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Appendix B� Details of the numerical method

Following Rogallo ���

� ����	� consider a spatially linear mean �ow component

Ui � Ui�jxj � aijxj � �B �	

where aij � Ui�j depends only on the time t� Decomposing into this mean �eld and a
��uctuating� �eld �which may have a mean component� such as the wake mean shear in
the cases considered in this paper	 one has

ui���x 	 � aijxj � �ui�
��
�x 	 �B �a	

p���x 	 � P ���x 	 � �p�
��
�x 	 � �B �b	

where the tilde coordinate system follows the linear mean �ow �strain	 according to

�xi � Bij�t	xj �B �a	

�Bij �Bikakj � � � �B �b	

and the overdot indicates di�erentiation with respect to time� For the case of a uniform
irrotational strain� equation �B �b	 leads to

B���t	 � B�
��exp

�
�
Z t

�

a���t
�	dt�

�
� �B �	

where B�
�� � B���t � �	 and similar expressions hold for B�� and B�� �with a�� and a��

replacing a��� respectively	� After some manipulation� the continuity equation ����	 and
momentum equation ����	 become

�ui��jBji � � �B 
	

��ui
�t

� aij �uj �Bkj��ui�uj	��k �
�

�
Bji �p��j � �BkjBlj �ui��k�l � �B �	

with the evolution of the explicit mean �eld being given by

� �aik � aijajk �xk �
�

�
P �i � � � �B 
	

the solution of which� for the case of irrotational strain� is given by equation ����	�
Equation ����
	 governing the Reynolds stress evolution transforms to

�u�iu
�
j

�t
� � aiku�ju

�
k � ajku�iu

�
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�
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�
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� �BlmBkm

��u�iu
�
j

�xk�xl
� �BlmBkm

�
�u�i
�xk

�u�j
�xl

�
�u�i
�xl

�u�j
�xk

�
� �B �	

where the tildes have been omitted for simplicity and Ui no longer includes the mean �ow
associated with the transformation �just the wake shear for the case considered here	�
Note that the strain production of turbulence now appears explicitly in the equation and
that the convective part of the substantial derivative is zero in this coordinate system
�moving� with the mean �ow� A similar analysis of the rotational form of the Navier�
Stokes equations yields

��ui
�t

� aji�uj � �
��
�u ����� 	i �Bji�

�

�
�p�

�uk�uk
�

	��j � �BkjBlj �ui��k�l � �B �	

where� for the case of irrotational strain� the same mean equation �B 
	 applies� Note
that for irrotational strain aij � aji and the linear terms of equations �B �	 and �B �	
are the same� The Reynolds stress evolution equation associated with this form of the
Navier�Stokes equations is

�u�iu
�
j

�t
� � akiu�ju

�
k � akju�iu

�
k � u�i�

��u ���� 	�j � u�j�
��u ���� 	�i

� u�iBkj
��p���� q���	

�xk
� u�jBki

��p���� q���	

�xk

� �BlmBkm

��u�iu
�
j

�xk�xl
� �BlmBkm

�
�u�i
�xk

�u�j
�xl

�
�u�i
�xl

�u�j
�xk

�
� �B ��	

where again the tildes have been omitted for simplicity�
Similarly� the evolution equation for the vorticity ���i � �ijkBlj �uk��l	 in �rotational�

form transforms to

���i
�t

� aij ��j � �ijkBlj�
��
�u ����� 	k��l � �BkjBlj ��i��k�l � �B ��	

where �ijk is the alternating symbol de�ned to be one if the subscripts i� j� k are in cyclic
order� �� if they are in anti�cyclic order� and � otherwise �if two or more su�xes are the
same	� No equation governing the mean vorticity associated with the transformation is
required because it is zero for the irrotational strains considered here�
Decomposing the passive scalar quantity into a uniform �but time�evolving	 mean

scalar gradient and ��uctuations� in the moving coordinate system we have

T ���x 	 � T �j�t	xj � ���
��
�x 	 � �B ��	

The equation governing the scalar �uctuations is then given by

���

�t
� T �j �uj �Bji�ui����j � 	BkjBlj

����k�l � �B ��	

where T here includes only that portion of the mean scalar associated with the transfor�
mation and is governed by the constraint

