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Mathematics of Structure-Function Equations of All
Orders

Reginald J. Hill

ABSTRACT. Exact equations are derived that relate velocity structure func-
tions of arbitrary order with other statistics. “Exact” means that no approxi-
mations are used except that the Navier-Stokes equation and incompressibility
condition are assumed to be accurate. The exact equations are used to de-
termine the structure-function equations of all orders for locally homogeneous
but anisotropic turbulence as well as for the locally isotropic case. These equa-
tions can be used for investigating the approach to local homogeneity and to
local isotropy as well as the balance of the equations and identification of scaling

ranges.

1. INTRODUCTION

Full mathematical exposition on the topic of structure-function equations is given
here. A brief summary of results derived here will appear in the Journal of Fluid Mechanics
in the paper “Equations relating structure functions of all orders.” The two sections below
are sufficiently similar to that paper so as to guide the reader to the relevant mathematical
details, much of which resides in the appendixes herein. The two sections below contain
more mathematical detail than does that paper. Derivation of the results in “Equations
relating structure functions of all orders” produces substantial mathematical detail. This
is true for reduction of the viscous term and for the term involving the pressure gradient
when deriving the exact equations. Applying isotropic formulas for structure functions
of arbitrary order requires the invention of new notation and much use of combinatorial

analysis. For these purposes, the book by Abramowitz and Stegun (1964) is useful and



is cited in the appendixes. The divergence and Laplacian operating on isotropic formulas
necessarily appear in the equations; evaluation of which requires the derivation of many
identities. Finally, matrix-based algorithms are invented such that the isotropic formulas
for the divergence and Laplacian of isotropic tensors of any order can be generated by
computer.

There is some difference in notation between the paper and this document. In the
paper, a component of a structure function is denoted by Dy, n, n,), Whereas here it is de-
noted by the more complicated notation Din.n, n,,n5- The reason for the more complicated
notation here is to avoid ambiguity at several places in the mathematics. In the paper, the
components of the tensor {W[N_QPJ (r) 6[2;»]} are denoted by {W[N_gp] (r) 5[2p]}[N1‘N2’N3].
Here, there is no symbolic distinction between the tensor {W[N_g p| (r) 6{2;»]} and its com-

ponents. The distinction is implied by the context.
2. EXACT TWO-POINT EQUATIONS

The Navier-Stokes equation for velocity component u;(x,t) and the incompressibility

condition are
Opui (X, t) + Un(X,t)0p, ui(x,t) = —0,p(X,t) + v0s, 0, ui(X,t) , and Oz, ua(x,t) =0, (1)

where p(x,t) is the pressure divided by the density (density is constant), v is kinematic
viscosity, and @ denotes partial differentiation with respect to its subscript variable. Sum-
mation is implied by repeated Roman indexes. Consider another point x’ such that x’ and
x are independent variables. For brevity, let u; = u;(x,t), u; = u;(x/,t), etc. Require that
x and X" have no relative motion. Then 0,,u; = 0, 635 u; = 0, etc., and 0, is performed with
both held x and x’ fixed. Subtracting (1) at x’ from (1) at x and using the aforementioned

properties gives
Btfv,- —+ un&cnfvi + u;E?I:n v; = _-Pé + v (3In3;tﬂ v; + 3;,;{‘63;;‘01;) 5 (2)
where v; = u; —u; , P, = ((‘:Lép - Bx;p') : (3)
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Change independent variables from x and x’ to the sum and difference independent variables:
X=(x+x')/2 and r=x—x/, and definer = |r|. (4)
The relationship between the partial derivatives is

(0 —0z).  (5)

b =

1 1
3z.— = ar,‘ =fs ‘2“6)(,- y 6z: m— _ar,- + Ea}ﬁ P BX.- — ax.- + 6::" s ar'.— =

The change of variables organizes the equations in a revealing way because of the following
properties. In the case of homogeneous turbulence, 0x, operating on a statistic produces zero
because that derivative is the rate of change with respect to the place where the measurement
is performed. Consider a term in an equation composed of Jx, operating on a statistic.
For locally homogeneous turbulence, that term becomes negligible as r is decreased relative
to the integral scale. For the homogeneous and locally homogeneous cases, the statistical
equations retain their dependence on r, which is the displacement vector of two points of

measurement. Using (5), (2) becomes

Byv; + UpOx, Vi + VnBr,vi = —Ps + v (05,05, + 0y, 0y ) , (6)

where U, = (u; + ) /2. (7)

Now multiply (6) by the product v;vy - - - v, which contains N — 1 factors of velocity
difference, each factor having a distinct index. Sum the N such equations as required
to produce symmetry under interchange of each pair of indexes, excluding the summation
index n. French braces, i.e., {0}, denote the sum of all terms of a given type that produce

symmetry under interchange of each pair of indexes. The differentiation chain rule gives

{vjvg - - - 00w} = 0, (Vv - - - Vi), (8)
{Uj’t)k LR v;U,,BX,,v,:} = Unaxn (ijk e ’Uﬂ}i) = 6}{” (Un'ujvk e ’U{‘U,ﬁ) ’ (9)
{vjve - - - VU0, Vi } = U0y, (VjUk - - - V1V;) = O, (VnVjVk - - - UY;) - (10)

The right-most expressions in (9) and (10) follow from the incompressibility property ob-

tained from (5) and the fact that 0;,u} = 0, 9,yu; = 0, namely
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8x.Un = 0,9, 0n = 0,8,,Uy = 0,8, v, = 0. (11)

The viscous term in (6) produces v {vjvk e (3% Oz, V; + Oyt Oxr, vi-)}; this expression is
treated in Appendix A. These results give
Oy (vj - - - ;) + Ox, (Un®j - - = i) + Or, (00 -+ - v3) =
1
vy P} + 20 [(00 + 0x0x) () — o), (12)
where e;; = (0, ;) (0z,u;) + (32;‘ u;) (Bx; u;) = (O, vi) (0z,v;) + (BI;‘ vi) (Smfn Uj) . (13)
The quantity {v; - - - v, P;} can be expressed differently on the basis that (5) allows

