. Therefore it is convenient to leave (3.110) and the
inner region (w) correction to one side. Practical implementations of this analysis can
calculate these corrections for the whole flow domain as the result of a uniformly valid
add1t1onal force distribution defined by (3. 103).

The inner region (cf) correction has already been shown to be negligible in the
matching region. The inner region (U) correction is not negligible and has no coun-
terpart in the outer region because it is not necessary to approximate U(z) to obtain
the outer region solutions. Therefore we calculate the effect of the (U) correction
on the inner region solutions within the matching region. It is easiest to consider

the streamwise velocity perturbation. Fquation (3.109) shows that in the matching

region,
| u u
(U) — ?’fl s p& } —_ "Ho]]l(Z/l) o pg. ) (3 111)
“ kU, U, U U’ :

where the pressure perturbation pg ) ;s associated with the additional force f( ) in the

same way as p, arises from the imposed force distribution f. Therefore the corrected

ST, solution in the matching region is
|

(U) (U)

w B eln(z/l)) ey u, Ui €py 2

U+ €Uy | = o (1 7, U= U0 s 3 + O(€*)
if

_ _ Po ¢
= %0 T + 0(e), (3.112)

i.e. the effect of incorporating the (U) correction is to replace occurences of U b_;,r U(z).
This might have been anticipated simply because U(z) varies much more slowly than
the perturbation velocities u and w. Correcting the vertical velocity perturbations in

a similar way (noting that dU/dz = O(¢)), we obtain

e+l 4+ & (U)Niﬁf’_o%ﬁzl ff( ) 4o 4 IR BLZEA (=iZ0) (3113

U(2") U
These solutions can now be matched with those in the outer region, each incorporating
|

the same approximations and corrections.

The form of the outer region solutions in the matching region is obtained by
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substituting the O(1) coordinate x into (3.99)—(3.101):

WO = (Do C)+ i (ot DoYx + A 4 0(e), (3114)
z !

wi® = Co+ Dy+e*(D, - Co)x + gf_((zz'—)) d' +0(),  (3.115)

POM = iU(Co - D) — ie*(Co + Do)x + O(°). (3.116)

Comparison of (3.112) and (3.114), or of (3.113) and (3.115), shows that the partic-
ular force integrals already match at leading order. Then matching complementary
functions in the inner and outer region solutions for perturbation velocities gives the

following relations between C,, D, and the inner region pressure p,:

-9 9 .z
84 B, = “”Blzi‘r}{l( 1Z0) (3.117)

Po
Ua-

i(C, — D) (3.118)

Here U, is the characteristic velocity of the matching region. Together with the upper
boundary condition (3.102), these relations determine all the remaining unknowns. We
note that the O(e®) linear term in (3.115) matches exactly the linear pressure term
of the SSL solution (3.113), which in practice considerably improves the inner/outer

region matching.

3.5.9 A uniformly valid approximation

The matching process shows that the constant and linear terms of the SSL vertical
velocity match the first two terms of the Maclaurin expansion of the outer region’s
Coexp(—kz)+ D, exp(kz) for small kz. This suggests that a uniformly valid approxi-
mation may be formed by replacing the constant and linear terms of the SSL solution
by C; exp(—kz) + D, exp(kz) while retaining the other SSL terms that are important,

in the inner region but decay exponentially in the outer region:

2,2, (UVA)

wUVA) = ¢ e=k2 4 p ek 4 /z f(2') cosh k(z — 2') €

@) ——— (3119

where 7(UVA) = =17 | 4 () The “hlend velocity” Uy(z) is defined such that

Ug(z) — U for 2 <« 1 and Uy(z) — U(z) for z > [; then the force integral in
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(3.119) is a uniformly valid approximation to both inner and outer region particular
integrals. A uniformly valid streamwise velocity perturbation may be obtained from
(3.119) by continuity.

This lapproximation includes the leading order solution and all O(e) corrections
except that due to effects of incident velocity shear. Physically this correction accounts
for the vertical displacement of upstream vorticity by wUVA) | Tt may be calculated

as the leading order response to an extra distributed force €f1(w) =ewl "M |2,

3.6 Analysis of rapidly varying force distributions

In this second part of the SML analysis there is a strong force gradient outside the
inner region, which was excluded from the analysis of §3.5 for the reasons discussed

in §3.4.

3.6.1 A modified flow structure

If used incorrectly for a force distribution that is discontinuous in the outer region,
the analysis of §3.5 gives a corresponding discontinuity in the streamwise perturbation
velocity. In a real flow this is not permissible. What happens in practice is that regions
of rapid variation locally create turbulent stresses that are dynamically important and
must be included in the calculation, even though the flow outside these regions of
rapid variation may behave inviscidly. Consequently the flow structure described in
§3.3 must be modified to include new turbulent stress layers around any height where
strong force gradients occur outside the inner region. Such a modified flow structure
is illustrated in figure 3.2 for the case where just one new layer is required around the
height k. In order to establish the precise effects of this new flow structure, it suffices R |

to consider the canonical force distribution |

f = 1, Zo_‘(__zéh., : e

f =0  z>h (3.120)
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Upper Layer

Rooftop La

Figure 3.2: Modified flow structure for large wavenumbers such that [ < h.

Much of the detailed analysis of the perturbations induced by this force distribution
is similar to that of §3.5 and so will not be repeated unnecessarily. In the following
subsections we concentrate on the differences from the analysis for slowly varying force

distributions.