�T �j � aijT �i � � � �B ��	

which has as its solution for the case of irrotational mean strain

T �� � T ���t � �	e�a��t � �B �
	

where similar equations apply for T �� and T �� with a�� and a�� replacing a��� respectively�
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It should be noted that if there is a non�periodic component to the mean velocity in
the strained coordinate system� then an equation similar to equation �B �
	 applies to
the explicitly carried non�periodic portion of this mean� For example� consider a strained
mixing layer� which has a mean velocity di�erence across the layer in addition to the
mean �ow associated with the global strain� In this case the non�periodic function Ue�y� t	
explicitly carried to account for the non�periodic boundary conditions evolves according
to

Ue�y� t	 � Ue�y� t � �	e�a��t � �B ��	

If a�� � � the explicitly carried function is constant as in the unstrained cases� Otherwise�
the explicitly carried velocity di�erence must change in time as given by equation �B ��	�
The analytical solutions for laminar strained free shear layers given in Appendix C are
useful for understanding this and for testing codes developed to simulate these �ows�
As done in Spalart et al� �����	� after Fourier transforming in x and z �yielding b�i	� the

vorticity is projected into a coordinate system parallel and perpendicular to the �kx�kz	
wavevector� However� this projection now includes the e�ect of the Bij �s associated with
the strain�

b�k � B��kxb�x �B��kzb�z
k

�B �
a	

b�� � �B��kzb�x �B��kxb�z
k

� �B �
b	

where k �
p
B�
��k

�
x �B�

��k
�
z and both the tildes indicating the moving coordinate system

and the primes indicating turbulence �uctuations have been dropped �all equations given
below are in this moving frame and deal with �uctuating quantities	� The solenoidal
character of the vorticity is expressed as

ikb�k �B��
�b�y
�y

� � � �B ��	

the kinematic relationship between the vorticity and the velocity is given by

�ikbu� � b�y �B ��a	

r�bv � B�
��

��bv
�y�

� k�bv � ikb�� � �B ��b	

and continuity requires that

ikbuk �B��
�bv
�y

� � � �B ��	

where again k is modi�ed as above to include the Bij �s� Note that for the mean �ow
�kx � �� kz � �	 the projection �B �
	 is unde�ned� For this mode the equation �B �	 is
used to advance the U and W velocities as in Spalart et al� �����	�
The governing equations for b�k and b�� can be obtained from those for b�x and b�z

�equation �B ��	� keeping in mind that k and Bij are functions of time� This results in
the set of equations

�b�k
�t

� B��
�

�y
���u ���� 	� � �

�
B�
��

��b�k
�y�

� k�b�k�
�

B�
��k

�
xa�� �B�

��k
�
za��

k�
b�k �B ��	

�b�y
�t

� a��b�y � ik���u ���� 	� � �

�
B�
��

��b�y
�y�

� k�b�y� �B ��	
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�b��
�t

� �B��
�

�y
���u ���� 	k � ik���u ���� 	� � �

�
B�
��

��b��
�y�

� k�b���
�

B�
��k

�
xa�� �B�

��k
�
za��

k�
b�� �

�B��B��kxkz�a�� � a��	

k�
b�k � �B ��	

where only the b�y and b�� equations are advanced computationally �b�k being determined
from the solenoidal character of the vorticity �eld� equation �B ��	� In the above equations
and below the quantity ���u ���� 	i is the �kx� kz	 Fourier transform of the ith component
of the �uctuating �turbulent	 part of the cross product of u and �� where in this instance
u and � include any mean component not explicitly accounted for by the transformation�
This term can be written as

���u ���� 	i � Bji�ukuk��	�j �Bjk�uiuk	�j � �B ��	

where the projection in equation �B �
	 can be used to obtain ���u ���� 	k and ���u ���� 	��
Note that from all these equations the unstrained wake equations used to generate the
simulations in Moser et al� �����	 can be recovered by taking Bij � 
ij and setting
aij � ��
Besides the Poisson equation given in equation �B ��b	� the following Poisson equations

are useful for consistently computing various statistics in the Reynolds stress balance�

r�buk � �B��
�b��
�y

�B �
	

r� �bv
�t

� ik
�b��
�t

� �bv�B�
��k

�
x�a�� � a��	 �B�

��k
�
z�a�� � a��		

�
ib��
k

�B�
��k

�
x��a�� � a��	 �B�

��k
�
z��a�� � a��		 �B ��	

r� �buk
�t

� �B��
�

�y

�b��
�t

�B��a��
�b��
�y

� �buk�B�
��k

�
x�a�� � a��	 �B�

��k
�
z�a�� � a��		 �B �
	

r��p��	 � �BjiBkl
�bui
�xk

�bul
�xj

� �Bjiaik
�buk
�xj

�B ��	

r��p��� bukbuk��	 � Bji
�

�xj
���u ���� 	i � �Bjiaki

�buk
�xj

�B ��	

r�B��
�

�y
�p��� bukbuk��	 � B��

�

�y
Bji

�

�xj
���u ���� 	i � �B��

�b�y
�y

B��B��kxkz�a�� � a��	

k�

� �B�
��

��bv
�y�

B�
��k

�
x�a�� � a��	 � B�

��k
�
z�a�� � a��	

k�
� �B ��	

Note that in all these casesr� includes the Bij �s as de�ned in equation �B ��b	� To recover
the time derivatives of the velocity components u and w� the projection expressions

bu �
B��kxbuk �B��kzbu�

k
�B ��a	

bw �
B��kzbuk �B��kxbu�

k
�B ��b	

can be used to �nd that

�bu
�t

�
B��kx
k

�buk
�t

� iB��kz
k�

�b�y
�t

�
B��B

�
��kxk

�
z�a�� � a��	

k�
buk



Strained plane wakes 


�
iB��kz
k�

B�
��k

�
x�a�� � �a��	�B�

��k
�
za��

k�
b�y �B ��	

� bw
�t

�
B��kz
k

�buk
�t

�
iB��kx
k�

�b�y
�t

�
B�
��B��k

�
xkz�a�� � a��	

k�
buk

�
iB��kx
k�

B�
��k

�
xa�� �B�

��k
�
z��a�� � a��	

k�
b�y � �B ��	

As always� the unstrained expressions can be recovered by setting Bij � 
ij and aij � ��
The method of Corral � Jimenez ����
	 can be extended to the moving coordinate

system by �matching� at a cross�stream domain boundary that is �xed �at ��	 in the
�moving� cross�stream coordinate� As noted above� Fourier modes are used to represent
the vorticity in this transformed direction� thus equation �B ��b	 can be written as

bvper � � ik

K�
b�� � �B ��	

where K �
q
B�
��k

�
x �B�

��k
�
y �B�

��k
�
z and vper is the cross�stream velocity associated

with the periodic array of vorticity �elds� The actual cross�stream velocity must be deter�
mined by adding the appropriate amount of a potential solution vpot �where�K�bvpot � �	
to obtain the correct non�periodic boundary conditions� The solution is given bybv � bvper � bvpot �B �
a	

� bvper �A�e
�ky�B�� �A�e

ky�B�� � �B �
b	

where A� and A� are determined by ensuring that the boundary values of the above
solution and its gradient are the same as those given by the far��eld potential solutionsbv � A�e

�ky�B�� y � � �B ��a	bv � A�e
ky�B�� y 
 �� � �B ��b	

Higher�order derivatives will also be continuous because the vorticity and its derivatives
are zero at the boundary� De�ning

vp � bvper�y � �	 � bvper�y � ��	 �B �
a	

v�p �
�bvper
�y

�y � �	 �
�bvper
�y

�y � ��	 � �B �
b	

yields

A� � sinh�k��B��	

�
vp � B��

k
v�p

�
�B ��a	

A� �
e�k��B��

�

�
�vp � B��

k
v�p

�
�B ��b	

A� �
e�k��B��

�

�
�vp � B��

k
v�p

�
�B ��c	

A� � sinh�k��B��	

�
vp �

B��

k
v�p

�
�B ��d	

Thus the potential correction to the periodic velocity component inside the computational
domain is given by

bvpot � e�k�y����B��

�

�
�vp � B��

k
v�p

�
�

ek�y����B��

�

�
�vp � B��

k
v�p

�
� �B ��	
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Appendix C� Analytical solutions

The solution given by Kambe � Minota �����	 for viscous two�dimensional �ow in free
space can be used to obtain solutions to the Navier�Stokes equations for viscous laminar
free shear layers subjected to a strain given by a�� � a� a�� � �a� and a�� � � �the strain
geometry used for cases C and D of the computations	� Applying such a strain at time
t � � to a laminar time�developing mixing layer with initial pro�le U� � U�erf�

p
�y�
��	�


�� being the initial vorticity thickness and U� being half the initial velocity di�erence
across the mixing layer� results in

