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Appendix B. Details of the numerical method
Following Rogallo (1977, 1981), consider a spatially linear mean flow component

E:E7jxj = Q5T; , (B1)
where a;; = Ul] depends only on the time ¢. Decomposing into this mean field and a

“fuctuating” field (which may have a mean component, such as the wake mean shear in
the cases considered in this paper) one has

wi(?) = ajz; +a;(F) (B 2a)
p(?) =P()+ (7). (B2b)
where the tilde coordinate system follows the linear mean flow (strain) according to
Z; = By;(t)x; (B 3a)
Bij + Biwak; =0, (B 3b)

and the overdot indicates differentiation with respect to time. For the case of a uniform
irrotational strain, equation (B 3b) leads to

By (t) = BY exp <— /Ot all(t')dt'> , (B4)

where BY, = By;(t = 0) and similar expressions hold for Bsy and Bz (with azs and as3
replacing aq1, respectively). After some manipulation, the continuity equation (2.1) and
momentum equation (2.2) become

i, <Bji =0 (B5)
i;

. L 1, _
E + aiju]' + Bkj(uiuj)j + ;Bjipj = VBijljui,fci 5 (B 6)

with the evolution of the explicit mean field being given by

. 1—
[aik + aijaji|ey + ;P,i =0, (B7)

the solution of which, for the case of irrotational strain, is given by equation (2.8).
Equation (2.15) governing the Reynolds stress evolution transforms to
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dulu, ou! Ou'. ' ou'.
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where the tildes have been omitted for simplicity and U; no longer includes the mean flow
associated with the transformation (just the wake shear for the case considered here).
Note that the strain production of turbulence now appears explicitly in the equation and
that the convective part of the substantial derivative is zero in this coordinate system
“moving” with the mean flow. A similar analysis of the rotational form of the Navier—

Stokes equations yields
0 . - = 1. ‘gl
a—tl +ajii; — (0 X w)i“‘Bji(;p“‘ 5
where, for the case of irrotational strain, the same mean equation (B7) applies. Note
that for irrotational strain a;; = a;; and the linear terms of equations (B6) and (B9)
are the same. The Reynolds stress evolution equation associated with this form of the

Navier—Stokes equations is

)75 = VBijljﬂ'iJ}f , (B 9)
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where again the tildes have been omitted for simplicity.
Similarly, the evolution equation for the vorticity (w; = eijkBljﬂkj) in “rotational”
form transforms to
0w;
ot
where €5, is the alternating symbol defined to be one if the subscripts ¢, j, k are in cyclic
order, —1 if they are in anti-cyclic order, and 0 otherwise (if two or more suffixes are the
same). No equation governing the mean vorticity associated with the transformation is
required because it is zero for the irrotational strains considered here.
Decomposing the passive scalar quantity into a uniform (but time-evolving) mean
scalar gradient and “fluctuations” in the moving coordinate system we have

~ - = ~
= a;;w; + GijkB[j( uU X w )k,i + VBijljwi,l::i , (B11)

T(7) =T ;(t)z; + 6(F) . (B12)
The equation governing the scalar fluctuations is then given by
0 - -
a + TJ'U,]' + Bjiuzﬂj = 'yBijle’,U s (B 13)

where T here includes only that portion of the mean scalar associated with the transfor-
mation and is governed by the constraint

Tj+ayT:=0, (B 14)
which has as its solution for the case of irrotational mean strain
T1=T,(t=0)e 1" (B15)

where similar equations apply for Tyg and 7,3 with a2» and ass replacing a1, respectively.
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It should be noted that if there is a non-periodic component to the mean velocity in
the strained coordinate system, then an equation similar to equation (B15) applies to
the explicitly carried non-periodic portion of this mean. For example, consider a strained
mixing layer, which has a mean velocity difference across the layer in addition to the
mean flow associated with the global strain. In this case the non-periodic function U, (y, t)
explicitly carried to account for the non-periodic boundary conditions evolves according
to