3.6.2 The inner surface and shear stress layers

The ISL and SSL analyses proceed as in §83.5.3-3.5.6, but now the force is constant

throughout these layers; hence uniformly valid solutions for the inner region are

uy+ eul® = eBiK,(—iZ)- %" + k_:tr—; (14 ZoJi(Z)Ko(—iZ)},  (3.121)
1}

(ikpo + 1)(z = 2) _ €RA(rED) — iB1Z, Ki(=iZ))

cf
zwg ) U, Ui

ewq + €
where
() = i B ZK1(—iZ).
B, and p, are related by the ISL/SSL matching condition (3.74) with

Z,K1(—12Z,)
Ay = —F——=
kU,

(3.122)

4
£
-]
3
e
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Thus as z/l — oo, the velocity perturbations that must match with the layer above,

including the € fl(U} corrections as in §3.5.8, are

up +eul? = -;% - % +0(e). (3.123)
4 . .9 9 o
il szécf) N egwgu) - (ikpo, + 1)(2 — 20) " 1€2.2B1 Z, K1 ( zZO)_ (3.124)

U U
3.6.3 The inviscid middle layer

Governing equations for the inviscid middle layer (IML) are the same as those used

for the outer region analysis of §3.5.7. For a constant force, the general solutions are

z cosh k(z — 2') o,

w| = Cse ¥+ D,e* +fz e (3.125)
. ) = sinh k(z — 2/
ug = —iCoe™ +iD,e" + k—zU- -H'f %—z—)dz', (3.126)
. i o
P = % U, = iUC,e* — iU D,e" — iU j a Eg%)—z—) dz'.  (3.127)

Matching between the SSL and the IML proceeds exactly as between the inner and
outer regions in §3.5.8, the only difference being that D, is not yet determined. Hence
the two matching conditions (3.117) and (3.118) link p,, C, and D, as in §3.5. A
third relation will follow from matching with the rooftop layer around z = h. To find
the IML perturbations that match with the rooftop layer, the appropriate limiting
process is k(h —z) — 0. Therefore we substitute kz = kh — €*1p, where 0 < a < 1 and
¥ = 0(1), into (3.125)-(3.127) and obtain

w, | = Coe~™ + Doe*t + 1p(Coe™* — D,e*) — 51";2—[;;—'&—) +0(), (3.128)

Up | = ;Fh- —iCye 4 iD, e + O(€%), (3.129)

s | = % _ Upuo = iURCoe~ "t — iU Do + O(%). (3.130)

3.6.4 The rooftop layer

The rooftop layer (RL) requires new consideration. The effect of a discontinuity in f

at z = h is that the mean flow changes rapidly near z = h and so turbulent stresses
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become important in a region of the flow where they would otherwise be negligible.
Mathematically, the shear stress gradient 97/9z = AT [ Az is large because the vertical
length scale Az over which the shear stress changes is smaller than it would otherwise
be at a height k above the ground. Thus the rooftop layer is constructed by defining a
new vertical coordinate relative to b and acknowledging that strong perturbation stress
and velocity gradients may exist over distances that are O(1) in the new coordinate.

To deduce the scaling of the new vertical coordinate (s and the thickness of the

rooftop layer, write

z=h+ fG/k, (3.131)

U(z) = Uy + €1¢u/(kR). (3.132)

These definitions are substituted into the streamwise momentum equation (3.32), ]
which then becomes

B+1
ik (Uh + E—#@) u+ fhﬁ +ikp = 2P 2k R’ + 28 PRIRP(Gru') — f,  (3.133)

where the prime indicates differentiation with respect to (p. Of the two stress terms
on the tight hand side of (3.133), the first is larger and is of similar order to the
advection term when khe!=2% = O(1). Hence the vertical thickness I, of the rooftop

layer is

I, = [k = O(y/eh/k) = O(VhI). (3.134)

At leading order the pressure across the RL is a constant, pg, since kl, = O(¢).
(Although it is not necessarily the same as the constant leading order pressure in
the SSL, because pressure may vary dramatically across the inviscid middle layer.)
Equation (3.133) shows that the vertical velocity term ew/h is negligible as in the
SST, but for a different reason. In the SSL the incident velocity shear €/z may be
large, but proximity to the ground means that w itself is small. In the RL w may
be significant, in fact we know that u and w are of similar order in the inviscid layer
below, but the incident velocity shear €/h is very small. Thus the leading order form

of (3.133) is identical to that of the SSL governing equation, except that the reference
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velocity and pressure are different. At leading order the general solution is
B ; Dh _
Uy = tho(—EY) rh (3135)
Uh
.Y
+L] Y' () {Jo(Y) Ko(—iY") = Jo(Y)K,(—iY)} dY".
kU Jv,
The new coordinate Y is defined by

- l
¥ =gt —2—2%2—(; (3.136)

here Y is used rather than Z to emphasise that the velocity scale in the definition is
U}, rather than U;. A possible term in J,(Y) has been omitted from (3.135) because
the particular integral has been written so as to vanish for z > h. Below z = h (3.135)

becomes

Uy = hg}x’o(—iY)—g—i (3.137)

+ﬁ {6 — Vi K1 (—i¥3)Jo(Y) + Va1 (Ya) Ko(—iY)}, z< h.

The Bessel function coordinate Y is very large in the RL, since A/l > 1. It follows
that the Bessel functions around z = h are either growing or decaying exponentially.
Moving downwards from z = h, the terms in K,(—2Y) grow exponeﬁtia]ly. Since
there is no similar exponential behaviour for these terms to match in the IML, their

coefficients must cancel each other:

iYiJi(Ya) _

- 0. (3.138)
Thus the RL solution for z < h reduces to
o=t = AR —E,  en, (3.139)
kU, U
while that for z > h is
Uo = -%S/—h)xo(—@y) " ;—1, z> h. (3.140)

In (3.139), the Bessel function term decays exponentially like exp(y/z — V) as the
RL coordinate (; — —oco for matching with the IML. Then matching the IML and

3504 H

== A0



Analytical models for turbulent canopy flows 91

RL streamwise velocities proceeds as in earlier examples, to give the rooftop pressur!e

Dh as |
ph = iUL(Coe ¥ — D,e**). (3.141)