P; to be written as P, = Ox, (p — p')- The derivation is in Appendix B; the alternative

formula is

{vjr - - - P} = {0x, [vsvx - - u (0 — PN} — (N = 1) (p— P') { (55 — %) we - u}, (14)
where the rate of strain tensor s;; is defined by

8ij = (axiuj + azju,:) /2 (15)

3. AVERAGED EQUATIONS

Consider the ensemble average because it commutes with temporal and spatial
derivatives. The above notation of explicit indexes is burdensome. Because the ten-
sors are symmetric, it suffices to show only the number of indexes. Define the following
statistical tensors, which are symmetric under interchange of any pair of indexes, excluding

the summation index n in the definition of Fiy.q:
Div = (5 -+ v) , Fivany = (U - - - 0) , Tim = ({vj - - - wR}) By = ({on - - - viey })
(16)
where angle brackets () denote the ensemble average, and the subscripts N and N +1 within
square brackets denote the number of indexes. The argument list (X, r,?) is understood for
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each tensor. The left-hand sides of each definition in (16) are in implicit-index notation for
which only the number of indexes is given; the right-hand sides in (16) are in explicit-index

notation. The ensemble average of (12) is
1
A + Ve Forpy - Voo Disap=—Tir -2 [(vf e ﬂ%) 5 SO Em] .

where, Vx - F[N+1] = aXn (Unvj R U{) , Vi * D[N+1] = ar,, <vnvj =R vi) ,Vf = amarﬂv V%{ =
0x,0x,. The notations Vx-, V%, V-, and V2 are the divergence and Laplacian operators

in X-space and r-space, respectively.
4. HOMOGENEOUS AND LOCALLY HOMOGENEOUS TURBULENCE

Consider homogeneous turbulence and locally homogeneous turbulence; the latter
applies for small » and large Reynolds number. The variation of the statistics with the
location of measurement or of evaluation is neglected for these cases. That location being
X, the result of Vx- operating on a statistic is neglected. Thus the terms Vx - Fjy4) and

1V%Dw are neglected in (17); then (17) becomes
&:Diw) + Vi - Dpvyy = ~Ti + 2v V2D — Eq| - (18)

Because the X-dependence is neglected, the argument list (r, t) is understood for each tensor.
The ensemble average of (14) contains (dx, [{vjvk - - - v (p — p)}]), which can be written as
the sum of N — 1 statistics of the form ({v;vy - - - v; (p — p/)}) operated upon by the X-space

gradient. Since such X-space derivative terms are neglected, (14) gives the alternative that

T=-(N-1) <(P -7 {(Sij = S;;j) Ve ’Ug}>. (19)

Locally homogeneous turbulence is also locally stationary such that the term 9;Dyy; in (18)

may be neglected. However, 9;Dy is not necessarily negligible for homogeneous turbulence.



5. ISOTROPIC AND LOCALLY ISOTROPIC TURBULENCE

Consider isotropic turbulence and locally isotropic turbulence; the latter applies for
small r and large Reynolds number. The tensors Dyyj, T|n}, and Epy) in (16) obey the
isotropic formula. The Kronecker delta 6;; = 1 if ¢ = j and 6;; = 0if ¢ # j.  Let
éi2p) denote the product of P Kronecker deltas having 2P distinct indexes, and let Wy (r)
denote the product of N factors Z each with a distinct index; the argument r is omitted
when clarity does not suffer. Because each tensor in (16) is symmetric under interchange
of any two indexes, their isotropic formulas are particularly simple. Each formula is a the

sum of M + 1 terms where
M = N/2if N is even, and M = (N — 1) /2 if N is odd. (20)

Each term is the product of a distinct scalar function with a Wiy and a éjzp). From one
term to the next, a pair of indexes is transferred from a Wy) to a é;3p); examples are given
in (64) through (66) of Appendix E. For the tensor Dy}, denote the Pth scalar function
by Dy p (r,t). Thus the scalar functions belonging to the isotropic formulas for T(n;, Eqy,
and Dy 1) are denoted by Ty,p (7,t), En,p (7,t), and Dy1,p (7, ), respectively. The scalar
functions depend on the magnitude of the spacing r rather than on the vector spacing r.
The isotropic formula for Dy is
M
Dy (r,?) =Pz_D D (r,t) {Win_2p| (r) 8r) } » (21)
and the isotropic formulas for T(y) and Ejy) have the analogous notation. Recall that {o}
denotes the sum of all terms of a given type that produce symmetry under interchange of
each pair of indexes. Henceforth, the argument list (r,t) will be deleted.
A special Cartesian coordinate system is typically used because it simplifies the
isotropic formula. This coordinate system has the positive 1-axis parallel to the direction
of r, and the 2- and 3-axes are therefore perpendicular to r. Let N;, N;, and N3 be the

number of indexes of a component of Dy that are 1, 2, and 3, respectively; such that
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N = N; + No + N3. Because of symmetry, the order of indexes is immaterial such that
a component of Dy can be identified by N;, N2, and N3. Thus, denote a component of
D(n) by Dn:n,,n.,N5), Which is a function of r and . The projection of (21) using Ny, Na,
and N3 unit vectors in the directions of the 1-, 2-; and 3-axes, respectively, results in the
component Din.n, n, ns) on the left-hand side of (21), and numerical values of the projection
of {W[N_gpl (r) 5{21:]} appear on the right-hand side. Henceforth the word ”projection”
will be omitted for brevity. Those values of the coefficients {W[N_Qp] (r) 6{21:]} in (21) are
needed; the values obtained for the special coordinate system are determined in Appendix

C; they are, from (43)-(44),

if 2P < Ny + N3 then {W[N_gp}é[gp]} = 0, otherwise, (22)

{Win_omfpr)} = MININGY/ [(N —2P)12F (-‘Tg—?)l (%)1 (P- %T% = %)'J . (@)

By applying (21) to (23) for all combinations of indexes, one can determine which
coxﬂponents Din:ny o, N are zero and which are nonzero, identify M +1 linearly independent
equations that determine the Dy p in terms of M + 1 of the Dyy.n, v, ns), and find algebraic
relationships between the remaining nonzero Diy.n, n,, Ns)- The derivations are in Appendix

D; a summary follows.