U� � ax� Umerf

�� p
�eatq

� � �
Re �e

�at � �	

y


��

�A �C �a	

U� � �ay � �C �b	

where the half�velocity di�erence Um is given by

Um � U�e
�at �C �	

and Re � a�
��	
������	 is a Reynolds number� From this solution the time�evolving

vorticity thickness of the mixing layer component of the �ow is determined to be


� � 
��

q
� � �

Re �e
�at � �	

eat
� �C �	

The mixing layer Reynolds number based on the velocity di�erence and the vorticity
thickness is thus �Um
��� � e��at

p
� � �e�at � �	�Re ��U�


�
���	� Note that in the

inviscid limit 
��

�
� � e�at and the exponential variation of the Reynolds number is split

equally between the velocity di�erence and the vorticity thickness�
Applying the above strain at time t � � to a laminar time�developing wake with initial

pro�le U� � �U�e
��ln�y���b��� � b� being the initial wake half width �distance between

points where the wake de�cit is one half its peak value	 and U� being the initial wake
de�cit� results in

U� � ax� Umexp

�
��ln� e�at

� � �
Re �e

�at � �	

y�

�b�	�

�
�C �a	

U� � �ay � �C �b	

where

Um � U�
e�atq

� � �
Re �e

�at � �	
�C 
	

is the time�evolving mean wake de�cit and Re � a�b�	�����ln�	 is a Reynolds number�
From this solution the time�evolving half width of the wake component of the �ow is

b � b�

q
� � �

Re �e
�at � �	

eat
� �C �	

The wake Reynolds number based on the wake de�cit and half width is thus Umb�� �
e��at �U�b

���	� Note that in the inviscid limit Um�U� � b�b� � e�at and the exponential
variation of the Reynolds number is split equally between the width and de�cit� as for the
self�similar solution� Both the above solutions reduce to the standard unstrained forms
when a goes to zero �note that a appears in Re	�
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Appendix D� Turbulence modelling statistics

Reynolds�averaged statistics that may be of use for turbulence model development
and additional insight into the strained wake �ows are included here� Each quantity is
illustrated for all ten of the �ows listed in table ��
Although Reynolds stress pro�les have been presented in section �� it is hard to obtain a

clear impression of the Reynolds stress anisotropies from these plots� The time evolutions
of the Reynolds stress anisotropy

bij �
u�iu

�
j

q�
� 
ij

�
�D �	

and the dissipation�rate anisotropy

dij �
�ij
��
� 
ij

�
�D �	

are plotted in �gures �� and ��� respectively� Since the anisotropies vary in the cross�
stream direction� a particular cross�stream location must be chosen for the plots� Since
the Reynolds shear stress u�v� is zero at the wake centreline the anisotropies are computed
at the y�location �below the centreline	 where u�v� reaches a maximum� For the normal
Reynolds stress components� this anisotropy is similar to that at the centreline� Similarly�
dij is computed at the location of maximum ��� �y � �	� The cross�stream locations at
which these anisotropies are being computed are thus not constant in time� nor are they
constant when scaled by the wake width b �although this may be approximately the
case	� Irregularities in the time histories are thus usually due to changes in the location
of maximum u�v�� rather than sudden changes in the �ow character�
Comparing �gures �� and ��� it is clear that the dissipation�rate tensor �ij is more

isotropic than the Reynolds stress tensor u�iu
�
j � In general the Reynolds stress anisotropies

�associated with the large�scale turbulent motions	 are not constant in time� indicating
a continual change in the �ow character and a lack of classical self�similarity� Possible
exceptions to this include case E� in which the wake shear grows and eventually dominates
the applied strain� and cases C� SC� FC� and G� in which the wake shear and applied
strain remain in balance� Once these �ows are developed� the anisotropy variation is less

than in the other cases� The dominance of the spanwise components w�� and ��� at late
times in cases B� F� and H is also readily apparent�
The terms in the Reynolds stress balances for each of the non�zero Reynolds stress

components are shown in �gures �� to �
� Additionally� the balance for the u�iu
�
i equation

is shown in �gure ��� The terms plotted are as de�ned in equation �����	� where both
terms on the left�hand�side of the equation are plotted together �see section ���	� The
�strain� and �shear� components of the production are plotted separately� as are the
turbulent and pressure di�usion components of Tij � Symbols marking the two production
curves are spaced at intervals of �� physical space grid points �on the �N�� mesh used
for dealiasing	� The viscous di�usion terms Vij are not plotted because they are all an
order of magnitude smaller than the other terms in the balance and would not be visible
on the scale used in the �gures� The balances are shown at a time a�t� t�	 � ���� when
the �ows are developed but not overly constrained by computational box size limitations�
As discussed in section ��� and noted for the Reynolds stress pro�les presented in