The change in vertical velocity w across the RL due to the shear stress correction

i |
terms 1s

]

2y,
Aw®RL) f;:T; {~ (=) [V R (Y = i (Yh) [~iY Ky (—iY ")) }
h

6}“{,2 YhKl ('—‘?:Yh )YoJl (YO)
kU7 ’

(3.142)
|

which is exponentially small on several counts. Therefore the limiting values of vertical
perturbation velocity above and below the RL are equal. Hence the streamwise and

vertical velocities above the RL are

uf) = —pu/Un, (3.143)

wB = Q% 4 D,ett, (3.144)
|

These must match the upper layer solution given by |

ol = gy, (3.145)
|
wUY) = —igre*= (3.146)

Hence the final matching conditions are

g = Qg DM, (3.147)

|
—igie™™ = —pu/Us, (3.148)
= z'(C,,e""" + Doekh‘) =5/ Uy (3.149)

(3.141) and (3.149) together imply that D, = 0 and that

pr/Un = iC e kb = e_kh'po/Ua. (3.150)
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3.6.5 Comparison with a naive small k solution

By a “naive” solution we mean one which is obtained if we ignore the difficulties that
motivated this large wavenumber analysis and blindly apply the small wavenumber
solution of §3.5 to the current canonical force distribution. Substituting the canonical
force distribution (3.120) into the uniformly valid small wavenumber solution (3.119),

we obtain for z < h

UVA) _ —kz ke, [7 coshk(z —2')
'UJ( ) = CDB +Doe +\/ZO__LTQ.(Z_")—dZ’
_mzle(Z)ZhKl(—iZh) B 12k B1 Z K, (—1Z) (3.151)
kU? Ui d '
and for z > h
h !
UVA —k=z kz cosh k(z —Z )
'w( ) = Coe"‘-I—Doe —|-‘/zo——DW,)——GTZ"f
k2 ZK1(—i2)ZnJ1(Zy)  1€k*B1ZK1(-iZ)
- - : 2|
KU} U (3152)
The streamwise perturbation velocity is obtained by continuity. For z < h
z - - f -
(UVA) _ 0.~ 1 iD, eF? / isinhk(z —2) !
U = —iCe " +1D,e™ + - dz' +
Zo Uy(#') kU,(2)
_IAZ)2nEA(~iZ1) + eB1 Ko (—iZ), (3.153)
kU,
and for z > h
- k sm Y]
(UVA) _ it e—k2 L 5D e** isinhk(z —2') , ,
U 1C e +iDye"* + ./zo ___——Ug{z’) dz
_ES(A D)) | p g (~i7). (3.154)

kU,

(3.153) and (3.154) show that the naive solution for u(UY4) is discontinuous at z = h
because the jump in the inviscid response terms, i/(kUy(R)), is not cancelled exactly
by the jump in the stress gradient terms, —i/(kU;). These terms do cancel each other
under the conditions of the small wavenumber analysis, because then h lies well within
the inner region and so U, (h) = U, given the definition of Uy(z) in §3.5.9; in the large

wavenumber case, however, we have h > [ and Uy(h) > Ul
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Let us compare (3.151)~(3.154) with the solutions obtained for the five layers of
the large wavenumber analysis in §§3.6.2-3.6.4. The IML solution for leading order
pressure (3.127) shows that the first three terms of (3.153) are —p(z)/U(z), local
pressure divided by incident velocity. This tends at the bottom of the IML to —p, /Ui,
where p, is the constant SSL pressure. In the SSL, therefore, noting that Uy(2) = U,
and that J,(Z)K1(—iZ;) is exponentially small because z < h, (3.153) becomes,

identical to the large k SSL solution (3.121). In the IML, Jo(Z)K1(—1Zy) is still

exponentially small because z < hk, but now K,(—iZ) is also small because z > [.
Hence all the turbulent stress terms of (3.153) become negligible and the surviving
inviscid response terms are plainly identical to the large k IML solution (3.126).

In the z < h half of the RL, z is now close enough to h for Jo(Z)K1(—iZs) to
become important, while K,(—4Z) remains negligible. The first three terms of (3.153)
now give —pp,/Up, where p;, and U, are the constant pressure and incident velocity
for the rooftop layer. Therefore the naive solution (3.153) has exactly the same form
as the large k RL solution (3.139), except that the large £ RL solution uses the local
value of incident velocity, Uy, while the naive solution uses the value U; from far below
at z ~ [. This applies both to explicit appearances of U; or Uy in the solutions and
to the use of U; or Uy in the definition of the Bessel function coordinates Z and Y.
Exactly the same is true in the z > h half of the RL: the naive solution and the large &

solution (3.140) have identical forms but use different values for the incident velocity.

3.6.6 A uniform approximation for all wavenumbers

This detailed comparison shows that we can in fact obtain a uniformly valid approxi-
mation for all wavenumbers by means of a simple modification to the small wavenum-
ber solutions (3.151)~(3.154): the SSL incident velocity U; is replaced wherever it
occurs by the blend velocity Uy(z). The definition of Bessel function coordinate Z

becomes

3in[4 2Uy(2)k=

A
€K?

Il

e (3.155)
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and explicit occurrences of U; are also replaced by Uy(z). When, as in the small
wavenumber analysis, turbulent stresses are important only within the inner region,
this replacement has no effect, since Uy(2) & U; in the inner region. When turbu-
lent stresses become important outside the inner region, for example if there is a
strong force gradient around z = h > [, the replacement modifies the small wavenum-
ber solutions such that they become identical to the detailed solutions from a large
wavenumber analysis.