Ue(yat) = Ue(yat = 0)6_a11t - (B 16)

If a11 = 0 the explicitly carried function is constant as in the unstrained cases. Otherwise,
the explicitly carried velocity difference must change in time as given by equation (B 16).
The analytical solutions for laminar strained free shear layers given in Appendix C are
useful for understanding this and for testing codes developed to simulate these flows.
As done in Spalart et al. (1991), after Fourier transforming in z and z (yielding &;), the

vorticity is projected into a coordinate system parallel and perpendicular to the (kg k.)
wavevector. However, this projection now includes the effect of the B;;’s associated with
the strain:

~| — Bllkxax + B33kzaz

w

k

&\)L = _B33kzazk+ Bllkz&\)z , (B ].7b)
where k = \/B?, k2 + B2;k2 and both the tildes indicating the moving coordinate system
and the primes indicating turbulence fluctuations have been dropped (all equations given
below are in this moving frame and deal with fluctuating quantities). The solenoidal
character of the vorticity is expressed as

(B17a)

0w
k&l + Byy—2 =0 B18
tkWw'" + DBao oy , ( )
the kinematic relationship between the vorticity and the velocity is given by
—ikut =0, (B 19a)
2 , 0% 2~ g~
Vo = B228—y2 — k0 =ik~ (B 19b)
and continuity requires that
ov
ikl + By =0 B 20
thu’ + D22 By ) ( )

where again k is modified as above to include the B;;’s. Note that for the mean flow
(kz =0, k, = 0) the projection (B 17) is undefined. For this mode the equation (B9) is
used to advance the U and W velocities as in Spalart et al. (1991).

The governing equations for @/ and @+ can be obtained from those for @, and &,
(equation (B 11), keeping in mind that k and B;; are functions of time. This results in
the set of equations

Bl

0 0%l -
W = B22a—y(ﬁ X U\)J‘ +v <B§28—y2 — k:2w”>

+ B%1k£a11;3§3k§a33all

% = a22ay — Zk(ﬁ X w\)J' +v <B§2

(B21)

2/\
66;";' - szuy> (B22)
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where only the &, and &1 equations are advanced computationally (@ being determined
from the solenoidal character of the vorticity field, equation (B 18). In the above equations
and below the quantity (7 x @); is the (k,,k.) Fourier transform of the it" component
of the fluctuating (turbulent) part of the cross product of u and w, where in this instance
u and w include any mean component not explicitly accounted for by the transformation.
This term can be written as

(7 x @)i = Bji(urur/2) j — Bjr(uiug) 5 , (B24)

where the projection in equation (B 17) can be used to obtain (7 x @)l and (7 x ©@)*.
Note that from all these equations the unstrained wake equations used to generate the
simulations in Moser et al. (1998) can be recovered by taking B;; = 0;; and setting
Qi = 0.

Besides the Poisson equation given in equation (B 19b), the following Poisson equations
are useful for consistently computing various statistics in the Reynolds stress balance:

ot
25l = B B2
Vu 22 ay ( 5)
ov . 0wt
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V=(p/p) By o, ik 9z, (B28)
2 ~ o~ 0 6uk
VZ(p/p+ Gty /2) = Bjiz—(UW x &); — 2Bjiap; — (B 29)
amj 8 j
0 0 0 (9w BHB33]<? k (0,11 —0,33)
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Note that in all these cases V? includes the B;;’s as defined in equation (B 19b). To recover
the time derivatives of the velocity components u and w, the projection expressions

By kul — Bask, ot

= - (B 31a)
all u+
’L/U\ _ ngk;zu —]:Bnk:zu (B 3]_b)

can be used to find that

Ou _ Bk, a_ml B33k 0y n B11 B33k k2 (ass — all)a”
o kot k2 ot k3




Strained plane wakes 5
iB33k‘Z B%lkg((lgg — 2(111) — B§3k§a33a
y

2 2 (B32)
0w _ Bssk. a_ml n iBi1k, Oy n B2, B3sk?k.(a11 — 033)17”
ook Ot k2 ot k3
iBllkI B2 k%all — B2 k§(2(133 — all)/\
R o Dy - (B33)