A component Dy.n,,n,,ns) is nonzero only if both N, and N are even and when M is
odd if N is odd and when N, is even if N is even. Thereby, (M + 1) (M + 2) /2 components
are nonzero. There are 3" components of Dyyj; thus the other 3V — (M +1) (M +2) /2

components are zero.

There exists exactly (M + 1) M/2 kinematic relationships among the nonzero com-
ponents of D). For each of the M + 1 cases of N}, these relationships are expressed by

the proportionality

Din:ny 22,0 : Dinevy2n-29)  Divinvy 20-44) ¢ - - - 2 Diveny 0.20) =

[(2L)!01/L10Y) : [(2L — 2)!2!/ (L — 1)1 : [(2L — 4)141/ (L — 2)12]] : - - - - [0! (2L)!/0ILY]. (24)

Previously, only one such kinematic relationship was known(Millionshtchikov 1941). For
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N =4, (24) gives Dig040 : Doz : Duoog = 12 : 4 : 12. In explicit-index notation this
can be written as Dagay = 3Da933 = D333, which was discovered by Millionshtchikov (1941).
Now, all such relationships are known.

There remain M + 1 linearly independent nonzero components of D(y. This must
be so because there are M + 1 terms in (21), and the M + 1 scalar functions Dy p therein
must be related to M + 1 components. Consider the M + 1 linearly independent equations
that determine the Dy p in terms of M + 1 of the Diy.n, n, ns)- For simplicity, the chosen
components can all have N3 = 0, i.e., the choice of linearly independent components can be
Din.noos Din:N—-22,0) Dinv:N-s4,0] - - -, Dinv:n—2m2m0)- As described above, projections of
(21) result in the chosen components on the left-hand side and algebraic equations on the
right-hand side. These equations can be expressed in matrix form and solved by matrix
inversion methods; the result is given in (87) of Appendix F. Given experimental or direct
numerical simulation (DNS) data or a theoretical formula for the chosen components, the
solution in (87) determines the functions Dy p in (21); then (21) completely specifies the
tensor Dyyj. The matrix algorithm is an efficient means of determining isotropic expressions
for the terms V. - Diy41) and VZD(y) in (18). Those algorithms are given in Appendix F.
From the example for N = 2 in Appendix F, use of the matrix algorithm and the isotropic

formulas in (18) gives the two scalar equations

2 4 2 4 4
0D + (3r F ") Dy — -Dipp=-Tnn +2v [(33 +-0,— —2) Dy + = Da — En]
T r r r r

2 4
=2v [33D11 + ;a,-D]] + ;_—2‘ (Dgg — Du)] — 46/3: (25)

4 2 2 2
0y Doy + (&» + ;) Dygy = —Tpo + 2v [;—5911 + (33 + ;& = ﬁ) Dy — E22}

2

2
= 2u [831922 + ;8,.1)22 — 3 (Day — Dll)] —4¢/3, (26)

where use was made of the fact (Hill, 1997) that local isotropy gives T1; = T2 = 0 and
2vEy; = 2vEy = 4¢/3 where ¢ is the average energy dissipation rate per unit mass of fluid.
Now, (25)-(26) are the same as equations (43)-(44) of Hill (1997), and Hill (1997) shows

how these equations lead to Kolmogorov’s equation and his 4/5 law. From the example for



N = 3 in Appendix F,

2 6
0:D111 + (ar i+ ;) D11 — ;D1122 = —Tin+2v|{C — By, (27)
4 4
0y D122 + (81' + ;) D119 — §92222 = =T+ 2v [B — E1a9), (28)
where
4 4 174 4
= (—— + -0, —l—c’?f) D111, and B = = (— — -0, + 533 + r@f) Di11. (29)
r2 r 6 \r2 r

The incompressibility condition, D;y = %(Dm + 0, D111), was substituted in (104) to
obtain (29). The matrix algorithm is checked by the fact that (27)-(29) are the same as
given by Hill and Boratav (2001).

The equations for N = 4 are

2 8
0:Dy111 + (ar + ;) D111 — ;Dll 122 =

8
= —Tn +2v [(32 i ~ —) D + D1122 t3; 292222] — 2vEq;, (30)
4 8
0:D1122 + (ar + —) Dr1122 — = Dizoze =
r 3r
2 92 34
=—Tux+2v [;Dun + (—5—2 +8+= 5 ) D112z + §—2D2222] — 2vEn 2, (31)

6 2 2 2
0¢Daggo + (Br + ;) D13229 = —Thooe + 2v {;Q—Duzz + (—3—?,5 + 02+ ;ar) Dzm] — 2vE9999.

(32)

Since these equations have a repetitive structure, it suffices to give the divergence and

Laplacian terms. For N =5 to 7 these are, respectively:

(a.- ;= %) Dy — %AQDul 122 (33 + ,g,ar = %) Dy = %Du 122 + % D122
(ar + %) Diyi22 — 2Dz |5 2 %Du G & By o ( % + 02+ 25, ) Dyy122 + 5T2 % Diaon
(ar + 2) Di12222 — £ Do oz sz Dz + (_? +0] + Fa’”) D222
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(8- + 2) Driniin — 2Dy 1o )
(8- +2) Dinnaze — B Driszan
(8- + &) Di1saszs — 2D1amom

(648 Dz

[ (52 2 12 108 920 416
(@ 4 2 ‘,:E) D1 — 57 Dinniez + 52 Due2oe — 15,2 Doz

2 242 |, 92 | 2 824 248

5 5D + (—"'2'5,. + 07 + ;@) D122 + 152 Duizaze — 75,3 Dao2 222
4 ;
4 112 2 . 2 4

5zDinie + (—15,,2 + 07 + ;@) Dr12222 + 5,2 Daz2222

w25 D112222 + (— s+ 02+ %ar) D2 929 )

)

—
P
[

Dll 111111 — I_:Dll 111122
Diin1122 — 2 D11112222
Di1112222 — 2 D11222222
\ ,_) Di1222222 — 3= Dazosn oz J

2 2 14 316 3376 1376
( (ar + ;ar - ‘.,3) D]lll 111 — 'ﬁ"Dllll 122 + @'D1112222 - E."TD1222222

o 31 9k 9|
— S e

P N
+ + + 4

F e T e S
[

304

2 1472 | 92 | 2 7808
D + (—21,_2 + G5t ;31-) Diinioe + g3,2 Dniezee — 15,2 D1222220

2v

4 206 Y. B 1132
7z D122 + (— TR ERisEn ;ar) Dh112292 + 7752 D1222920

\ %91112222 + (— 3;52 + 02 + %8,-) D1232222 )
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Appendix A: The Viscous Term

The quantity {v;vg - - - 1,0, O,,,v: } requires special attention. Consider the repeated

application of the identity

02,0z, (f9) = [0:,00,9 + 902,08z, f + 2 (0, f) (0z,9) (33)

to the quantity
02,0z, (VjURUm - - - v;) (34)

for N factors of velocity difference in (v;vgvm - - - v;). For the first application of (33) let

f =v; and let g be the remaining factors (vgv,, - - - v;); this gives

02,0z, (VjUrVm - - - ¥;) = v;0z, Oz, (VkUm - -0;)

n~In

+ (VUm * v;) Oy, 02,0 + 2 (05, v5] [Oz,, (VEVm * -03)] - (35)

From the differentiation chain rule, 8,, (vkvm - -v;) is the sum of N — 1 terms of the form
(Um - “vp0z,v;). Thus, the right-most term in (35) is N — 1 terms of the form 2v,, - - -
Vp (02, ;) (0x,v;) each term containing N factors; two of those factors are distinguished by
being derivatives of velocity differences. The second application of (33) is performed on

0,0z, 0z, (VkUm - -v;) in (35), for which purpose f = v and g = (v,, - -v;); this gives
Ujaz,.axn (Ukvm i Ui) = Ujvkaz“axn (Um. % 'U:')+Uj (Um & ‘Ui) a:rnaa:,,vk‘i'zvj [6znvk] [a::n ('Um * "Ui)] .
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The right-most term gives N — 2 terms of the form 2v;vp, - - - vp (¢, i) (Oz,vk) €ach term
containing N factors.

There are N — 1 steps to complete reduction of the formula. The number of terms
of the form 20, - vp (85, 0:) (0z, vk) is (N — 1) from the first step, (N — 2) from the second
step, etc., such that the total number of terms is (N — 1)+ (N —=2)+---+(N = (N —1)) =
N(N-1)/2. Now, N(N-1)/2= (g’) is the binomial coefficient equal to the number of
ways of choosing two indexes from a set of N indexes; the quantities (0,,v;) and (0;,v;) in
2V - -+ Up (8, v;) (Oz,v;) contain the chosen two indexes 7 and j. The (}; ) terms constitute
2 {Vpn - - - Uy (s, 03) (Bz,v;)}- Because two factors of the form (vjvm, - vi) 0z,08z,vk appear
in the last step, the total number of terms of the form (v;---v,)8:,0z,v; is N. Not
surprisingly, these N terms constitute {(v; - - - v,) 8;,0;,v:}, and N = (If ) is the binomial
coefficient equal to the number of ways of choosing one index from a set of N indexes, the

quantity 8,8, v; contains the chosen one index i.

That is, for any N
8%6,,“ (Uj st 'Ui) = {(’U‘j i U{) 6;;"3_.;“1){} +2 {’Uk + wo (6::"’05) (6%1:;3')} - (36)

The left-hand side is symmetric under interchange of any pair of indexes (not including n
because summation is implied over n), and the French brackets make the right-hand side
likewise symmetric.

Use of (36) within the viscous term v {fvjvk sy (81“ Oz, Vi + 021 O, 'v,-)} that arrises

from (6), gives

{vj0k - -~ v1 (02, 02,0 + Oy Oarvi) | =

(0e0Br, + 0, 00y) (v 03) =2 {0k -+ 0 [(a0s) (Barvy) + (O i) (Barvs) |}, (37)

where the right-most term in (36) has been subtracted from both sides of (36) to obtain
(37). Note that (3,,u:) (Brt;) = (8s,v:) (Bs,v;) and (uut) (Bmuf) = (Bayvi) (0erv5),

and that use of (5) gives
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1
(Bxﬂaz,. : & azﬁ,az;,) =2 (arnarn + ;laxnaxn) -
Then, (37) can be written as

{v,-vk R ¥/ (Bz"c?znv,- =+ 81;65;05)} =2 (6,.,,6,.,, + %a}(naxn) (’Uj soae ’U.g)
~2{ve - - v [(Oeats) (Buaty) + (Bt} (O )|} -

Appendix B: Derivation of (14)

The purpose of this appendix is to derive (14). Since (5) allows P; to be written as
P; = 0x, (p — p'), the differentiation chain rule gives

VjVg - - - P = v - - v10x; (p—17)
= 0x; [vjve - - u(p = P)] = (0 = P) {Oxvj) vk - - - wi} (38)

where the notation {o} /iy denotes the sum of all terms of a given type that produce symmetry
under interchange of each pair of indexes with the index ¢ excluded. Recall that the product
vV - - - v consists of N — 1 factors. Sum the N equations of type (38) such that the sum

is even under interchange of all pairs of indexes; then

{Uj’vk i vtPi} = {3)(i [Ujvk ey (p *P’)]} —-(N-1) (p— PF) {(aXivj) Vg~ ”1} ’ (39)

where use was made of the fact that the V — 1 terms in the sum {(9x,v;) vk - - - v} /iy €ach
give the same result, namely, {(0x,v;) vk - - - v}. From (5), Ox,v; = Op,u; — Oquj; such that

the definition of strain rate (15) gives
(axiﬂj + axj’Ui) /2 = Sij g S;j' (40)