Two characteristics of this simple modification should be noted. Firstly, its effect
‘s similar to the effect in §3.5.8 of incorporating the (U) correction into the original
SSL solutions. The replacement of a fixed characteristic velocity U; by a varying
velocity U,(z) might be justified in general terms by arguing that the perturbations
in the SSL vary much more quickly than the incident velocity profile U(z) and hence
that any errors introduced by the replacement will be small. This explains why the
(U) correction, which allows for the incident velocity profile being U(z) rather than
U;, takes the form it does. The same argument is implicit in the IML solution, since
U(z) does not require approximation there.

Secondly, the modification makes no direct reference to the height A whence the
problems arise. This is a very important feature. It justifies our use of the canonical
force distribution (3.120) and shows that the same modification applies equally well to
force distributions which may include strong force gradients at a number of different

heights.

3.7 Sample results

To illustrate the analysis we present small and large wavenumber responses to a dis-
tributed force whose drag coefficient is constant up to the height A* = 60mm and
then vanishes; consequently the force in z5 < 2* < h* varies as the square of incident
velocity. The incident velocity is logarithmic with friction velocity u, = 0.64ms™! and
roughness height z} = 0.4mm. For a single wavenumber k, real and imaginary parts

of the results for a given quantity ¢ show the progression of that quantity in passing
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through a sinusoidally varying force distribution with wavenumber k: Re{¢} is the
actual profile at points where the resistance is a maximum and Im{¢} is the actual

profile at points where the resistance is zero and increasing; see figure 3.3.

resistance

\
)

=

Figure 3.3: Real and imaginary parts of a solution represent the actual profile at
different stages of passage through a sinusoidally varying resistance. The general
profile at streamwise location z is Re{¢} cos k(z —z,) — Im{¢} sin k(z — z,), where z,

is a location of maximum resistance.

3.7.1 Matching between the inner and outer regions

Figures 3.4 and 3.5 illustrate small and large wavenumber matching resp ectively. Each
figure shows real and imaginary parts of the vertical velocity w as given by the inner
region solution (3.88, 3.89), the outer region solution (3.99) and the uniformly valid
approximation (3.119). In figure 3.4 I* = 0.65m so that I* > h* and significant force
gradients are contained within the inner region. In figure 3.5 ¥ = 0.035m so that
I* < h*: the rooftop layer around h* is noticeable as a region where the gradient of w
varies rapidly. In both cases matching between inner and outer regions is good, such

that the uniformly valid approximation asymptotes correctly to the inner and outer

region solutions for z < ! and z > I and makes a smooth transition between them for

z = 0O(l).




Ana.fyt}cal models for turbulent canopy flows

L] L} Ll L}
\ \ '
' %
' ] 1
[ \ \
14F i b o
1 |I ll
} ! -
¥ ! |
!|| 1 i
i o\
1.2F ; W\ Im(w} Re(w} t -
L | H 1
[ i 1 |
1 1 ¥ I
z*/m i 1 \
i 1 ¥
! ! :
1F | |,' 1 -
i ! b
i -
i \ i
i |
i S
L | 1 1 n
0.8 : i :
! 1 i
' s ]
! Vo
1*=0.65m 1 \ 'l'
—————————— e e ————————————-'g- Jm e —
i /.
0.6F \h
"
i i
i t
1
1
0.4 ." -
: i 1
- |
l X
1 }
1 1 ¢
£l 0.2F H ‘. T
s
X
'
h‘ __________ T —-‘l
ol ‘2{’/4‘(_'.—: o -
o =TT -
L L L L L 1 L
-D.002 0 0.002 0.004 0.006 0.008 0.01
w [vertical velocity perturbation)

Figure 3.4: Illustration of inner /outer region matching at small wavenumbers, showing
real (to

the right) and imaginary (to the left) parts of the vertical velocity perturbation
w. Sin;

gle dashed lines show the inner region solution; double dashed lines show the
outer r

egion solution; solid lines show the uniformly valid approximation.




Analytical models for turbulent canopy flows 97
1 1
1 1
] 1
1 1
a4k |1 1
1 1
1 )
1 1
1 1
1 1
i) 1 1
i l 1 1
{ 1 I
12f ! v
1 i !
st 1 1
I 1 1
p= - 2* fm ] 1
e H :
. : :
i ik | .
_.'. i :
i 1 ¥
) i '
o [ 1l
' :‘
" [\X:1 [ .
I|' : l! | il'
: r | &
A [ T
. [ e
1 [
- [
B o6k | g |
Y ! p)
it ] ’
. ] ’
% 1 I
: ;
1 54
1 L4
1] ,
4 0.4F I 7
i i ,
N ' ,“
4 1 -
U F
" : ,!' f
¥ L4
¢
o2k /
A . i,
i N Im(w} . . I
.'I' "! R G .‘
, O i sttt gt :
) Nl :’.4-:_{_'__ e i L S s e s i e . e .. . s = —
i oF (‘F“-..ﬂ-‘-"“-___ 1*=0.035m - {
0  0.002 0004 0006 0.008 001 0012 0014 0016 0018 0.02 0022 '
-;, w (vertical velocity perturbation)
#
7 - . ) . . . . . ]
Figure 3.5: Hllustration of inner/outer region matching at large wavenumbers, showing
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3.;7.2 Small and large wavenumber responses

Figures 3.6-3.9 show the uniformly valid perturbation velocities, pressure and tur-
bulent shear stress that comprise the response to a slowly varying force distribution.
Dashed lines show the effect of including the O(e) incident velocity shear correc-
tion. Notice how the spread of streamwise velocity defect increases as the flow moves
dorvnstream from the location of maximum resistance (profile = Reu) to that of zero
resistance (profile = — Im u), showing the diffusive effects of turbulent stress. Corre-
spondingly, — Im 7 shows a constant stress layer above z* = h* which is not evident
in the Re 7 profile further upstream.

Figures 3.10-3.13 present similar results for a rapidly varying force distribution.

Here the flow is quasi-inviscid, except for turbulent stress effects which meet the no-

slip condition at the ground and smooth out sharp gradients in the rooftop layer.

