Appendix A

In the periodic case (2.9a) the initial fields F*/,G* are periodic in x and can be represented
as

MH=ca

(F.6*)= Y (£ 0).gs' () ™. (A1)

m=—ee

where f,%d, g%d are also odd functions. The solution to the problem (3.11), (3.13), (A.1) is

represented in the form

Bor = D, Tom(30)e™ . (A2)

Substitution of (A.2) into (3.11), (3.13) gives
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The system (A.3) is solved using the Fourier transformation:
D = Jﬁ@m(l, Ne®dl, ¥,, = AP + AL eTOn! (A.4b,c)

where @, is the frequency of IG waves,

o, =vm* +1* +1, (A.5)

and
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A= [ s ] (£, g24)= i (£, 8,M)e"ar. (A.6a,b)
It is of importance for the following estimates that A" (I) is an odd function of the wavenumber /,
i.e:
AP(D=0(), 1-0. (A.7)

The formulae (A.2), (A.4) to (A.6) give the solution for ¥, . The function ¥, has the form

analogous (A.2), (A.4) but with unknown amplitudes A%’ depending on the slow times T, and
equal to zero for 7, =T, =...0.

In the “step” case the solution v, is, generally, neither periodic nor localised in x unless the

initial zonal motion at y = +eo is geostrophic. Therefore to represent ¥, as a superposition of linear
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waves we find the Fourier representation for the localised derivative 70!_’ and also for the limiting
X

fields 77 (y,1) (Vy; = Vg7 (3:1), ¥ — Fe0) to compose the desired solution for 7. The problem

for % is written as
X
v oV, Iy, 0%, oOF oG
L[—% =0, —2] =0 A.8a,b,
w( ox ] 3% |y [ ox ~ 0xot 1 ; (Bx ax) aiab

where L, is the linear operator in (3.11). The solution to (A.8) is readily written in the form of

two-dimensional Fourier integrals (see, e.g. RZB),

oy, T . :
T =[O i, By, =4V + A, (A9a,b)
X
where
o, =vVk*+1+1, A® = [F(kl)‘IG"(k’DJ, (A.10a,b)
Kl

and the functions £, ¢, are Fourier transformations of the functions F °9, G4 . Obviously,

F,,G, , and, therefore, A®) are also odd functions in /,

AP =0(), 1-0. (A.11)

The system for ¥;,’(y,#) coincides with (A.3) if we put m =0, f2* =0 (the function 7 is localised),
and g’ = G*(y) where

G™(y) =limG*(x,y), x — *oo. (A.12)

The solution ‘i.‘r( )( »,t) has the form

Vo = Iﬁé*’(z,z)e“-"dz, P5) =AM L At (A.13a,b)

—ca

where

i) i)
e EG + _IG
AP =L O

, (A.14ab
200, " 20y ;

To find Y0f we use a simple identity
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Uop =T+ 957 =95, (A.15)
where
X G ) .
By = [=Ldx, T (3,0) = limdy,, x — oo, (A.16)
o Ox
Representing 7, in the form

oo

By == [ o, (k. L1)e™ :

ik
¢ dkdl (A.17)
i ik

and calculating 7}, from (A.17) we arrive at the equation

Bog =i jdl f@(—iil’—t)e““””dk - jgv(z, e dl, (A.18)
8, =050+ 70, (0,L,1); (A.19)

where § denotes the Cauchy principal value integral over k¢ Equation (A.18) expresses Vo asa

superposition of plane IG waves. Again, the slow time-dependent part 7, has a form analogous to
(A.18) but with unknown amplitudes A™ in (A.9b) and ¢, depending on slow times and equal to
zeroat T, =T, =...0.

For the localised case (2.9c) the solution v, has the form (A.9), (A.10):

£

oy = [ Vo, (kLD dkdl, §,, =AVe™ + AT, (A.20a,b)
A® = [F(k z)+‘G(k ”} (A.21)
@y

Of course, the property (A.11) for A® holds in this case too.
The fields ﬁm,ﬁm in (3.16) can be also expressed in the form of a superposition of IG waves

using the representations (3.17). For the periodic case we have:

m=eco

(Gl ) = 2 S (3,1, (3,1)) €™, (A.22a)
where
@ 0,k (1) = [ @57 @0,k (e, (A.22b)
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For the “step” case (2.9b)

(ﬂopgm): _iJd‘f{(uox;chUX)ei(kﬁbl)dk-'-j(éu:gh) E.’Hydl, (A23a)

1 o ~ i M,
~ —=_ kz'\ _ Ox , o k“; _+_l Ox ; A23 ,b
e le[ o arJ Pox £2+1[ o ar) (A23a.b)
A A _ (_]-,il) a A=) E A 0 l
(8,:8,) = i1 g[vof(,r)wrvm( L)l (A.23¢c)

Finally, in the localised case (2.9¢)

]

(Gt o) = [ (g, iy ) €™kl (A242)
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Appendix B

All estimates will be made for the simplest case of localised initial conditions; the
generalisation to the periodic and “step” cases can be readily done using the representation of the

fast fields in these cases as a superposition of harmonic IG waves and Kelvin waves (see Appendix
A).