Use of (40) gives {(Ox.v;)vk---w} = ({(Bxivj)vk coeyt 4 {(3;(51),-) Vg - - v;}) /2 =

{(Sij — s;j) Vg * - v;}, substitution of which into (39) gives

{vjvn - - P} = {0x, [oun - - u (@ =P} — (N = 1) (p = p) { (5 — 8y) v - - m} . (41)
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Alternatively, consider that (5) allows P; to be written as P, = 20, (p + p’). Anal-

ogous to (39), it follows that
{vjok - - - P} = 2{0, [vjue - - - w (P + P} = (N = 1) (P +P) {(20r:05) vk - - - i} -

The 20,,v; can be replaced by, 20,,v; = 0zu; + Ooru;, such that {(20,v)ve---u} =
({(23,.3)5) Vg U+ {(26,.}.01:) Vg v+ Ug}) ]2 = {(ng - sgj) Vg =+ ‘Uz}- Then, analogous to
(41), it follows that

{vjue - - wP} = 2{8, [ojon - - w P+ P} = (N = 1) (p+P) { (535 + si5) e - -}

Appendix C: The Coefficient in (21)

The purpose of this appendix is to obtain a formula for the coefﬁcieht {W[N_2 P1012P) }
in the special Cartesian coordinate system. In this coordinate system, % = &;; such that
Wy is the product of N Kronecker deltas of the form §,;. Consider setting N, of the
indexes equal to 1, an even number N; to 2, and an even number N3 to 3 such that N =
N1+ N;+ N;s. Thén {W[ N_QPI(S[QPJ} becomes a sum of zeros and ones. What is that sum?
If all indexes are set to 1, i.e., N; = N, then all terms in the sum {W[N_gp]élgp}} are unity
such that {WI N-2P] 6[2p]} equals its number of terms; from (48) in Appendix E, that number
is (Nf; P) (2P — 1)!I. The notation (Niv QP) is a binomial coefficient. To interpret (2P — 1)!!,
recall that ¢!! = q(¢g—2) (¢ —4)---qr, where q; is 2 or 1 for g even or odd, respectively,
and (—1)!! = 1. Now consider setting two indexes to 2, thus N; = N — 2, and N; = 2.
Name the two indexes 1 = 2 and j = 2. The only term in {W[N_2P]6[2P]} that is nonzero
is that which has i and j together in a single Kronecker delta, é;;, within éjgp). For P =0
there is no such §;;, in which case {W[N]tﬁ[g]} =0. For P > 1, there is one such 6,;, which
is set to 1 and it multiplies the quantity {W[N_gp]t‘i[g( P-1)] }; since this quantity is evaluated
with all 1s, it is equal to its number of terms, namely ((N "?ﬁ’j’;‘&f _1)) (2(P—-1)—-1)!I1. Now

consider setting four indexes to 2; thus, Ny = N — 4 and N, = 4. Name the four indexes
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t=2,7=2 k=2 1=2. The only terms in {WIN_QP](‘E[EPI} that are nonzero are those
that have factors 6;;0k, 8ix0j1, or 650;; within dpp). For P < 1 there is no such pair of
Kronecker deltas such that {Wmé[o]} =0 and {W[N_glﬁ[gl} =0. For P > 2, there are the
above 3 = (N — 1)!! nonzero factors and each multiplies the quantity {W[N_gplé[g{p_g)]};
since this latter quantity is subsequently evaluated with all 1s, it is equal to its number
of terms, namely ((N _ff;)_ﬁ(,f _2)) (2(P—=2)—1)!. Continuation of this study reveals the
pattern that when {W[N_gp]é[gpl} is evaluated with N, 2s and V; 1s such that N = N; + N,

then

if 2P < Ny then {Wix_spd2p} =0, otherwise

{W[N-2P]5[2P]} = (N; — 1)!!((N ki (P B %2)) (2 ( - _;;3) - 1)!!.
Ny

(N —2P)
ol [(N] SR E) (2 (P— ?2) - 1)!!

If one ceases increasing the number of 2s and commences increasing the number of 3s in

= (Np —

N.
pairs such that N = N; + Ny + N3, then (N — 1)!!((N_22,+_22§“22)) (2 (P - %2) - 1)!!

, - _Np_Ng
is replaced by (N;—DI(N; = )u(M2PEEZF=F)) (2(P— 22— M) ). of

(N—2P]+2(P—ﬁ22-ﬁ23))
(N—2P)

(N — Ny — N3)!l/ [(N — 2P)! (2P — Ny — N3)!J; also, (N — Ny — N3)! = N;l. The double

course, the binomial coefficient can be expressed as follows:

factorial can be eliminated by means of the following identities:

(2Q -1/ (2Q) =1/ (2Q)" =1/ (2°Q") . (42)
That is, (2P—Np—N;—1)I/2P—-No,—N3)! = 1/(2P-N,—N3)ll =
1/ [z(f’-%z-ﬂf) (-2 - %a)!]; also, (Ny — 1)!! = Nyl/ [2%/2 (N,/2)1]. Finally,

if 2P < Ny + Ns then {Wiy_sp02p1} = 0, otherwise (43)
{Win_apifpp} = (N2 = 1)1 (N; — 1)1V, 1/ [(N —2P)2(P-F %) ( Plas _‘?‘23 - ivzﬁ)v]
= N,ININs!/ [(N _2p)12F (%)r (52—3)' (P - % o %)f] L (49)
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Appendix D: Identities for Isotropic Symmetric Tensors

The purpose of this appendix is to determine (1) which components of a symmetric,
isotropic tensor are zero; (2) how many components are zero and how many are nonzero;
and (3) the relationships between the nonzero components.