1
Hence the streamwise velocity is largely confined to z* < 2* < h*, turbulent stress is §
small except near the ground and near 2* = h*, and the pressure profile is like that lai
associated with outflow from a source.

7
[ |
il
el
.,i

The effect of the incident velocity shear correction is generally to increase the
magnitude of the streamwise velocity perturbations. In 2* < h* the deceleration due
to resistance is increased by this correction, while in 2* > A* at large wavenumbers
the acceleration over the top of the distribution is increased. Similarly, in turbulent

flow over a low hill the incident shear correction increases the speed-up over the crest

of the hill.
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Figure 3.12: Perturbation pressure at large wavenumbers: real part to the left, imag-
inary part to the right. Dashed lines show the effect of inclu

ding the incident velocity
shear correction.
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3.8 The displaced mixing length turbulence model

According to the discussion of §3.1, the SML turbulence model becomes invalid if mean
flow changes are strong enough to change the structure of the turbulence from that in
the incident flow. In this section a new turbulence model is developed that takes into
account such strong effects of mean flow changes on the turbulence. This “displaced”
mixing length model is then used in a new analysis of the flow field perturbations due

to a region of distributed resistance.

3.8.1 Effects of a rooftop shear layer

When the buildings in a group have approximately equal heights, the force distribution
used to model them has a well-defined, coherent “rooftop,” where the distributed force
decreases rapidly from its maximum value to zero.

The inviscid response to such a force distribution (chapter 2) includes a strong
shear layer around the rooftop height, in which the vertical gradient of streamwise ve-

locity increases following the flow in proportion to the loca] distributed force gradient:

56;? % x —gé (3.156)
In the limit in which the distributed force is discontinuous at the rooftop height, the
inviscid response streamwise velocity is discontinuous also. According to the model
of §83.5-3.6, the rooftop shear layer’s strength is reduced in the turbulent flow by the
mixing action of turbulent shear stresses, but the shear layer is still strong enough to
dominate flow around the rooftop height.

Such strong shear layers can have a significant effect upon the turbulence above
and below them. Two quite different mechanisms both suggest that a strong shear
layer acts to block turbulent motions across it. Firstly there is the dissipation mecha-
nism described by Hunt et al, (1988b) and Belcher et al. (1991a, 1991b) and illustrated
schematically in figure 3.14. Turbulent eddies that enter the shear layer are stretched

out by the shear flow to an elongated shape. Hence vertical velocity gradients are

amplified and turbulent dissipation increases. The shear flow inhibits motion of tur-
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';Figure 3.14: The effect of a strong shear layer in increasing turbulent dissipation.

bulent eddies across the shear layer and leads to weak correlation between the flows
ahove and below the shear layer. The increased turbulent dissipation within the shear
layer can be modelled as a reduction in the turbulent mixing/dissipation length scale;
helnce the above authors’ shear-dependent mixing length model,

| st _ A, As8U

| il L (3.157)
known as the Shear Blocking Mixing Length model.

- Secondly, recent studies by Craik (1991) and Hunt (unpublished) investigate a
pu'[rely inviscid effect of strong shear layers, illustrated schematically in figure 3.15.
Inviscid analysis of a travelling linear disturbance above a vortex sheet shows that
thlfre is no induced disturbance below the vortex sheet if the phase speed of the
disturbance equals the advection velocity U. Extrapolation of this result to the case of
tw‘rbulent eddies advected by the mean flow above a strong shear layer again suggests
that a shear layer acts to block turbulent motions across it and hence provides a

reference level for the turbulence above and below.
The effects of these blocking mechanisms will now be investigated in the context

of iﬂow through a group of buildings.
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linear disturbance
with phase speed ¢

................................................................ vortex sheet

turbulent eddy

no induced disturbance here if U=c

Figure 3.15: The effect of a travelling linear disturbance above a vortex sheet.

3.8.2 The shear layer produced by a group of buildings

There is good reason to suspect that the distributed force model actually underesti-
mates the strength of the rooftop shear layer. To obtain a physical picture of how
shear layers are created, it is useful to step back from the distributed resistance model
and consider explicitly a group of obstacles in a turbulent boundary layer (figure 3.16).
Vorticity created along an obstacle’s upper surface is shed from the trailing edge of
that surface to form a thin shear layer (cf. the experiments on single surface-mounted
obstacles by Castro & Robins 1977). This vorticity is advected downstream towards
the next obstacle and also diffuses vertically, so that the shear layer spreads. The
shear layer spreads more down towards the ground than upwards because average
wind speeds between the obstacles are much lower than those just above them, and
because the shed vortices are deflected downwards by their own induced velocity field.
Immediately above each building’s roof, turbulent eddijes are blocked by the roof sur-
face and so the length scale of the turbulence should scale on height above the roof.
Hence turbulent mixing here is much less vigorous than that in the SML model used
in §§3.2-3.7 and the rooftop surface shear layers are much more concentrated in reality
than in the model. Therefore the rooftop shear layer as a whole, comprising boundary

layers on building roofs and free shear layers between buildings, is likely to be rather

_—,.._._—

S e
B>
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Figure 3.16: The spreading of shear layers shed from obstacle roofs. The dotted lines

indicate the approximate extent of the spreading shear layer; the dashed line shows

its horizontally averaged mean height.

stronger than that in the SML distributed force analysis.

Clearly a new turhujence model is required to take account of the effects of a
concentrated rooftop shear layer. The new formulation is an attempt to account for
some of the single obstacle-scale influences on the flow, particularly in the vicinity of

the rooftop, that were lost during the horizontal averaging operation.

