CORRIGENDUM

On nonlinear convection in mushy layers. Part 1. Oscillatory modes of convection

By D. N. Riahi

Journal of Fluid Mechanics, vol. 467 (2002), pp. 331-359

The paper presents various analytical expressions relating to coefficients in smallamplitude evolution equations for convection in mushy layers. Some of the deductions and graphical illustrations were made using inadequate numerical precision, which led to erroneous deductions. In particular, equation (13*a*) is singular at $\omega_{01} = \pi$, and care is needed when using it to determine G_t in the neighbourhood of the singularity. As $\omega_{01} \rightarrow \pi$

$$R_{01} \sim 3\pi G_t \sqrt{G}/4,$$

which illustrates in particular that the singularity is removable. The numerical error made in simply taking $\pi = 3.14$ shows up in figures 1–7, which are reproduced here in corrected form, numbered C1–C7. Note the change of scale of the ordinate in figures 2, 3, 4, 6, and 7 compared to the original versions.

FIGURE C1. The frequency ω_{01} and the critical value of the scaled Rayleigh number R_C versus G_t . The curve labelled 1 shows ω_{01} . Curves 2, 3, 4 and 5 show R_C and correspond, respectively, to G = 1.01, 2.0, 4.0 and 8.0.

FIGURE C2. R_{20} versus G_t for rolls. R_{20} for standing rolls (s) and simple travelling rolls (t) is plotted for G = 2.0 and $K_2 = 0.1571$ (s_1, t_1), and for G = 4.0 and $K_2 = 0.3142$ (s_2, t_2).

FIGURE C3. R_{20} versus G_t for simple travelling rolls. $K_2 = 0.4712$ and graphs labelled 1, 2 and 3, present, respectively, $R_{20}^{(st)}$ for G = 2.0, 4.0 and 8.0.

FIGURE C4. R_{20} versus G_t for simple travelling rolls. G = 2.0 and graphs labelled 1, 2 and 3 present, respectively, $R_{20}^{(st)}$ for $K_2 = 0.0314, 0.1571$ and 0.3142.

FIGURE C5. Solid fraction for standing rolls versus z for G = 2.0, $K_2 = 0$ and $G_t = 0.7$. Here graphs labelled by the square, circle and triangle symbols show, respectively, the basic solid fraction ϕ_B , $\tilde{\phi}(y = 0, z, t = 0)$ and $\tilde{\phi}(y = 0, z, t = 0.5)$.

FIGURE C6. Solid fraction for simple travelling rolls versus z for G = 2.0, $K_2 = 0$ and $G_t = 0.67$. Here graphs labelled by the square, circle, triangle and diamond symbols show, respectively, ϕ_B , $\tilde{\phi}(y = 0.5, z, t = 0)$, $\tilde{\phi}(y = 0.5, z, t = 0.5)$ and $\tilde{\phi}(y = 0, z, t = 0.5)$.

FIGURE C7. Regions of stable and preferred oscillatory modes of convection in the (G_t, G) -plane for different values of K_2 . The stability boundaries labelled by the circle, square and triangle symbols correspond, respectively, to $K_2 = 0.2199, 0.1671$ and 0.0314. For a given K_2 standing rolls are stable in the small region bounded by the stability curve, while simple travelling rolls are stable outside that region.