�gure ��� pro�les for �ows in which the computational domain size becomes limited are
noisy� The smoothest pro�les are observed in cases A� D and G� in which the size of the
x�z domain increases in time and a larger and larger domain is available for generating
average statistics� Cases B� C� SC� and H� in which the x�z domain is reduced in time�
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Figure ��� Time evolution of Reynolds stress anisotropy bij at the y�location with maximum
u�v� for �a� case A� �b� case B� �c� case C� �d� case D� �e� case E� �f� case F� �g� case G� �h�
case H� �i� case SC� and �j� case FC� b��� b��� b��� and b���
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Figure ��� Time evolution of the dissipation�rate anisotropy dij at the y�location with maxi�
mum ��� for �a� case A� �b� case B� �c� case C� �d� case D� �e� case E� �f� case F� �g� case G�
�h� case H� �i� case SC� and �j� case FC� d��� d��� d��� and d���
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Figure ��� Pro�les of terms in the Reynolds stress budget ������ for the u�� equation for �a�
case A� �b� case B� �c� case C� �d� case D� �e� case E� �f� case F� �g� case G� �h� case H� �i�

case SC� and �j� case FC at a�t � t�� � ���� �u����t 	 a��y �u����y� � shear
production part of P��� � strain production part of P��� turbulent di
usion ��rst
part of T���� pressure strain W��� and dissipation ���� The pressure di
usion terms

are zero in the u�� equation� The viscous di
usion terms V�� are an order of magnitude smaller
than the other terms in the balance and cannot be seen at this scale�
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Figure ��� Pro�les of terms in the Reynolds stress budget ������ for the v�� equation for �a�
case A� �b� case B� �c� case C� �d� case D� �e� case E� �f� case F� �g� case G� �h� case H� �i�

case SC� and �j� case FC at a�t � t�� � ���� �v����t 	 a��y �v����y� � strain
production part of P��� turbulent di
usion ��rst part of T���� pressure di
usion
�pressure terms in T���� pressure strain W��� and dissipation ���� The viscous
di
usion terms V�� are an order of magnitude smaller than the other terms in the balance and
cannot be seen at this scale�
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Figure ��� Pro�les of terms in the Reynolds stress budget ������ for the w�� equation for �a�
case A� �b� case B� �c� case C� �d� case D� �e� case E� �f� case F� �g� case G� �h� case H� �i�

case SC� and �j� case FC at a�t � t�� � ���� �w����t 	 a��y �w����y� � strain
production part of P��� turbulent di
usion ��rst part of T���� pressure strain W���

and dissipation ���� The pressure di
usion terms are zero in the w�� equation� The viscous
di
usion terms V�� are an order of magnitude smaller than the other terms in the balance and
cannot be seen at this scale�
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Figure ��� Pro�les of terms in the Reynolds stress budget ������ for the u�v� equation for �a�
case A� �b� case B� �c� case C� �d� case D� �e� case E� �f� case F� �g� case G� �h� case H� �i�

case SC� and �j� case FC at a�t � t�� � ���� �u�v���t 	 a��y �u�v���y� � shear
production part of P��� � strain production part of P��� turbulent di
usion ��rst
part of T���� pressure di
usion �pressure terms in T���� pressure strain W��� and

dissipation ���� The viscous di
usion terms V�� are an order of magnitude smaller than
the other terms in the balance and cannot be seen at this scale�
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Figure ��� Pro�les of terms in the Reynolds stress budget ������ for the u�

iu
�

i equation for
�a� case A� �b� case B� �c� case C� �d� case D� �e� case E� �f� case F� �g� case G� �h� case H�

�i� case SC� and �j� case FC at a�t � t�� � ���� �u�

iu
�

i��t 	 a��y �u�

iu
�

i��y� �

shear production part of Pii� � strain production part of Pii� turbulent di
usion
��rst part of Tii�� pressure di
usion �pressure terms in Tii�� and dissipation �ii�
The viscous di
usion terms Vii are an order of magnitude smaller than the other terms in the
balance and cannot be seen at this scale�
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show the noisiest statistics� Despite the shrinking x�z domain in case FC� the pro�les
are reasonably smooth� perhaps because of the shorter evolution time for this rapidly
strained case�

Since the �ow evolution is not yet completely self�similar through to the level of the
Reynolds stresses� these balances will be di�erent at other times� Also� it is unclear how
to scale the data in the absence of self�similarity� Here the abscissa has been scaled
as y�b� As can be seen from the results presented in section � and the experiments of
Reynolds �����	 and Ke�er ����
	� the width of the various Reynolds stress pro�les
remains proportional to the width of the wake and the scaling y�b should thus do a
reasonable job of collapsing the data from the various cases� This is indeed the case� as
can be seen from the balance �gures� which all cover the same range ���� 
 y�b 
 ����
The cases with cross�stream compression �A� D� and to a lesser extent G	 show signi�cant
Reynolds stress levels out to slightly larger values of y�b� but in general the pro�le widths
from the various cases are similar� On the other hand� the classical self�similar scaling
for the balance terms� U�

m�b� increases the spread among the cases �compare �gure �
b
with �gure �
a	 and is not helpful for these �ows� For this reason the balance terms are
scaled by the initial value �U�

m	
��b�� rather than by U�

m�b�

Reynolds �����	 argued that self�similarity would only be achieved for strained wakes
in which the turbulence production by the wake shear was larger than that by the ap�
plied strain� While the later experiments by Ke�er ����
	 and the results presented here
indicate that the classical self�similarity Reynolds sought does not occur� it is still of
interest to examine the relative importance of these two production terms� Production

of turbulent kinetic energy by the wake shear occurs entirely in the u�� component� For
cases A and B this component is not produced by the strain �a�� � �	 and the shear
production obviously dominates� The shear production also dominates in case E� where
the shear rate is increasing as a result of the straining� and in cases G and SC� where the
applied a�� strain rate is reduced� In cases D� F� and H the wake shear rate decreases in

time and the magnitude of the strain �production� of u�� �actually a destruction term
since a�� � �	 is greater than that of the �positive	 shear production �note that more
than enough strain production occurs in the other normal Reynolds stress components to
o�set this negative strain production� see the following discussion of the q� balance	� In

case C the shear rate and strain rate remain in balance� but the strain production of u��

is larger than the shear production �although the turbulent kinetic energy is reduced to

some extent by negative strain production of v��	� The dominance of strain production
is more apparent in case FC� in which the strain rate is four times larger� It should be
noted that even when the strain rate is reduced by a factor of four �case SC	 the strain
production remains signi�cant� although smaller than the shear production�

As with the u�� balances� the shear production of q� dominates the strain production
when the strain rate is low �cases SC and G	 or the wake shear rate increases in time
�case E	� In case A �delayed decay of the wake shear	 and case C �no decay of the wake
shear	 the two production terms are similar in magnitude� In the remaining 
 cases the
strain production dominates� either as a result of decaying wake shear or high strain rate�
As can be seen in �gure ��� the total contribution from the strain �production� of q�

�which includes negative production in at least one normal Reynolds stress component	
is always positive� Despite this� changes in other terms in the balances result in decreased
levels of q� compared to those in the unstrained wake in case D and for early times in
cases B� F and H� �see �gure ��a	�

For all the �ows simulated� production of the Reynolds shear stress u�v� is always
dominated by the wake shear production� even for the �ows in which the wake shear is
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decaying� For cases B� F� and H �spanwise compression	 the strain �production� actually
reduces Reynolds shear stress� Note that the dissipation of Reynolds shear stress ��� is
small� with most of the dissipation actually being accomplished by the pressure�strain
term�
A number of other interesting observations about the other terms in the Reynolds

stress balance can be made from examination of these �gures� For instance� it appears
that the turbulent di�usion is negligible for cases B and C �and SC and FC	� perhaps as
a result of the lack of large�scale organization in these �ows that are rapidly stretched in
the cross�stream direction� The noisy pro�les makes it di�cult to draw �rm conclusions
for these cases� however�


