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APPENDICES A, Band C



Appendix A. First-order solution

The first-order solution analysis starts from the relationships (4.20) rewritten here for

convenience
fo=0, =0, P =0. (A.1a,b,c)
For n=1 we have in (4.1):
FU\=F(V)=0 F(gq=-rqco9, F(ch=F(r)h=F(B)=0 (A.2a)

DWU),=D(V);=D(h);=D(H);=0 (A.2b)

The equation (4.5¢) for g, takes the form

g 3G
—é%+90%= ~rQ, cosf. (A3)

By virtue of (A.1a) the vorticity g, =g, and, as follows from (2.24), g, is zero at the initial

moment

G=0at T;=0. (A4)

The solution to (A.3), (A4) is given by the equations (5.2a,b), (5.3).

Since F(U )1 =F (V)1 =F (g)1 =0 the problem (4.6), (4.5k,m) for E is reduced to the

system:

Vh-h=q, [m]=0, [%}—[Vfo]ﬁ- (A.5)

In accordance with (4.7) the function EI is represented as

b =hyy+hpy (A.6a)



VQEI_E|:‘E0= [E|]= l:a—;i}}:o, (A.6D)

- = = oh, e
Vzhlz —h, =0, [hm] =0, [a_;‘z] = _[Vm] fi- (A.6¢)

The solution to (A.6b) has the form:
hyy = Ay sinB+ 4y, cosO; (A.7)

the quantity 4 = 4, +i4,, is given by (3.5).

The function 7, is related to r (see by (4.8) for n=1):

hy =-7Y,®@,Im(R"™e™), 1= Y Im(R™e™). (A.8a,b)

m=0 m=0
where we take into account that 7 =7 by virtue of (A.1b).

The following equations for the coefficients (:(m) in (4.12a) are readily derived from
(A.2a), and (A.7):

Gr_l('l) - _fA|b; @I(m) =0, m#1. (A.9a,b)

Using (A.9a) and (A.1c) one can find from (4.10) the zero-order slow translation speed (5.7).
Also due to (A.9b), the zero initial conditions (2.24) for 77 , and (A.1b,c) we have

from (4.11) that E(k) =0, k=0,1,2,... whence (5.1) follows and, therefore,

By =0, Iy =4 sin®+ 4y, cos8. (A.10a,b)

The analysis of the first-order slow component is completed by the calculation of E;(”

using (4.13), (A.1c), (A.2a), and (A.10b):

1
R =-[rdr. (A.11)

0

By virtue of (A.1a) and (A.2a) the vorticity equation (4.14c) gives

71=0, (A.12)



and the equation (4.17a) for E] takes the form:

-
T sV~ =0 (A.13)

The fields &y, U, = -0k, [rd0, ¥, = ok, /or are zero at the initial moment (see (A.10b), (5.5),
(5.2) , and (A.4)), therefore we have from (4.18), (4.19), (A.la), and (A.2a) that

oh,

1 =0 (A.14)

t=0

;7‘ =
1::0

The conditions for }’{] at 7 =1 are obtained from (4.14k,m) using (A.1b), (A.2b):

-1 | Ok
|i]= {5}0.. |
(A.15)

Obviously, the homogeneous problem (A.13) to (A.15) has a zero solution

I =0. | (A.16)

Then, by virtue of (4.14a,b) for n = 1, (A.2a), and zero initial conditions for ﬁt ; f’; (because

of (2.24) and zero initial conditions for U, 7] , see above) we have also that

U,=V,=0. (A.17)
The function R{" also vanishes which follows from (4.14g), (A.2a), (A.1b), and (A.16), i.e.
EM=0. (A.18)
One can readily see from (4.14f), (A.2a), (A.1b), (A.17), and (A.18) that

Xo=Y,=0, (A.19)

and









The calculation of next approximation starts from the equations (A.11), (A.12), and

(A.20).

Apendix B. Second-order correction

In the second-order approximation we have

aU V U,
F A ”’ —L -V v, .
), = T —+= - . [89 j+y o (B.1a)
v , Vio( 9V,
F(V), =_a_T VoUs = (891 +U1], (B.1b)
1

F(g), = - 339 +U E’aqﬂ+(l{,,+V jLe qé?+Umn9+(V,.l+V)cose hyV,, c0s0 |, (B.1c)

FQ)z=ymH(O-r)+ by,
(B.1d)

F(r)2=F(B);=0, D(U),=D(V),=D(h),=D(K),=0. (B.le)
Here
U =U,-X,cos0 —Y,sinf, V" =V,+X,sin0—Y,cosb . (B.2)

For n=2 the slow vorticity equation (4.5¢) takes the form, noting that

F(q), = F(g), since all quantities in the right-hand side part of (B.1c) are slow,

9,0 % _p
Q,—= :
31+ 5 = F s (B3)

To prevent secular growth 7; in T; we remove from F(Q) the corresponding secular terms

i.e. we put



ALl OUILLALLIVILL WS \U._r)' Qu'—lﬂl)‘ 11].5 AL S AL AL WVLAAA L VAL L LA UUllllJulLUlU ¥YAWLL \Joh), \J-.}} ALl

the form (5.2a,b) where ¢, C, are replaced by
o, =Q,1,+QT,, C =C(rT;,..), C;=0for ;=0 (B.5)

respectively.