As always, the unstrained expressions can be recovered by setting B;; = d;; and a;; = 0.
The method of Corral & Jimenez (1995) can be extended to the moving coordinate
system by “matching” at a cross-stream domain boundary that is fixed (at £7) in the
“moving” cross-stream coordinate. As noted above, Fourier modes are used to represent

the vorticity in this transformed direction; thus equation (B 19b) can be written as
ik |

Oper = — 750", (B 34)

where K = \/ B} k2 + B3,k2 + B33k2 and vy, is the cross-stream velocity associated
with the periodic array of vorticity fields. The actual cross-stream velocity must be deter-
mined by adding the appropriate amount of a potential solution v,,; (where —K?0,,; = 0)
to obtain the correct non-periodic boundary conditions. The solution is given by

v= aper + i}\pot (B 358*)
= Dper + Age K/ B2 | A ehy/Boz (B 35b)

where A and Az are determined by ensuring that the boundary values of the above
solution and its gradient are the same as those given by the far-field potential solutions

= Ajehy/B22 y>m (B 36a)
U= Ayetv/ B y<—m. (B 36b)

) =)

Higher-order derivatives will also be continuous because the vorticity and its derivatives
are zero at the boundary. Defining

Vp = Uper(y = ) = Uper(y = —7) (B3T7a)
o, er o, er
v, = —81;/ (y=m) = —61; (y=-—m), (B37b)
yields
. By,
Ay =sinh(kn/Bas) | vp — % U (B 38a)
—kﬁ/Bzz B
te = E 7 (o B2 (138b)
—kﬁ/Bzz B
to = E 7 (o - B2 (B38¢)
e B22 1;
= 22 —
Ay = sinh(kn/B22) | vp + 2 U (B 38d)

Thus the potential correction to the periodic velocity component inside the computational
domain is given by

N e—k(y+7l')/B22 B ek(y—ﬂ')/322 B
ot = e (e B2 ) e S (- B2y 3
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Appendix C. Analytical solutions

The solution given by Kambe & Minota, (1983) for viscous two-dimensional flow in free
space can be used to obtain solutions to the Navier—Stokes equations for viscous laminar
free shear layers subjected to a strain given by a1; = a, ass = —a, and agz = 0 (the strain
geometry used for cases C and D of the computations). Applying such a strain at time
t = 0 to a laminar time-developing mixing layer with initial profile U; = Ugerf(/7y/80),
89 being the initial vorticity thickness and Uy being half the initial velocity difference
across the mixing layer, results in

at
U, = ax + Uperf ﬁe LA (C1a)

1+ 7 (et — 1) %

Uy = —ay , (C1b)

where the half-velocity difference U,, is given by
Un = Upe ™ (C2)

and Re = a(82)?/(2nv) is a Reynolds number. From this solution the time-evolving
vorticity thickness of the mixing layer component of the flow is determined to be

1+ L (e2at — 1)
aw:(sg\/ i : (C3)

eat

The mixing layer Reynolds number based on the velocity difference and the vorticity
thickness is thus 2U,,6,/v = e~2% /1 + (e29t —1)/Re (2Uy87/v). Note that in the
inviscid limit 6,,/8% = e~% and the exponential variation of the Reynolds number is split
equally between the velocity difference and the vorticity thickness.