3.8.3 The displaced mixing length model

The proposed new model is illustrated schematically in figure 3.17. The principal
effect of a concentrated shear layer is to inhibit turbulent motions across it: the
turbulent length scale wit%hjn the shear layer is reduced and turbulent eddies above
the shear layer appear to he blocked as though by a solid surface at a reference height
within or just below the shear layer. This behaviour can be modelled by defining a
displacement height d and a roughness height 2/ for the turbulent mixing within and
above the shear layer. The displacement height d is the reference level with respect
to which eddies above the shear layer appear to be blocked. The roughness height

2, parameterises the turbulent mixing and dissipation within the shear layer: k2! is
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Rooftop
Inner Region
;,7" B B N -2 S
a¥ Canopy

Mixing Region

Figure 3.17: Flow structure for the displaced mixing length model.

the minimum value of the turbulent length scale there. Note, following Panofsky &
Dutton (1984, chapter 6), how the roughness height is primarily a dynamical measure
of turbulent mixing, not a geometrical measure of roughness elements on a surface,
and so may be used to parameterise turbulent mixing at any interface whether or not
roughness elements are present.

In the “canopy mixing region” below z = # a new model is used. The field and
wind tunnel experiments of Davidson et al, (1995a,b), on flow through an array of
cubical obstacles, showed that the turbulence length scale within the obstacle canopy
was much smaller than that in the incident fow. This suggests that the turbulence
between obstacles is dominated by high intensity small scale turbulence genera.ted by
vortices shed from individual obstacles. In many canopies, where horizontal obstacle
dimensions are smaller than obstacle heights, the resultant turbulent mixing will be
(i) on a smaller length scale than the blocking length scale k2 and (ii) uniform over
most of the depth of the canopy (assuming the horizontal obstacle dimensions are
approximately constant with height). Thus the turbulence in z, < z < 3 is modelled

here by a constant eddy viscosity. The laminar viscous analysis of §2.9, which uses a
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constant eddy viscosity, is therefore appropriate for the canopy region z, < z < 3.
Once general solutions for the upper flow and the canopy mixing region have been

obtained, they are matched together at z = % by requiring streamwise velocity, vertical

velocity, pressure and shear stress to be continuous. If the turbulent mixing length is

'discontinuous, as shown in figure 3.17, it follows that the streamwise velocity gradient

‘will be discontinuous also.

3.8.4 Interpretation of the model parameters

According to the discussion of §3.8.2, the new model parameters should be related to
the geometry of the rooftop shear layer. The distortion of turbulent eddies illustrated
in figure 3.16 suggests that z, is of the order of the shear layer thickness and that the
sum Z = d+ 2! is the mean height of the shear layer. Hence d and z{ are determined
by the distribution of obstacles within a group, in particular by obstacle density. In
a dense array with little space for the shear layer to spread between obstacles, d and
2, are determined mainly by the boundary layer on the obstacle roofs, i.e. by the
obstacles’ height and the surface roughness of their roofs. Conversely, in a sparse
array where the shear layer spreads down to the ground between obstacles, d < h and
2} is determined mainly by the roughness of the ground.,

Note that the roughness height z! used here to describe turbulent mixing within

the shear layer is not equivalent to the roughness height z; that is obtained by fitting
a logarithmic profile,
Z — dl

i*(z) = et Aty — (3.158)

to the flow above the buildings. The connection between z, and 21 will be examined in
chapter 5. The parameter d, on the other hand, can be identified with the displacement
height d; in (3.158). The question therefore arises: is the notion of d as some measure
of a spreading shear layer compatible with other interpretations of the displacement
height?

Thom (1971) observed experimentally that the level d, at which the drag on a

rough surface appears to act coincided, to within experimental error, with the dis-
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placement height d; obtained by fitting the model profile (3.158) to the flow above
the surface. That is, he found that

dy =d, = p, /7, (3.159)
where p, is the streamwise moment per unit area about the surface and 7, is the
streamwise force per unit area. Jackson (1981) showed that the idea of a reference level
or displacement height, at or near a rough surface, is implicit in the usual derivation,
using dimensional analysis, of the logarithmic profile; otherwise the logarithmic law
would not be invariant under a translation of the vertical coordinate system. Following
Thom’s observation, Jackson then proposed (3.159) as a reliable model for predicting
the displacement height over any rough surface. Neither Thom nor J ackson, however,
suggested a physical mechanism to explain why the displacement should obey (3.159).

The strong shear layer mechanism discussed in §§3.8.1-3.8.2 could be the missing
link. The shear layer determines d by blocking turbulent motions across it, hence
providing a reference level for the turbulent eddies above; the reference level then
appears as a displacement height in the observed velocity profile (3.158). The shear
layer also characterises the flow field that impinges upon downstream obstacles and
thus controls the force and moment that act upon the surface. Therefore a relationship

such as (3.159) between displacement height and forces on the surface is to be expected.

3.8.5 Velocity profile calculation in z< %

The canopy mixing region (CMR) flow is calculated using the analysis of §2.9 with
Re = U./(2¢5%)), where Ue = U(2) is the canopy velocity scale and ) is the constant
mixing length. From (2.29)(2.31), the general solution for the perturbation stream-

function 9 is expressed in terms of two complementary functions q1(k, z) and q2(k, z)
and a Green’s function 9(k, z; 2'):
Re %0
tb(k, z) = SIQI('I"'-: Z) + 32g2(k7 2:) e E"\/ b;‘:‘ 2’)3("&1 Z; Z’) dzra
[ Zo

where

2

¢1(k,z) = sinho(z- 25) — %sinh B(z - z,)
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%2(k,2z) = cosha(z - Zo) — cosh B(z — 25
n = sinha(z—2)  sinhg(z— z')
and  g(k, z; ') ala? — 57y " ﬂ(az(— 7
Recall from §2.9 that g = |k| and o?