The solution to (B.3) is conveniently represented in the form
g1 =—h1oq0 + 412 (B.6)

where the equation for ¢;, coincides (within notations) with equation (5.6e) of RGB,

a‘?lz 99, ’ 7 ah’l
—=4+Q ——==-] Xy-Yx,q,)——, B.7
oT L (B + X,y — Yox.q,) - (B.7)

and has the solution which was analyzed in detail in RGB (c.f. the solution (6.2), (6.3) of
RGB):

Gy = Ga0 + G, SIN 20 + q,,c0s20 | (B.8a)
5 § 5zl n .
o= Imig(A*Qﬁ) dI = ! Y,dT, , (B.8b)
; 1 —2'QTT] il R B o
@y iy, =5 ’”‘_![AQU Sy one Har, (B.8¢)
A=A, +idy = Ar,t)—rA(Lt) » Oy =0y +7 (B.8d)

Using (B.1a,b,d) the equation (4.6) for the slow elevation }?2 is written as follows

! +(r21§0)'sin6:[+q|2. (B.9)

1 1 = 1 ’ ’
V?h, —h, = F(h), = y,H(l —r)+;[2(1/;01/1) —21/;0—9

We now represent Ez in the form (see (4.7), (B.1e)),



G, =—[%%—F(V)g] : (B.15)

By virtue of (B.11), (B.14), and (B.1b) the function 52 includes the dipole and quadrupole
terms only. Calculating 52“} in (4.12a) and using Ez(l} from (A.11) we determine from (4.10)
the translation speed components X 1» }7] given by (5.20).

Also knowing 52(2} one can calculate the coefficients RéZ) in the Fourier
representation (5.21a) for 7,. The resulting solutions for r, and 522 are presented by the

equations (5.21a,b). (5.22) (we recall that =0 by virtue of (A.20) and RS" are determined
by (A.11)).

Now we know the function hy =y, +hy, and can determine the slow velocity
components U,, ¥, from (4.5a,b):
v, =%——F(U)2, G, =—13—%+F(D2- (B.16a,b)
4

Finally, the first azimuthal component fg“ is determined from (4.13) using (A.11), (B.1e),

and the function 4, :

. 2w . 27 1
= 1 N I = T o
R;I) =;r-'(!-?§€ ed9=—;J‘e edﬂ_{!‘rzhzdr—hmleﬂm. (B17)

0

The function F(Q) in (B.1c) is slow and ; =0 (see (A.12)) therefore we have from
(4.14c) for n =2 that

92 =0. (B.18)

Since the functions F(U )2 il (V)z . F (G)z in (B.1a,b.d) are slow, equation (4.17) for

j;z takes the form:

o’h,

-2 il —hy=0. (B.19)



Initial conditions for (B.19) follow from (4.18), (4.19):

h=-h, 2. % _y

5 5y~ o cos@ for t=0; (B.20a,b)
1

when writing (B.20) we use (B.16), (A.12), and the fact that F(U),= F(V),= F(c),= 0.
The problem (B.19), (B.20) is well-defined and 52 can be readily found, for example, using

the Fourier transform. Known 7, the velocity U,=0 » +iV, is determined from the system

U, =  (oh idh) - _ _  _
a—;+iU2-—-[¥+;¥} U2|i=0_—-(U2+:Vz)L=D. (B.21a,b)

One can readily show that all the right-hand side parts in (B.20), (B.21) have a dipole

structure therefore 4, and U, =0, +iF, are also dipoles i.e.
};2 = 325 sin 0+ ]’;25 cosO, U,= (ﬁzs +i?23)sin9+(5zc +if7'2¢)cose_ (B.22a,b)

To determine the fast components of translation speed X 1 Yl we calculate E§ D

using (4.14g):

1 o e
RV =- J P H,dr, Hy =hyg +ihy, (B.23a,b)

0

Substituting (B.23a), (B.22b) into (4.14f) we obtain two equations:

- i3 ; ¥ ~ ~
Y +iX, = [’ %HfdrﬂUZS +il,,)
0

(B.24)

b’

jéa(nj - 0’ nzl. (B25)

The first of these equations determines the fast components of translation speed )}h Y, , the

second one together with (B.23a) - the fast boundary perturbation r3. Knowing 7, g,, ng])

(see (B.17), (B.18)) one can calculate the next approximation.



Appendix C

The functions F(U)3, F(V)3 have the form

aU, 9y U, (aU, i : v,
F(U)3——-gf~a—fs-w—ar—‘—(%"'——2%—X,smﬂ+1{cos€~r}{}]—;—0— o
la
TSy )- B8y,
r 00 r
v, 97, oV +V,) , V47, [aV )
=rr, B e 1 ) _ iy 1 Al E0 err |
(V)3 a?-; aI; | ar 271 . ae 1 (C lb)
K;O_[%E_"'Uz) U,

Let us average the equations (7.2a-d) with respect to 0 ; using (B.14), (B.8) we have,

0) (0) 0)
W2y 9, ppw, Y, U© = Fn®, (C.2a,b)
ot or ot
G-V =y <h >H(1-r+< PioG >+<hgy>+<q, >, (C.2¢)
1| o oU®
A ey % ) i B C.2d

where the notation
2
EP=ckys= ) (&
27 Y

denotes the azimuthal average.

The fast components of the fields U, ¥, and A, are dipolar (see Sec 5 and Appendix

B) and ¢, does not depend on the fast time by virtue of (B.18). Therefore F(U )(30) , F (V)(30) ,

and the right-hand side of (C.2¢) are slow functions of the time; one can readily check also

that these functions are equal to zero for £= 0. We now reduce the equations (C.2) to a single
equation for hgo); simple analysis of this equation shows that h§0) and therefore (J éo), \/3(0)

do not depend on the fast time. Then by virtue of (C.2b) we have after some transformations



L)

], = F), =2
1 lp

-<U,sin6 > (C3)

where ¥, is related to the axisymmetric part of the geostrophic second-order elevation

correction Ay, ,

d<h’> OB
V. = g -2 C4
o or or €4

Using the equations (B.14b), (B.8), (5.6a), and (5.4b) we come to (7.4), (7.5).



