Ageostrophic dynamics of an intense localized vortex on a β -plane

G.M. Reznik

P.P. Shirshov Institute of Oceanology, Moscow, Russia

R. Grimshaw

Monash University, Melbourne, Australia

APPENDICES A, B and C

Appendix A. First-order solution

The first-order solution analysis starts from the relationships (4.20) rewritten here for convenience

$$\widetilde{q}_0 = 0, \ \widetilde{r}_1 = 0, \ \overline{R}_1^{(1)} = 0.$$
 (A.1a,b,c)

For n = 1 we have in (4.1):

$$F(U)_1 = F(V)_1 = 0$$
, $F(q)_1 = -r\Omega_0 \cos\theta$, $F(\varsigma)_1 = F(r)_1 = F(B)_1 = 0$, (A.2a)

$$D(U)_1 = D(V)_1 = D(h)_1 = D(h')_1 = 0$$
 (A.2b)

The equation (4.5c) for \overline{q}_0 takes the form

$$\frac{\partial \overline{q}_0}{\partial T_1} + \Omega_0 \frac{\partial \overline{q}_0}{\partial \theta} = -r\Omega_0 \cos \theta. \tag{A.3}$$

By virtue of (A.1a) the vorticity $q_0 = \overline{q}_0$, and, as follows from (2.24), q_0 is zero at the initial moment

$$q_0 = 0$$
 at $T_1 = 0$. (A4)

The solution to (A.3), (A4) is given by the equations (5.2a,b), (5.3).

Since $F(U)_1 = F(V)_1 = F(\varsigma)_1 = 0$ the problem (4.6), (4.5k,m) for \overline{h}_1 is reduced to the system:

$$\nabla^2 \overline{h}_1 - \overline{h}_1 = q_0, \quad \left[\overline{h}_1\right] = 0, \quad \left[\frac{\partial \overline{h}_1}{\partial r}\right] = -\left[V'_{I0}\right] \overline{r}_1. \tag{A.5}$$

In accordance with (4.7) the function \overline{h}_1 is represented as

$$\overline{h}_1 = \overline{h}_{11} + \overline{h}_{12} , \qquad (A.6a)$$

$$\nabla^2 \overline{h}_{11} - \overline{h}_{11} = q_0, \quad \left[\overline{h}_{11}\right] = \left[\frac{\partial \overline{h}_{11}}{\partial r}\right] = 0, \tag{A.6b}$$

$$\nabla^2 \overline{h}_{12} - \overline{h}_{12} = 0, \qquad \left[\overline{h}_{12}\right] = 0, \quad \left[\frac{\partial \overline{h}_{12}}{\partial r}\right] = -\left[V'_{I0}\right] \overline{r}_1. \tag{A.6c}$$

The solution to (A.6b) has the form:

$$\overline{h}_{11} = A_{1s} \sin \theta + A_{1c} \cos \theta ; \tag{A.7}$$

the quantity $A = A_{1s} + iA_{1c}$ is given by (5.5).

The function \overline{h}_{12} is related to r_1 (see by (4.8) for n = 1):

$$\overline{h}_{12} = -\gamma \sum_{m=0}^{\infty} \Phi_m \operatorname{Im}(R_1^{(m)} e^{im\theta}), \quad r_1 = \sum_{m=0}^{\infty} \operatorname{Im}(R_1^{(m)} e^{im\theta}).$$
 (A.8a,b)

where we take into account that $r_1 = \overline{r_1}$ by virtue of (A.1b).

The following equations for the coefficients $\overline{G}_1^{(m)}$ in (4.12a) are readily derived from (A.2a), and (A.7):

$$\overline{G}_1^{(1)} = -iA_b; \quad \overline{G}_1^{(m)} = 0, \quad m \neq 1.$$
 (A.9a,b)

Using (A.9a) and (A.1c) one can find from (4.10) the zero-order slow translation speed (5.7).