I

= k? 4 ikRe such that the real part of a is

non-negative. Then the perturbation velocities, pressure and shear stress are given in

terms of 1) by

_ 99

u = ‘b?, (3.160)

w o= —iky; (3.161)
L AP .3 % f

K (5:3“"’5)‘*”‘”6“37;@ (882)
_ 20 (., @

These profiles depend implicitly on the constants s; and s, which are to he determined

by matching with the upper part of the flow. Thus at z = 3 we have

U=u(Zs1,8); 1= w(Z;81,82); p= p(%51,83); 7= 7(Z; 51, 82),

which are all linear functions of s; and S3.

3.8.6 Velocity profile calculation in z > 3
|
The upper flow is analysed using the methods developed for the

SML analysis in §83.5—
3.6. The main differences are that (i) the

flow is displaced upwards by a distance Z—2z,
wnd (ii) the lower boundary condition is u(z) =

as

(%, ) instead of u = 0. Here we focus

m the smaller wavenumber analysis, such that there are no strong force gradients in

~

—+

he outer regjon of t}:}e flow. Large wavenumber results may be obtained by following

he approach of §3.6 iwith appropriate modifications.

=t

Asymptotic structure of the upper flow

he upper limit z of the rooftop inner region (RIR) is determined, as in §3.3, by the

lance between time scales for advection by the mean flow and for turbulent eddy

114
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adjustment. Taking into account the new reference level d for the turbulent eddies of

the upper flow, the time scale balance is

1 NZf—d

kU*(z) ~  wr (3-164)
Therefore the vertical size of the RIR, | = z; — d, satisfies
kg (3.165)
Zo

The small parameter ¢ is defined as in §3.3, namely ¢ = In"Y(H/z,). It remains true

that kI = O(e¢) since d = O(H). The RIR velocity scale is defined by

!
U = lad ) =ein 2T (3.166)

(2]

so then the incident velocity profile in the RIR may be expressed as
zZ

d+1

U(Z) =Ui+e€ln (3.167)

It is not necessary to subdivide the RIR. because U(z) is well approximated by U,
throughout the region.
The rooftop inner region

In the upper flow, the turbulent mixing length is K(z — d). Therefore the turbulent

stress model becomes
o 2(z—d)du

= (3.168)
Define the RIR coordinate ¢ = (z — d)/l; the governing equations are then |
k(U + O())u+ ewl/z +iklp = 2er*(CulY — If; If3.169)
k(U1 + 0())w+p' = 2ikles?(u’; (3.170)
tklu+w' = 0. (3.171)

The non-zero vertical velocity at z = 7 means that the leading order streamwise

momentum equation differs slightly from (3.38): _ '

klUu, — 2ex*(Cul) = —1f — ikip, — ewl/z. (3.172)
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|The last term in (3.172) is another manifestation of the O(e€) additional force distri-
bution ew/z that may be applied to the whole of the upper fl

ow. Putting this term
to one side (for later correction),

the general solution is

Uy = AOJO(Z)+BOK°(~3'Z)—%3
I

(3.173)
1 4
L / ZIENIADEA=iZ) - 1,(2')K (~i2)} az.
kU, Jz
where
Z= ea*"r/‘*\/ QU”"(""; .} (3.174)
€K
A

o is determined by the constraint of boundedness as ¢ — oo:

%. ! ' =l ; 4
oot f(')Ko(~i2")dZ" = 0,
| A, kU;./' Zf(Z)Ko(—iz")dZ' = ¢
T

§3.5 except that now fl(U) = tkuo(U - U;)/e. Then the streamwise

velocity boundary
ndition at z = z, namely u(2) = @, shows that B, = 0 as before and that

co

AoTo(Z) + €B1 K (~iZ) — % = i (3.176)
{

5 5 3 . £) .
fferentiation of the streamwise velocities t, and (%) 1ves the shear stresses:
1

1 = —AZ5(2) (3.177)
- | Z
i1y ZI DK7Y + i1y i)y as
tJZ
i) — iB1 ZK\(~iZ). (3.178)
The vertical velocity is w = ¢ + ewy + ezwgd) + ..., where
Uwy = ikpy(z— Z) + [ f(7') d2' — ex*(r_; + AOZJl(Z)); (3.179)
Vrwf = _ex2(r() _;p ZK\(~iZ)). (3.180)

As
RIR

[ N

n the SML analysis, incorporation of the O(e) flfU} correction at the top of the

converts occurrences within these solutions of the RIR velocity scale U

to the
Y varying incident velocity U(z).

slowl]

§, U0
.I{?
i
{l 0
i)

i

51-

|
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The outer region

! |
Governing equations for the outer region are identical to (3.91)~(3.94). To reflect the

displacement of the upper flow, it is convenient however to use exp tk(z — d) as the

; complementary functions of these equations rather than exp +kz as in the standard

mixing length analysis. The leading order solutions are i

w, = Coe—k(zﬂd)+Doek(z—d)+‘/:z f(z')coshk(z - 2) |

e dz'; (?.181)
Yo = —iCe™*(=d) | ip Hk(=—d) (3.182)
if . Pl sinh k(z — 27) !

[ =, |

Po = % — Uu,. (3.183)
Here D, is determined by the condition of boundedness as kz — 00, namely
|
1 poo f(zr)e—k(z'—d) pl

Do + Eé "‘_‘W———-dz =0. (3'184)

Matching the rooftop inner and outer regions

The O(1) matching coordinate X for the overlap region between the ro
outer regions is defined by

oftop inner and

|
k(z —d) = ey, where 0<a <1, (3.185)

Matching the leading order vertical perturbation velocities in the overlap region gives
w=C,+ D,; (3'186)

the particular integrals over f match automatically. Matchi

z |
ng the perturbation pres-
sures gives

Po = tUI(C, — D,). (3.187)

3.8.7 Matching the canopy region and upper flow analyses

The entire upper flow solution is linearly dependent on the velocity perturbations at

the top of the canopy mixing region, # and @, and therefore on s; and 2. The values
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of 51 and s, are determined by requiring that the CMR and RIR pressures and shear
stresses are continuous at » — z

In practice it is easiest to do this by taking advantage of the linearity in s; and
'82. Calculate the discrepancies in pressure and shear stress when $1 =8 =0 (=
Apoo, Atop), when S1 = 1,83 = 0 (— Ap1o, A7yp) and when 1 = 0,8 = 1 (—
=Ap01,Argl). Then the required values of 51 and s, are given by

(Apo1 — Apog)Arge — (Ato1 — Ag0) Apgo .

(Arp; — AT{]D)(APID — Apoo) — (Apo; — Apoo)(ATm — Arg)’

(A7yo — A700)Apoo — (Apyg — Apoo)Atgg
(Arg — A1o0)(Apyo — Apoo) — (Ape; — Apoo)(ATyp — ATpg)”

S1 =

S2

3.8.8 Sample results

The displaced mixing length analysis introduces three new parameters that describe
different aspects of the internal structure of a group of obstacles. These are A, the
constant mixing length within the canopy mixing region, 2, the depth of the canopy
mixing region, and %, the roughness height of the interface between the canopy mixing
rq!gion and the linear mixing length flow above. In figures 3.18-3.20 we attempt to
illustrate the impact each parameter has on the streamwise velocity perturbation by
varying a single parameter in each figure. Thus figure 3.18 shows results obtained
using a “central” parameter set, results with \ less than its central value, and results
with A greated than its central value; similarly figures 3.19 and 3.20 illustrate variation
of 2/ and 3 respectively. The values of al parameter sets are given in table 3.1. In
addition, the dotted line in each figure shows the streamwise velocity perturbation
predicted by the SMI, analysis. Figures 3.18-3.20 are calculated for the same force

distribution and wavenumber as the small Wavenumber SML sample results.

Variation of )\ (figure 3.18)

As A increases there is more efficient mixing over the depth of the canopy region.
Hence velocity gradients are increasingly inhibited and the maximum velocity deficit

is reduced. By continuity, the streamwise velocity deficit leads to a vertical velocity

e
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L
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are 3.19: Variation of z). The inset shows the mixing length profiles for each of

results graphed below. The dashed arrows indicate Increasing e
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Figure 3.20: Variation of 3. The inset shows the mixing length profiles for each of the

results graphed below. The dashed arrows indicate increasing 3.
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M| z/m [ sn | = ajn]
Central parameter set 1 1 3 1
Reduced ) 4 1 2 L
Increased X\ 1 1 3 1
Reduced 2/ 1 L 3 u
Increased 2/ 1 : 3 0
Reduced 3 1 :_ 1 0
uncreased Z 41 % 9 1%

Table 3.1: The values of A, 2, and % used in figures 3.18-3.20.

sfi?reamwise velocity above the canopy. Since the parameters of the flow over this

vertical perturbation velocity, zoand d = 3 — 2}, are held constant, the speed up

above the canopy increases or decreases with the velocity deficit within the canopy.
In the DML model the mixing length remains constant even very close to the

ground where the blocking scale z must eventually dominate the canopy turbulence

icant velocity gradients that would be permitted near the ground by a mixing length
of ?rder Zo, the surface roughness, are inhibited by the constant DMT, model mixing
lenFth. This is a model weakness that could be compensated by reducing A to a form
X z near the ground. Such a refinement is not attempted here because it might not be
pra,:ctica,l to make measurements that are consistent with the distributed force mode]

so close to the ground.
|

|
Variation of z/ (figure 3.19)

The interface roughness height or minimum mixing length in the shear layer, 2/, de-

termines the gradients of streamwise velocity just above » — Zz: smaller 2/ gives larger
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velocity gradients. Since speed up above the canopy is small compared with the max-
Imum velocity deficit, the maximum velocity deficit is influenced by velocity gradients
above z = 7 and hence by 2]. The canopy mixing region adjusts to meet this velocity
deficit by changing its velocity perturbation only very close to z — Z; cf. figure 3.18, in
which variation of )\ causes variation of velocity perturbation throughout the canopy

mixing region.

Variation of # (figure 3.20)

The inset graph shows how the mixing length starts increasing at z = % from its
minimum value in the canopy mixing region. Since z, = X for the cases shown in
figure 3.20, 7 determines the extent of the flow domain where the minimum mixing
length applies. Increased 3 means that stronger velocity gradients are allowed over
more of the flow. The results with Z/h = 2 show particularly strong gradients above
the canopy; these are effectively laminar viscous results, since velocity variation above

# = 2h appears insensitive to the turbulence model.

3.9 Turbulence model sensitivity

Since the DML analysis of §3.8 includes the SMT, analysis as a special case (2 =2=
2,), the effects of varying the three DML parameters provide a good indication of the
general sensitivity of the turbulent flow problem to changes in the turbulence closure
model. On the one hand, the sample results exhibited in §3.8.8 show that dramatic
changes in the streamwise velocity perturbation profile, e.g. up to 100% change in [the
maximum velocity deficit, can be effected by varying the DML parameters. On the
other hand, they also show that such dramatic changes require extreme parameter
values and that there is a large parameter space within which the theoretical predic-
tions vary rather little. Even when extreme parameter values are used, the qualitative
shapes of the perturbation quantity profiles remain similar in all cases.

In particular, the sample results show that the DML model with constant mixing
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length in the force distribution can give very similar results to the SMI, model if the
DML parameters are chosen appropriately (with the exception of the z = O(z,) layer
near the ground where the SML model gives much stronger velocity gradients). This
insensitivity of the turbulent analysis to the way the mixing length varies within the
canopy is encouraging: it suggests that reservations over the use of a single length
scale in the turbulence mode] are less relevant than originally expected.

The following chapter presents comparisons of the SML and DMI, results with

experimental data and numerical simulations.