Applying the above strain at time ¢ = 0 to a laminar time-developing wake with initial
profile U, = —Upe 4n2y */(0%)? , b° being the initial wake half width (distance between
points where the wake deficit is one half its peak value) and Uy being the initial wake
deficit, results in

o p2at y?
Ui = ax — Upexp (—4ln21 Y (b0)2> (C4a)
Uy = —ay, (C4b)

where
U = Uy - (©5)

\/1 4L (e2at 1)

is the time-evolving mean wake deficit and Re = a(b°)?/(8vIn2) is a Reynolds number.
From this solution the time-evolving half width of the wake component of the flow is

1+ 4 (2t — 1)
b:bo\/ i . (C6)

eat

The wake Reynolds number based on the wake deficit and half width is thus Up,b/v =
e~2at (Upb®/v). Note that in the inviscid limit Uy, /Uy = b/b° = e~ and the exponential
variation of the Reynolds number is split equally between the width and deficit, as for the
self-similar solution. Both the above solutions reduce to the standard unstrained forms
when a goes to zero (note that a appears in Re).
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Appendix D. Turbulence modelling statistics

Reynolds-averaged statistics that may be of use for turbulence model development
and additional insight into the strained wake flows are included here. Each quantity is
illustrated for all ten of the flows listed in table 2.

Although Reynolds stress profiles have been presented in section 4, it is hard to obtain a
clear impression of the Reynolds stress anisotropies from these plots. The time evolutions
of the Reynolds stress anisotropy

whu!. i
bij = —5L — D1
J q2 3 ( )
and the dissipation-rate anisotropy
€ij (51']'
dyj = —L - 24 D2
J %€ 3 ( )

are plotted in figures 30 and 31, respectively. Since the anisotropies vary in the cross-
stream direction, a particular cross-stream location must be chosen for the plots. Since
the Reynolds shear stress u/v’ is zero at the wake centreline the anisotropies are computed
at the y-location (below the centreline) where u/v’ reaches a maximum. For the normal
Reynolds stress components, this anisotropy is similar to that at the centreline. Similarly,
d;; is computed at the location of maximum €12 (y > 0). The cross-stream locations at
which these anisotropies are being computed are thus not constant in time, nor are they
constant when scaled by the wake width b (although this may be approximately the
case). Irregularities in the time histories are thus usually due to changes in the location
of maximum w'v’, rather than sudden changes in the flow character.

Comparing figures 30 and 31, it is clear that the dissipation-rate tensor €;; is more
isotropic than the Reynolds stress tensor W In general the Reynolds stress anisotropies
(associated with the large-scale turbulent motions) are not constant in time, indicating
a continual change in the flow character and a lack of classical self-similarity. Possible
exceptions to this include case E, in which the wake shear grows and eventually dominates
the applied strain, and cases C, SC, FC, and G, in which the wake shear and applied
strain remain in balance. Once these flows are developed, the anisotropy variation is less

than in the other cases. The dominance of the spanwise components w'? and es3 at late
times in cases B, F, and H is also readily apparent.

The terms in the Reynolds stress balances for each of the non-zero Reynolds stress
components are shown in figures 32 to 35. Additionally, the balance for the u}u} equation
is shown in figure 36. The terms plotted are as defined in equation (2.16), where both
terms on the left-hand-side of the equation are plotted together (see section 3.1). The
“strain” and “shear” components of the production are plotted separately, as are the
turbulent and pressure diffusion components of 7;;. Symbols marking the two production
curves are spaced at intervals of 20 physical space grid points (on the 3N/2 mesh used
for dealiasing). The viscous diffusion terms V;; are not plotted because they are all an
order of magnitude smaller than the other terms in the balance and would not be visible
on the scale used in the figures. The balances are shown at a time a(t — ¢;) ~ 1.2, when
the flows are developed but not overly constrained by computational box size limitations.

As discussed in section 3.3 and noted for the Reynolds stress profiles presented in
figure 11, profiles for flows in which the computational domain size becomes limited are
noisy. The smoothest profiles are observed in cases A, D and G, in which the size of the
z-z domain increases in time and a larger and larger domain is available for generating
average statistics. Cases B, C, SC, and H, in which the z-z domain is reduced in time,
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FIGURE 30. Time evolution of Reynolds stress anisotropy b;; at the y-location with maximum
uw'v' for (a) case A, (b) case B, (¢) case C, (d) case D, (e) case E, (f) case F, (g) case G, (h)
case H, (1) case SC, and (j) case FC. ——— b11, ==== baa, =-=+--- bss, and —-— b1o.
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FIGURE 31. Time evolution of the dissipation-rate anisotropy d;; at the y-location with maxi-

mum €12 for (a) case A, (b) case B, (c) case C, (d) case D, (e) case E, (f) case F, (g) case G,
(k) case H, () case SC, and (j) case FC.
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FIGURE 32. Profiles of terms in the Reynolds stress budget (2.16) for the u'? equation for (a)
case A, (b) case B, (c) case C, (d) case D, (e) case E, (f) case F, (g) case G, (h) case H, (3)

case SC, and (j) case FC at a(t — t1) = 1.2. ———— 0u/'?/0t + azy Ou'?/0y, —— x shear
production part of P13, —— ¢ strain production part of Piy, -------- turbulent diffusion (first
part of 711), —+— pressure strain Wi, and —— dissipation €11. The pressure diffusion terms

are zero in the u/? equation. The viscous diffusion terms Vi, are an order of magnitude smaller
than the other terms in the balance and cannot be seen at this scale.
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FIGURE 33. Profiles of terms in the Reynolds stress budget (2.16) for the v'? equation for (a)
case A, (b) case B, (c¢) case C, (d) case D, (e) case E, (f) case F, (g) case G, (h) case H, (1)

case SC, and (j) case FC at a(t — t1) =~ 1.2. ———- 6?/{% + a2y (%T/ay, —— o strain
production part of Py, -------- turbulent diffusion (first part of T22), —-— pressure diffusion
(pressure terms in 7T22), —-— pressure strain Wh», and —— dissipation e22. The viscous

diffusion terms Vs are an order of magnitude smaller than the other terms in the balance and
cannot be seen at this scale.
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FIGURE 34. Profiles of terms in the Reynolds stress budget (2.16) for the w'2 equation for (a)
case A, (b) case B, (c) case C, (d) case D, (e) case E, (f) case F, (g) case G, (h) case H, (3)

case SC, and (j) case FC at a(t —t1) = 1.2. ———— Ow'?/dt + a2y Ow'?/dy, —— o strain
production part of Psg, -------- turbulent diffusion (first part of T33), —-— pressure strain Was,
and —— dissipation e33. The pressure diffusion terms are zero in the w’? equation. The viscous

diffusion terms V33 are an order of magnitude smaller than the other terms in the balance and
cannot be seen at this scale.
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FIGURE 35. Profiles of terms in the Reynolds stress budget (2.16) for the u/v’ equation for (a)
case A, (b) case B, (c) case C, (d) case D, (e) case E, (f) case F, (g) case G, (h) case H, (%)

case SC, and (j) case FC at a(t —t1) = 1.2. ———— Ou'v' /Ot + a2y Ou'v' /Oy, —— X shear
production part of P12, —— ¢ strain production part of Pia, -------- turbulent diffusion (first
part of Ti2), —-— pressure diffusion (pressure terms in 7i2), — — pressure strain W2, and

— dissipation €12. The viscous diffusion terms Vi» are an order of magnitude smaller than
the other terms in the balance and cannot be seen at this scale.
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FIGURE 36. Profiles of terms in the Reynolds stress budget (2.16) for the wju} equation for
(a) case A, (b) case B, (c) case C, (d) case D, (e) case E, (f) case F, (g) case G, (h) case H,

(¢) case SC, and (j) case FC at a(t — t1) = 1.2. ———— Ouju}/0t + azy Ouju/0y, —— X
shear production part of P;;, —— ¢ strain production part of P;;, -------- turbulent diffusion
(first part of Ti;), —-— pressure diffusion (pressure terms in 7;;), and —— dissipation €;;.

The viscous diffusion terms V;; are an order of magnitude smaller than the other terms in the
balance and cannot be seen at this scale.



Strained plane wakes 15

show the noisiest statistics. Despite the shrinking z-z domain in case FC, the profiles
are reasonably smooth, perhaps because of the shorter evolution time for this rapidly
strained case.

Since the flow evolution is not yet completely self-similar through to the level of the
Reynolds stresses, these balances will be different at other times. Also, it is unclear how
to scale the data in the absence of self-similarity. Here the abscissa has been scaled
as y/b. As can be seen from the results presented in section 4 and the experiments of
Reynolds (1962) and Keffer (1965), the width of the various Reynolds stress profiles
remains proportional to the width of the wake and the scaling y/b should thus do a
reasonable job of collapsing the data from the various cases. This is indeed the case, as
can be seen from the balance figures, which all cover the same range —1.6 < y/b < 1.6.
The cases with cross-stream compression (A, D, and to a lesser extent G) show significant
Reynolds stress levels out to slightly larger values of y/b, but in general the profile widths
from the various cases are similar. On the other hand, the classical self-similar scaling
for the balance terms, U3, /b, increases the spread among the cases (compare figure 15b
with figure 15a) and is not helpful for these flows. For this reason the balance terms are
scaled by the initial value (UD,)3/b°, rather than by U2, /b.

Reynolds (1962) argued that self-similarity would only be achieved for strained wakes
in which the turbulence production by the wake shear was larger than that by the ap-
plied strain. While the later experiments by Keffer (1965) and the results presented here
indicate that the classical self-similarity Reynolds sought does not occur, it is still of
interest to examine the relative importance of these two production terms. Production
of turbulent kinetic energy by the wake shear occurs entirely in the u/*> component. For
cases A and B this component is not produced by the strain (a;; = 0) and the shear
production obviously dominates. The shear production also dominates in case E, where
the shear rate is increasing as a result of the straining, and in cases G and SC, where the
applied aq; strain rate is reduced. In cases D, F, and H the wake shear rate decreases in
time and the magnitude of the strain “production” of u'* (actually a destruction term
since a;; > 0) is greater than that of the (positive) shear production (note that more
than enough strain production occurs in the other normal Reynolds stress components to
offset this negative strain production, see the following discussion of the ¢> balance). In

case C the shear rate and strain rate remain in balance, but the strain production of u?
is larger than the shear production (although the turbulent kinetic energy is reduced to

some extent by negative strain production of v’ 2). The dominance of strain production
is more apparent in case FC, in which the strain rate is four times larger. It should be
noted that even when the strain rate is reduced by a factor of four (case SC) the strain
production remains significant, although smaller than the shear production.

As with the u'? balances, the shear production of ¢> dominates the strain production
when the strain rate is low (cases SC and G) or the wake shear rate increases in time
(case E). In case A (delayed decay of the wake shear) and case C (no decay of the wake
shear) the two production terms are similar in magnitude. In the remaining 5 cases the
strain production dominates, either as a result of decaying wake shear or high strain rate.
As can be seen in figure 36, the total contribution from the strain “production” of ¢?
(which includes negative production in at least one normal Reynolds stress component)
is always positive. Despite this, changes in other terms in the balances result in decreased
levels of ¢> compared to those in the unstrained wake in case D and for early times in
cases B, F and H. (see figure 14a).

For all the flows simulated, production of the Reynolds shear stress u/v’ is always
dominated by the wake shear production, even for the flows in which the wake shear is




16 M. M. Rogers

decaying. For cases B, F, and H (spanwise compression) the strain “production” actually
reduces Reynolds shear stress. Note that the dissipation of Reynolds shear stress €12 is
small, with most of the dissipation actually being accomplished by the pressure-strain
term.

A number of other interesting observations about the other terms in the Reynolds
stress balance can be made from examination of these figures. For instance, it appears
that the turbulent diffusion is negligible for cases B and C (and SC and FC), perhaps as
a result of the lack of large-scale organization in these flows that are rapidly stretched in
the cross-stream direction. The noisy profiles makes it difficult to draw firm conclusions
for these cases, however.