Also due to (A.9b), the zero initial conditions (2.24) for r_1 , and (A.1b,c) we have from (4.11) that $\overline{R}_1^{(k)} = 0$, k = 0,1,2,... whence (5.1) follows and, therefore,

$$\overline{h}_{12} = 0$$
, $\overline{h}_{1} = A_{1s} \sin \theta + A_{1c} \cos \theta$. (A.10a,b)

The analysis of the first-order slow component is completed by the calculation of $\overline{R}_2^{(1)}$ using (4.13), (A.1c), (A.2a), and (A.10b):

$$\overline{R}_{2}^{(1)} = -\int_{0}^{1} r^{2} A dr. \tag{A.11}$$

By virtue of (A.1a) and (A.2a) the vorticity equation (4.14c) gives

$$\widetilde{q}_1 = 0 \,, \tag{A.12}$$

and the equation (4.17a) for \tilde{h}_1 takes the form:

$$-\frac{\partial^2 \tilde{h}_1}{\partial t^2} + \nabla^2 \tilde{h}_1 - \tilde{h}_1 = 0 . \tag{A.13}$$

The fields \overline{h}_1 , $\overline{U}_1 = -\partial \overline{h}_1/r\partial \theta$, $\overline{V}_1 = \partial \overline{h}_1/\partial r$ are zero at the initial moment (see (A.10b), (5.5), (5.2), and (A.4)), therefore we have from (4.18), (4.19), (A.1a), and (A.2a) that

$$\widetilde{h}_1\Big|_{t=0} = \frac{\partial \widetilde{h}_1}{\partial t}\Big|_{t=0} = 0.$$
(A.14)

The conditions for \tilde{h}_1 at r=1 are obtained from (4.14k,m) using (A.1b), (A.2b):

$$\left[\tilde{h}_{1}\right] = \left[\frac{\partial \tilde{h}_{1}}{\partial r}\right] = 0.$$

(A.15)

Obviously, the homogeneous problem (A.13) to (A.15) has a zero solution

$$\widetilde{h}_{l} = 0. (A.16)$$

Then, by virtue of (4.14a,b) for n = 1, (A.2a), and zero initial conditions for \widetilde{U}_1 , \widetilde{V}_1 (because of (2.24) and zero initial conditions for \overline{U}_1 , \overline{V}_1 , see above) we have also that

$$\widetilde{U}_1 = \widetilde{V}_1 = 0. \tag{A.17}$$

The function $\widetilde{R}_2^{(1)}$ also vanishes which follows from (4.14g), (A.2a), (A.1b), and (A.16), i.e.

$$\widetilde{R}_{2}^{(1)} = 0.$$
 (A.18)

One can readily see from (4.14f), (A.2a), (A.1b), (A.17), and (A.18) that

$$\widetilde{X}_0 = \widetilde{Y}_0 = 0 \,, \tag{A.19}$$

and

The calculation of next approximation starts from the equations (A.11), (A.12), and (A.20).

Apendix B. Second-order correction

In the second-order approximation we have

$$F(U)_{2} = -\frac{\partial U_{1}}{\partial T_{1}} + \frac{V_{I0}}{r} V_{1}^{*} - \frac{V_{I0}}{r} \left(\frac{\partial U_{1}}{\partial \theta} - V_{1} \right) + y V_{I0}, \tag{B.1a}$$

$$F(V)_{2} = -\frac{\partial V_{1}}{\partial T_{1}} - V'_{I0}U_{1}^{*} - \frac{V_{I0}}{r} \left(\frac{\partial V_{1}}{\partial \theta} + U_{1} \right), \tag{B.1b}$$

$$F(q)_{2} = -\left[\frac{\partial q_{0}}{\partial T_{2}} + U_{1}^{*} \frac{\partial q_{0}}{\partial r} + (V_{I1} + V_{1}^{*}) \frac{1}{r} \frac{\partial q_{0}}{\partial \theta} + U_{1} \sin \theta + (V_{I1} + V_{1}) \cos \theta - h_{I0} V_{I0} \cos \theta\right], (B.1c)$$

$$F(\varsigma)_2 = \gamma h_1 H(1-r) + h_{10}q_0$$

(B.1d)

$$F(r)_2 = F(B)_2 = 0$$
, $D(U)_2 = D(V)_2 = D(h)_2 = D(h)_2 = 0$. (B.1e)

Here

$$U_1^* = U_1 - \dot{X}_0 \cos \theta - \dot{Y}_0 \sin \theta, \quad V_1^* = V_1 + \dot{X}_0 \sin \theta - \dot{Y}_0 \cos \theta.$$
 (B.2)