Estimates for ¥, ,ity,hy

Estimation of Y0 f in (A.20a) at large times is reduced to the estimation of the integrals,

J(i) - IA(i)(k,l)ef(kx”'v)tw“rdkdl (B])

where A is given by (A.21). We will consider J”; the integral J* can be estimated in the

same way. It is convenient to write (B.1) in the form
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79 = jdkj AP (k1 x,y)e " dl, (B.2)
0

0
where

AP =[AD(k,De® + AP (k,~De ™]e™ +

_ o (B.3)
[AY =k, De™ + AP (—k,~De™™ Je™
We now estimate the internal integral in (B.2) for t — 0, x,y fixed,
T, = [ AP (el x,y)e ™ dI (B.4)
0
using that
AP =00, 1-0 (B.5)
due to the oddness of A™ in/ (see Appendix A). Integrating by parts, taking into account of (B.5)
gives,
J = % j A (k.1 x,y)e ™" dl (B.6)
0

where

A(+) ;
A =il =—| =0Q), I-0. (B.7)

(o}d

The prime denotes differentiation with respect to /.
The integral in (B.6) is estimated using the standard stationary phase method (e.g. Olver,

1974). The stationary point (corresponding to zero group velocity) here is [ = 0; as a result we have

Ji= O(ITIJ,-Q-J, ¢ s, sybred (B.8)
The final estimate for the integral J ®) i
J®O = O[tiz)’ t— oo, x,yfixed. (B.9)

Faster decay of J®in comparison with J, is explained by the additional integrating over kof the

1@ of

integrand containing an exponent e“**". In the periodic and “step” cases this integration is absent,
and therefore the integral J* behaves like J, in these cases. Analogous estimates for iy, h, are

performed in the same way using the representations (A.24), so in all cases the estimates (3.27)
hold.
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Estimates of the forced solution to the problem (5.13a), (5.14)

Interaction IG wave - IG wave

The typical forcing term ®{*’®J*’ can be written as

OFP = TAl(k, T YA (k1Y Tt bl @5 e g (B.10)
where -

dk,, = dkdk,, dl,=dldl,, Q¥ =w,, to,, (B.11)
and

Ak, 1)=0(), I, -0, i=12. (B.12)
The response ¥, to this forcing satisfying the equation

Ly, =0l [ = —a% +V?*=] (B.13)
can be written as .

D = iA, (e LA, (k, 1, e Ha)e s @hdkndgz (B.14)

where (k,l) = (k, +k,,[, +1,).
Triad interactions of IG waves are impossible therefore the denominator in the integrand in

(B.14) never vanishes. Integration by parts over /, and [, in (B.14) using (B.12) gives the following

estimate

- O(;lﬁj’ tyes, x,yfixed. B.15)

Interaction I1G wave — slow motion

This estimate is the most tedious. The forcing term ®{’®{*’ has the form

SPBP = [ A, (kL34 )e"WTg dl, (Bl

—ca

where A,,A, satisfy (B.12). It is convenient to introduce the new variables k,[.k =k, +k,,

[ =1 +1, and then to reduce the integration over 1,/ to integration over /> 0,/, > 0:
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DYPU = j dk, e™ j Flk,, 1,k 1,y)e" ™ dl,, (B.17)

=00

where dky, = dkdk,, dl, = dldl, and

F:[AI(kI,II)AQ(k—kl,l"—Lr!)+A](]C]’—zl)Az(k_k],z+l])]eif)r +
(A, h) A G ==l = 1)+ A (ki =) Ay k=l =T 4+ )]e™ (B.18)

The integrand in (B.17) contains resonant harmonics therefore the response v, is represented in the

form
o iyt _efcuﬂr
- jdko,e j’F(k bk Ly . (B.19)
b wh ~ u
We have chosen the + sign in the exponent in the integrand of (B.17) for definiteness.

Introducing the new variables X = @,;,Y =@, , instead of L,

=X -X2, 1=,V -Y2, X,=k*+1, Y, = k2 +1 (B.20)

one obtains

wa = Jdkﬂleihﬁ:(klak’t) (le)
where
e i
.k k) = jdxj AL ) L R Y ] (B.22)
L r X PN T=X
For definiteness we put
X,>Y, (B.23)
and represent f}, in the form
L=t fP+ D4 [0+ f, (B 24a)
where
Xp+te Xg-— Xp+e oo
0= [ax j Ody, &= [dx [(ay, (B.24b.c)
Xp Yy Xg X+e
Xg+teé  X+e X+&
2= [ax ¢yt £f= jdx JOar. (B.24d.¢)
X Xp—e Xg+e X-&
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The term g in (B.24a) corresponds to the integration over “non-resonant” domain outside the

vicinity of the resonance line ¥ = X and of the point X = X, (correponding to zero group velocity).

Simple estimate shows that
1
fR = O[;J, f— oo,

The “resonant” term f;* can be represented in the form

X+& [(¥Y-X)n 1

= iXt _
h(4) E J F(kpfpkal;y)X:Yxe - dX 6 dY_
e X =X X0, Y-X

We have for the internal integral:

X+e i(Y-X)r _ £ fu
Jz,[e—‘l*dl’=.[e ld“=f5’f+olsf—>°°,
bl Y-X < B t

therefore integration by parts over X in (B.26) gives:

1
=02} 1o

We now write the term ff‘) as

X3+€ X+e

3 ~ Fky Lok L y)xey- X, J‘ j dy
' IR 1 - X)\/X X,
and estimate the integral term
Xp+e  X+e iVt iXt WHE  j(y—u)t
e —e ; e 1
J,= |dX dy =™ ..
XJE XL (Y -X)/X-X, JJ_ v—u

for ¢ — co. Resulting estimate for f*'is written as:

iX

3 _ € g F(kpzpkf}’) (lnt]
B2 e J 5 et
" [ 22X~ Y; LH,,+ u

where

oo L.

G =
[F%
The term £"in (B.24a) is estimated in a similar way:

) _ pQD _ p012)
h T Jh ho 2

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31a)

(B.31b)

(B.32a)
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Xp+e XNg-¢ i¥t
(11) JdX I F(kl!llsk’Ly)jXY € dY - O[l), (B32b)
i B AR -TX Y T=K

Xp e

Fl, Lk L)XY e
(12) dx 1271
j J , X=X P-P2(X+7)Y-X

x*” eXdx Xﬁ‘f Fle,hk LYY o _
JX X, (Y —X})Y2-72 (B.32¢)

7 F(ky, 1,k Xt
(ky, 1 Yx-x,Y ay Coe +({l)
V r,, (¥2—X2)V? -7 Vi
The resulting estimate for f" takes the form

F(kl,f.,k LY)x-x e [1}
0= |22 Lyl S o B.33
[ o o R ] " (539

The term £ is estimated in exactly the same way as f;:

F(k,,1,k,1,y) Pt 1
B =] |22 L xx, ¥ dy |C,— O[—]. B.34
[ j (Y - XD/ P Y ] Nt t (B39

Xp+e

iYt

1l

Collecting the estimates (B.25), (B.28), (B.31), (B.33), and (B.34) we obtain for f;:

{Xﬁf Int
E(k,.k, , B.35
fi = EX( )I (t) (B.35a)
e Flk,l,k, 1, R
E=-C<—§ Wpholol Wiy dy +inC, it b (B.35b)

242X -2

Here § denotes the Cauchy principal value integral from Y, to infinity with the singular point

Xp

F i = XY -1

Y=Y,.
The same estimates for f, are obtained for the case X, <Y, therefore the resulting estimate

for v, is

v,= OGJ t — oo, x,y fixed. (B.36)



We note that v, in (B.36) decays faster than f, due to additional integration over £ of the integrand

proportional to ¢™* ! In the periodic and “step” cases this additional integration is absent

therefore

v = (%), t — oo, x, y fixed. (B.37)

Interaction IG wave - Kelvin wave

Representing the lowest-order Kelvin wave in the form
KO =e” (R, (K)e" " dk (B.38)

one can write the forcing term ®°®{*’ in (5.14) as follows

PO = TAl(kl’tl)ﬁw(ki)ej[(kl +p)x+(l +f),\-+(¢wwi—k3)fld}%dl|_ (B.39)
Then the comgesponding response 1s
Dy =— Tdkuﬁ'w (k, ) +"2”*‘2“ng Flky,ky, by, y)e™ ™", (B.40)
where B 0
poAlkl)e™ | Alk,—h)e™ ), 1 -0
D(k,k,,L)  D(k,,k,,~1,) , (B.41)
D=(k +k)* + 1 +2il, — (@, Tk,)". (B.42)

Resonances are possible if D=0, i.e. [, =0, but this point is also not dangerous because of (B.41).

It can be shown by integration by parts that

1
¥, = O(E) t— oo, (B.43)
We note that really ¥,, decays much faster than in (B.43) since the estimate (B.43) does not take

into account the integration over k, in (B.40).

Interaction slow motion - Kelvin wave
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In the localised case the response ¥, is given by formula (B.40) in which @, 1s replaced
by zero and D takes the form
D=k?+2kk, + 1> +2il,. (B.44)
Integrating by parts over k, one can show that
= O(%")’ - (B.45)

The estimate (B.45) is physically reasonable since the localised rapidly propagating Kelvin wave
cannot efficiently interact with a localised slow motion.

In the “step” case we have the estimate
e o@, A (B.46)

and in the periodic case the response does not decay in time,

J, =0(1), t—> o0 (B.47)
but always
(%) =0 (B.48)

which means that the interaction is not resonant.
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