For n=2 the slow vorticity equation (4.5c) takes the form, noting that $F(q)_2 = \overline{F}(q)_2$ since all quantities in the right-hand side part of (B.1c) are slow,

$$\frac{\partial \overline{q}_1}{\partial T_1} + \Omega_0 \frac{\partial \overline{q}_1}{\partial \theta} = F(q)_2. \tag{B.3}$$

To prevent secular growth \overline{q}_1 in T_1 we remove from $F(q)_2$ the corresponding secular terms i.e. we put

the form (5.2a,b) where φ_0 , C_0 are replaced by

$$\varphi_1 = \Omega_0 T_1 + \Omega_1 T_2$$
, $C_1 = C_1(r, T_3, ...)$, $C_1 = 0$ for $T_3 = 0$ (B.5)

respectively.

The solution to (B.3) is conveniently represented in the form

$$\overline{q}_1 = -h_{I0}q_0 + q_{12} \tag{B.6}$$

where the equation for q_{12} coincides (within notations) with equation (5.6e) of RGB,

$$\frac{\partial q_{12}}{\partial T_1} + \Omega_0 \frac{\partial q_{12}}{\partial \theta} = -J(h_1 + \dot{X}_0 y - \dot{Y}_0 x, q_0) - \frac{\partial h_1}{\partial x}, \tag{B.7}$$

and has the solution which was analyzed in detail in RGB (c.f. the solution (6.2), (6.3) of RGB):

$$q_{12} = q_{20} + q_{2s} \sin 2\theta + q_{2c} \cos 2\theta , \qquad (B.8a)$$

$$q_{20} = \text{Im} \int_{0}^{T_{1}} \frac{1}{2r} \left(\overline{A}^{*} \overline{Q}_{0} \right)' dT_{1} - \int_{0}^{T_{1}} \dot{Y}_{0} dT_{1} , \qquad (B.8b)$$

$$q_{2s} + iq_{2c} = \frac{1}{2r} e^{-2i\Omega_0 T_1} \int_0^{T_1} \left(\overline{A} \overline{Q}_0' - \overline{A}' \overline{Q}_0 \right) e^{2i\Omega_0 T_1} dT_1,$$
 (B.8c)

$$\overline{A} = \overline{A}_{s1} + i\overline{A}_{c1} = A(r,t) - rA(1,t)$$
, $\overline{Q}_0 = Q_0 + r$ (B.8d)

Using (B.1a,b,d) the equation (4.6) for the slow elevation \overline{h}_2 is written as follows

$$\nabla^2 \overline{h}_2 - \overline{h}_2 = \overline{F}(h)_2 = \gamma h_1 H(1-r) + \frac{1}{r} \left[2(V_{I0}V_1)' - 2V_{I0}' \frac{\partial U_1}{\partial \theta} + (r^2 V_{I0})' \sin \theta \right] + q_{12}.$$
 (B.9)

We now represent \overline{h}_2 in the form (see (4.7), (B.1e)),

$$\overline{G}_2 = -\left(\frac{\partial \overline{h}_{21}}{\partial \theta} - \overline{F}(V)_2\right)_b. \tag{B.15}$$

By virtue of (B.11), (B.14), and (B.1b) the function \overline{G}_2 includes the dipole and quadrupole terms only. Calculating $\overline{G}_2^{(1)}$ in (4.12a) and using $\overline{R}_2^{(1)}$ from (A.11) we determine from (4.10) the translation speed components \overline{X}_1 , \overline{Y}_1 given by (5.20).

Also knowing $\overline{G}_2^{(2)}$ one can calculate the coefficients $R_2^{(2)}$ in the Fourier representation (5.21a) for r_2 . The resulting solutions for r_2 and \overline{h}_{22} are presented by the equations (5.21a,b), (5.22) (we recall that $\widetilde{r}_2 = 0$ by virtue of (A.20) and $R_2^{(1)}$ are determined by (A.11)).

Now we know the function $\overline{h}_2 = \overline{h}_{21} + \overline{h}_{22}$ and can determine the slow velocity components \overline{U}_2 , \overline{V}_2 from (4.5a,b):

$$\overline{V}_2 = \frac{\partial \overline{h}_2}{\partial r} - \overline{F}(U)_2, \quad \overline{U}_2 = -\frac{1}{r} \frac{\partial \overline{h}_2}{\partial \theta} + \overline{F}(V)_2.$$
(B.16a,b)

Finally, the first azimuthal component $\overline{R}_3^{(1)}$ is determined from (4.13) using (A.11), (B.1e), and the function \overline{h}_2 :

$$\overline{R}_{3}^{(1)} = \frac{i}{\pi} \int_{0}^{2\pi} \overline{r}_{3} e^{-i\theta} d\theta = -\frac{i}{\pi} \int_{0}^{2\pi} e^{-i\theta} d\theta \int_{0}^{1} r^{2} \overline{h}_{2} dr - h_{I_{0}}|_{b} \overline{R}_{2}^{(1)}.$$
(B.17)

The function $F(q)_2$ in (B.1c) is slow and $\tilde{q}_1 = 0$ (see (A.12)) therefore we have from (4.14c) for n = 2 that

$$\widetilde{q}_2 = 0. (B.18)$$

Since the functions $F(U)_2$, $F(V)_2$, $F(\zeta)_2$ in (B.1a,b,d) are slow, equation (4.17) for \widetilde{h}_2 takes the form:

$$-\frac{\partial^2 \tilde{h}_2}{\partial t^2} + \nabla^2 \tilde{h}_2 - \tilde{h}_2 = 0 . \tag{B.19}$$

Initial conditions for (B.19) follow from (4.18), (4.19):

$$\tilde{h}_2 = -\overline{h}_2, \quad \frac{\partial \tilde{h}_2}{\partial t} = -\frac{\partial \zeta_1}{\partial T_1} - V_{I0} \cos \theta \quad \text{for } t = 0;$$
(B.20a,b)

when writing (B.20) we use (B.16), (A.12), and the fact that $\tilde{F}(U)_2 = \tilde{F}(V)_2 = \tilde{F}(\zeta)_2 = 0$. The problem (B.19), (B.20) is well-defined and \tilde{h}_2 can be readily found, for example, using the Fourier transform. Known \tilde{h}_2 the velocity $\tilde{\mathbf{U}}_2 = \tilde{U}_2 + i\tilde{V}_2$ is determined from the system

$$\frac{\partial \tilde{\mathbf{U}}_{2}}{\partial t} + i\tilde{\mathbf{U}}_{2} = -\left(\frac{\partial \tilde{h}_{2}}{\partial r} + \frac{i}{r}\frac{\partial \tilde{h}_{2}}{\partial \theta}\right), \quad \tilde{\mathbf{U}}_{2}\Big|_{t=0} = -(\overline{U}_{2} + i\overline{V}_{2})\Big|_{t=0} . \tag{B.21a,b}$$

One can readily show that all the right-hand side parts in (B.20), (B.21) have a dipole structure therefore \tilde{h}_2 and $\tilde{\mathbf{U}}_2 = \tilde{U}_2 + i\tilde{V}_2$ are also dipoles i.e.

$$\widetilde{h}_2 = \widetilde{h}_{2s} \sin \theta + \widetilde{h}_{2c} \cos \theta, \quad \widetilde{\mathbf{U}}_2 = (\widetilde{U}_{2s} + i\widetilde{V}_{2s}) \sin \theta + (\widetilde{U}_{2c} + i\widetilde{V}_{2c}) \cos \theta. \tag{B.22a,b}$$

To determine the fast components of translation speed \tilde{X}_1 , \tilde{Y}_1 we calculate $\tilde{R}_3^{(1)}$ using (4.14g):

$$\widetilde{R}_{3}^{(1)} = -\int_{0}^{1} r^{2} \widetilde{H}_{2} dr, \quad \widetilde{H}_{2} = \widetilde{h}_{2s} + i\widetilde{h}_{2c}.$$
 (B.23a,b)

Substituting (B.23a), (B.22b) into (4.14f) we obtain two equations:

$$\tilde{\dot{Y}}_{1} + i\tilde{\dot{X}}_{1} = \int_{0}^{1} r^{2} \frac{\partial \tilde{H}_{2}}{\partial t} dr + (\tilde{U}_{2s} + i\tilde{U}_{2c})\Big|_{b}, \tag{B.24}$$

$$\tilde{R}_3^{(n)} = 0, \quad n \neq 1.$$
 (B.25)

The first of these equations determines the fast components of translation speed \tilde{X}_1 , \tilde{Y}_1 , the second one together with (B.23a) - the fast boundary perturbation \tilde{r}_3 . Knowing \tilde{r}_3 , \tilde{q}_2 , $\overline{R}_3^{(1)}$ (see (B.17), (B.18)) one can calculate the next approximation.

Appendix C

The functions $F(U)_3$, $F(V)_3$ have the form

$$F(U)_{3} = -\frac{\partial U_{2}}{\partial T_{1}} - \frac{\partial U_{1}}{\partial T_{2}} - U_{1}^{*} \frac{\partial U_{1}}{\partial r} - \left(\frac{\partial U_{2}}{\partial \theta} - 2V_{2} - \dot{X}_{1} \sin \theta + \dot{Y}_{1} \cos \theta - rY_{0}\right) \frac{V_{I0}}{r} - \frac{V_{1}^{*} + V_{I1}}{r} \left(\frac{\partial U_{1}}{\partial \theta} - V_{1}\right) - \frac{V_{I1}V_{1}^{*}}{r} + y(V_{I1} + V_{1});$$
(C.1a)

$$F(V)_{3} = -\frac{\partial V_{2}}{\partial T_{1}} - \frac{\partial V_{1}}{\partial T_{1}} - U_{1}^{*} \frac{\partial (V_{1} + V_{I1})}{\partial r} - U_{2}^{*} V_{I0}^{\prime} - \frac{V_{1}^{*} + V_{I1}}{r} \left(\frac{\partial V_{1}}{\partial \theta} + U_{1} \right) - \frac{V_{I0}}{r} \left(\frac{\partial V_{2}}{\partial \theta} + U_{2} \right) - y U_{1}.$$
(C.1b)

Let us average the equations (7.2a-d) with respect to θ ; using (B.14), (B.8) we have,

$$\frac{\partial U_3^{(0)}}{\partial t} - V_3^{(0)} = -\frac{\partial h_3^{(0)}}{\partial r} + F(U)_3^{(0)}, \quad \frac{\partial V_3^{(0)}}{\partial t} + U_3^{(0)} = F(V)_3^{(0)}, \tag{C.2a,b}$$

$$\zeta_3^{(0)} - h_3^{(0)} = \gamma < h_2 > H(1-r) + \langle h_{I_0} q_{20} \rangle + \langle h_{I_0} q_{20} \rangle + \langle q_2 \rangle,$$
(C.2c)

$$\zeta_3^{(0)} = \frac{1}{r} \left[\frac{\partial}{\partial r} (r V_3^{(0)}) - \frac{\partial U_3^{(0)}}{\partial \theta} \right]. \tag{C.2d}$$

where the notation

$$K_3^{(0)} = \langle K_3 \rangle = \frac{1}{2\pi} \int_0^{2\pi} K_3 d\theta$$

denotes the azimuthal average.

The fast components of the fields U_2, V_2 , and h_2 are dipolar (see Sec 5 and Appendix B) and q_2 does not depend on the fast time by virtue of (B.18). Therefore $F(U)_3^{(0)}$, $F(V)_3^{(0)}$, and the right-hand side of (C.2c) are slow functions of the time; one can readily check also that these functions are equal to zero for t = 0. We now reduce the equations (C.2) to a single equation for $h_3^{(0)}$; simple analysis of this equation shows that $h_3^{(0)}$ and therefore $U_3^{(0)}$, $V_3^{(0)}$ do not depend on the fast time. Then by virtue of (C.2b) we have after some transformations

$$U_3^{(0)}|_b = F(V)_3^{(0)}|_b = -\frac{\partial V_{20}}{\partial T_1}|_b - \langle U_1|_b \sin\theta \rangle$$
 (C.3)

where V_{20} is related to the axisymmetric part of the geostrophic second-order elevation correction \overline{h}_{2g}^c ,

$$V_{20} = \frac{\partial < \overline{h}_{2g}^c >}{\partial r} = \frac{\partial B_{20}}{\partial r}.$$
 (C.4)

Using the equations (B.14b), (B.8), (5.6a), and (5.4b) we come to (7.4), (7.5).