Consider which components Diy:n, n,.ns] are nonzero and which are zero. In (21),
W n_2p) vanishes if any of its indexes is 2 or 3, bj2p) vanishes unless it contains an even
number of indexes equal to 2 and a likewise even number of 3s (and of 1s). Thus, a
component Diy:n; N,,N) i nonzero only if both N and N; are even. Because N = N; +
Ny + N3, Din.n, Ny o) 1S nonzero only when N; is odd if N is odd and only when N, is
even if N is even. The values of N; that can give nonzero values of Diy.n; N, N, are
N, N—2,---,0o0r 1; i.e, M+ 1 cases of N;. Given N, the values of [Ny, N3] that
give nonzero values of Din.n, N,ns) are [N — Ny, 0], [N—=N;—2,2], --+[0,N = NyJ; i.e,
(N — Ny +2) /2 cases (note that N — Ny = N; + N3 is necessarily even). Counting the
number of cases of [Ny, N3] as N varies from N to 0 or 1, (i.e., substituting N; = N,
then N; = N —2, - - - into (N — N; +2) /2 and adding the resultant numbers) shows that
there are 1 +2+3+4---+ (M + 1) = (M + 1) (M + 2) /2 components Dy.n,,nz,n5) that are
nonzero. Since there are 3V components of Dy}, the remaining 3V — (M +1) (M +2) /2
components are zero. Since there are M + 1 linearly independent components (that are
related to the Dy p), there are (M + 1) (M +2) /2— (M + 1) = M (M + 1) /2 relationships
among the nonzero components Diy:n; ny,N,j- FOI instance, interchange of the values of Ny
and N3 produces components that are equal.

Consider the M +1 linearly independent equations that determine the Dy p in terms
of M+1 of the Diy.n, n, Nz)- Do is related by (21) to only the component Din:n,0] because
(22) shows that the coefficient of Dy, namely {W[N] 6[0]}, vanishes unless N; = N. That
is, if all indexes in (21) are 1, then Dyn.n,0,0) appears on the left-hand side and the Dy p for
all P appear in the equation. This equation is essential for determining Dy, and is called

“the equation for Dy,”; similar terminology “the equation for Dy p” is used below. With
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the equation for Dy in hand, consider Dy;;. Dy, is related by (21) to Dyy.y—_2,20) or
Din:n-202- When Diy.n—220 OF Din.n—202) is on the left-hand side of (21) the equation
for Dy, results because the coefficients {W[N_gp]é[gp}} of Dy p for P > 1 do not vanish,
but the coefficient of Dy o does vanish. Now consider an equation for Dy 3. Dy 2 is related
by (21) to Din.n—4,4,0) O Din:N—4,04] O D|n:n—-4,22); these components also involve Dy p for
P > 3 but not for P < 1. This procedure repeats until the last equation is produced; only
Dy v appears in the last equation. If NV is even then Dy s is related to Din.on,, ns) With
N, and N3 equal to any positive even numbers such that N = Ny + N3. If N is odd then
Dy ar is related to D1, ;) With N2 and N3 equal to any positive even numbers such that
N =1+ N, + N;. This procedure results in a set of M + 1 linearly independent equations
that can be solved to obtain the Dy p in terms of the Diy.n, n, ;- Note that M + 1
components must be chosen for use in the M + 1 equations. For instance, from the above
example, Dyy.n 0,0 must be used; either Diy.n_22,0] or Din.n—2,0,29 must be chosen, and one
of Din.n-a,,0) OF Din:N—4,0,4) O Din:n—4,22 must be chosen, etc. For simplicity, the chosen
components can all have N3 = 0, i.e., the choice can be Dn.n 0,0/, Div:v-220)> Din:N-4,40];
-+ Dinenv—2m2m,0)-

The above procedure also reveals algebraic relationships between the nonzero
Din:ny,Na,N)- - The equation for Dy can be expressed in terms of either Diy.ny_220] or
Din:n—-2,02); the left-hand side is the same in either case because the coefficients (23) are the
same; hence Diy.n_2.2,0 = Dv.v—2,02- The equation for Dy 2 can be expressed in terms of
Din:n-a22) of Din:N—44,0) OF Din.n—-4,0,4) Such that (23) gives Diy.n—44,0 = Din:n-4,0,4); Dut
what is the relationship of Din.n—422) t0 Din.N—4,4,0 and D[N:N-4,o,4}? When Din.n_4,04)
or Diy.n-440) is on the left-hand side of (21), the nonzero coefficients are, from (23),
(N — 4)1410!/ [(N — 2P)12P210! (P — 2 — 0)!], but when Dyy.x_422 is on the left-hand side,
the nonzero coefficients are (N — 4)!1212!/ [(N —2P)RFINI(P-1- 1)!]. The ratio of these
coefficients is 3. Since this ratio is independent of P, the entire right-hand side of (21) is
three times greater when Dyy.x_4,0,4) is on the left-hand side as compared to when Dyy.n_429)

is on the left-hand side. Therefore, the proportionality Din.n—404 : Din:n-42,2) (and also

1y



Din:N-440) © Diviv—azg) is 3 : 1. In general, for given N and N;, and hence given
Ny + N3 = N — Ni, and another choice of N, and Nj, call them N; and N3, such that
Ny + Nj = Ny 4+ N3 = N — Ny, the proportionality obtained from (23) is Din:ny,Np,Ng]
D[N:NLN;N;] = [No!N3!/ (N2/2)! (N3/2)!] : [N3!N3!/(N3/2)!(N3/2)!]. Parameterized in
terms of an integer L such that N = N; + 2L, for given Ny, the proportionalities
are Div.nyo00) © Divvier—22 @ Divviai-aq) @ - @ Divvpopr) = [(20)10!/LI01] -
[((2L —2)121/ (L - 1)'11] : [(2L — 4)!4!/ (L —2)!21 : - - - : [0'(2L)!/0!LY]. This constitutes
(N — N;) /2 relationships among the nonzero components Diy.n; v, n5] for given V;. Substi-
tuting the M+1 cases of N, (i.e., Ny = N, N; = N—1, ---) into (N — N;) /2 the number of re-
lationships thus identified among the components of Dy is 0+142+-+M = M (M +1) /2.
In the paragraph above, it was determined that the total number of relationships among
the nonzero components of Dy is M (M + 1) /2. Consequently, all such relationships have

now been found.
Appendix E: Derivatives of Isotropic Tensors

The objective of this appendix is to develop succinct notation for isotropic tensors
and their derivatives with specific attention to their first-order divergence and their Lapla-
cian. Those derivatives appear in (18). A derivation of those derivatives operating on an
isotropic tensor that is symmetric under interchange of any pair of indexes is given.

First, notation is developed: &pp) is the product of P Kronecker deltas having 2P
distinct indexes. For example, 6] = 0i;0xi0mn, Where 6;; =1 ifi=jend 0y =085
Wy is the product of N factors %t each with an index distinct from the other indexes. For

example, Wy = ZZ76% For convenience, define
) = 1,5E_2] =0, W=1,W_y= 0; Wiz =0 (45)

The plural of § is s and that of W is Ws. It is understood that products of Ws (e.g.,
W[N]W[K]) and of és (e.g., 6[21\}16[2;{]) and of Ws with és (e.g., W[N]élgj{]) have BJI distinct
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indexes. Then, the W' factor, e.g., Wy = Wi Wig = Wiy Wiy = Wi W, Wy, ete., and
the 6s likewise factor. The operation “contraction” means to set two indexes equal and sum
over their range of values; the summation convention over repeated Roman indexes is used,
e.g., b Ei§1 0ii = 611 + 022 + 633 = 3. A contraction of two indexes of d2p) produces either
3bj2(P-1)) 0; di2(p—1)) depending on whether the two indexes are on the same Kronecker delta
or different ones, respectively. The contraction of Win; on two indexes produces W N-1)

because S5 = }; = 1. Consider the contraction of % with Wiy6p2p). If the index ¢ is in

W(n) then the contraction “Wn)82p| is Win_yjép2p) because %% = 1. If the index i is in
Or2p) then the contraction “Windp2p) is Win41)02(p-1)) because %6;; = “2.  The notation
ﬂoﬁf means the sum of N terms where each term contains a distinct index j, and the index

J is interchanged with all implied indexes, but j is not interchanged with any explicit index.

For example,
3 TT Tk T ;T
I[W[2}6ij]L k_lésj :‘35:'3 + f}i ik (46)
opssa _
and [Wis 22 =25, 4 Tg, [0k Thg MTn | Thg Tilm ()
r T i R Tr o r Pr T CFE

where, 7 is an explicit index and is therefore not interchanged with j.
French braces (i.e., {o}) means: add all such distinct terms required to make the

tensor symmetric under interchange of any pair of indexes. For example,

;T T’H'k

TiT; T r; T T T
{W[Q}ﬁ[z}}={;—5k1} =;_5k1 "_5k3+ L J5ks —E—I%-% : 1511 pamLS

Note that terms that are necessarily equal do not appear; i.e., since 52§y appears, neither
ZI Sy nor 2, appear. Because of the commutative law of addition, {0} commutes with
addition; e.g., {W[N]} + {W[Q]J{QP}} = {W[N] -+ W[Q](S[gp]}. Because of the distributive
law of multiplication, multiplication by a scalar function commutes with the {o} notation;
e, A(r) {Wimbar } = {A(r) Wiméar ).

The number of terms in various sums, {o}, is required repeatedly; {6[2PE} has
2P-1)!' = (2P—-1)(2P-3)(2P—5) - - - (1) terms. Since Wni02p) has 2P + N in-

dexes, {Wmﬁ[gpl} has (2P;N) (2P — 1)!! terms, where the binomial coefficient (2P;N) is
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the number of ways of selecting the N indexes in Wy from the total 2P + N indexes.
If 7 is an index in {W[Nlélgp]}, then {W[Nlé[gp]} has (?‘P*'N 1) (2P — 1)!! terms in which
i appears in a Kronecker delta because there are N indexes to select for Wy) from the
remaining 2P + N — 1 indexes. Similarly, {W[Nlégp}} has (2P 1= 1) (2P —1)!! terms in
which i appears in a factor (r;/r) because there are N — 1 indexes remaining to select for
W(; from the remaining 2P + N — 1 indexes. Note that {W[N]} has only 1 term. Hence,
{W[N]} = W{y). In summary,

2P
{W[N]6[2P]} has ( ;N) (2P == 1)” terms; (48)
2P+ N -1 -
{W[N}(S[zpl} has ( +N ) (2P — 1)!! terms with ¢ in bj2p); (49)
N —
{Winbpr} has (2P AJ; i 1) (2P — 1)!! terms with i in Wiy). (50)

The sum of the number of terms in (49)-(50), namely (2P +N'1) (2P-1)" +
(Fa¥@P-1) = @P+N-1)! i + | (2P — 1! = (*5N) @P -1,

agrees with the total number of terms in (48).
Now, rules for differentiation of symmetric, isotropic tensors are developed. Note

the identity

O, (rj/r) = [613 (7'1""3/"’" )] [r= ( W[2])/ (51)

from which it follows that

By, (ri/7) = (3 — 1) /r = 2/, and 18, (r;/r) = [r; = (r’r;/r*)] /r = 0. (52)

The latter formula greatly simplifies the divergence of Wy because 0, operating on
Wy vanishes when it operates on any factor other than the factor % within Wyy,.

The divergence and gradient of Wiy are needed. If i is an index in Wyy) then
the divergence of Wiy, is denoted by Vi - Wiy = 9, Wy  Application of (52) gives
0, Wy = 8y, (rs/r) = 2/r, and 0, Win) = Wn_yj0r, (ri/7) = 2Wn-1. The gradient of

Wy is denoted by 8,, Wy where i is not an index in Wiy;. From the differentiation chain
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rule, 9,, Wy is the sum of N terms, each of which has the form Wy_y0;, (r; /7). Therefore,
N N
b}’ use of (51), 67',5W[N] = HW[N_]_] [53'3; = (T‘,ﬁ?‘j/?"g)] /T‘l[j = %]:[W{N_lléijﬁj = %W[N-&—l]a

where use was made of ]IW[N_” [— (rirj/T?)] /rﬂjv = [—(ri/7) /7] ]IW[N_” (rj/'r)l[;v =

N
— (ri/7) 7 (NW[N]) = —YWy), because IIWIN—I} (rj/r)][j is the sum of N identical

terms each equal to Wy). In summary,

2
If ¢ is in Wiy then V- Wy = 6,-iW[N] == ;W[N—l]- (53)
1 N N
If i is not in Wy then 0, Wiy = — ]]WEN_I]%-]L_ - — Wi, (54)

Consider the divergence of Win62p). If the index i is in Wiy then, from (53),
&, (Winber)) = SppWiniy = 26ppWiv_y.  If the index i is in §ppj, then (given
that index k is not in Wyy)) 0, (W[N]é[gp}) = So(p-1)10ikOr, Win) = Op2P-1)0r, Wn) =
bl2(P—1)] 7 HW[N—1|5kj ]Ijv — 8j2(P-1)] X W n41), where the last expression follows from (54). In

summary,

s 2
If i is in Wy then 9, (W[N](S[gpl) = =8| Win-1), (55)

T

If i is in 2p) then 8y, (Wi 82p)) = 6{2(p_1)]% ]]W[N_llakj][f - 5[2(P_1),§W[N+1]. (56)
The above results allow evaluation of the divergence 4, {W[mé[gp;} = V.-
{W[Mé{gp]}. It follows from use of (55) and the distributive law of multiplication and
the.fact that the number of terms in {W[N}c?{gp]} in which i appears in the factor s
the same as the number of terms in {W[N_]]é[gp]} [see (48)-(50)], that for those terms in
which i is in Wy, the divergence of {W[N]ﬁ[gp]} yields %{W[N_l]élgpf}. Similar use of
(56) gives that for those terms in which ¢ is in d2p), the divergence of {W[N] 6[2;:}} yields

2 {(Win-yber ) — Y7 { Winsydpp-n) - Thus,
2

T

N(N+l){

Ve {Wimdpr } = = {Wiv_1épp } + [¥ {Win_1bpr} -

N(N+1)

Win+110p2(p-1)) }]
2

=_(P+1) {Wiv-n6e} - {Wivsnbp-n)} - (57)

Because of the definitions in (45), (57) remains valid if N is 0 or 1 or if P is 0 or 1.
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Derivation of the formula for the divergence of an isotropic tensor requires
evaluation of the contraction {W[N]r5[2p]} 2 " From (49), in {W[Nlé[z_p}} there are

(2P - 1) (2P —1)!! occurrences of the index i within ;o) and each gives the contrac-

tion 6;% = 2, which decreases P by unity and increases N by unity thereby pro-
ducing several {W[N+1]6[2(p_1)]}. From (48), there are (2(P '(}\),I(l‘;v +l)) 2P-1)—-1)

terms in a {W[N+116[2(p_1)l}; thus the number of {W[N+1]6[2(p_1)]} so produced is
[P @ = pu) 7 (A s ep—1 - )] = (N+1). From (50), the con-
traction {W[NI(S[QP]}  contains (2P = 1) (2P — 1)!! terms in which i appears within Wiy,
and each results in the contraction %% = 1, which decreases N by unity. The number
of {W[N 1]6[2;»]} so produced is [(2P+N 1 ”] / [ 2P;Nl)1}) (2P - 1)!!] = 1 because
{W[N_H(S[gp]} has (2P HN _1)) (2P — 1)!! terms, which is also the number of terms given in

(N-1)
(50). Thus,
; ; T;
contraction on i: {W[Nlﬁigp]} o= (N+1) {W{N+1}6[2{P_])]} + {W[N_Ilﬁlgp]} . (58)

The general isotropic formula for a tensor Apy(r) of order N that is symmetric

under interchange of any pair of indexes is
A (r) = Ao () {W[m} + Ax (7) {W[N—2}6[2]} + Az (r) {W[N-415[4]} Rl ¥ | =

M
= PZ_:O Ap (r) {Win_apifp) } (59)

where the Ao (r), A (r), etc. are scalar functions of 7, and Tj,s is the last term. Note
that for brevity in this appendix, the subscript N has been omitted from Ay (), An,1 (1),
etc. If N is even, then Tiae = An2 (r) {815} and M = N/2. 1f N is odd, then Tios =
Aw-vy2 (r) {Wiéi-n | and M = (N = 1) /2.

All of the foregoing has set the stage for efficient derivation of a formula for the
divergence V, - Ajy) (r). Also needed is the fact that the gradient of a scalar function of
r = \/rr; is 0, A(r) = (8,7) 8,A(r) = 20, A(r) = Wyd,A(r). Consider the divergence

of a term in (59). By use of the differentiation chain rule, and substitution of (58) and (57),

Ve - [Ap (1) {Win-2pifor ] =
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{W[N—2P]5[2P]} %&AP (r)+ Ap(r) V, - {W[N—2P15[2P]}
= [(N —2P +1) {W[N_2P+1}5[2(P—1)]} + {W{N—2P-1}6{2Pl}] 0. Ap (r)

+Ap (r) [2 (P+1) {W[N—zP—I}‘SﬁPlH

T

N-2P)(N—-2P+1
—Ap (7) [( )(T ) {W[N—2P+1]5[2(P-1)] }}
= Bynp(7) {W[N-2P+115[2(P-1)J} + Cp (r) {W[N-QP—1]6[2P]} ; (60)

where By p (r) and Cp (r) are defined by the following operators, Og (N, P) and O¢ (P),
operating on Ap (7):

N -2P

By.p(r) = O (N, P) Ap (r), where Og (N,P) = (N — 2P +1) [a,. -

Cp(r) = Oc¢ (P) Ap (r) where O¢ (P) = {3,, + % (P+ 1)] ; (62)
Thereby, the divergence of (59) is
M M
Vi-Ap(r) =) Bnp(r) {W[N—2P+1]5[2(P-1)]} + > Cp(r) {W[N—2P—1]6[2P]}1 (63)
P=0 P=0

where (60) and (45) were used.
Now, (63) can be checked by comparison with the divergence performed on the
explicit-index formulas for symmetric, isotropic tensors of rank 1 to 4. The lowest-order

tensor for which the divergence is defined is a vector (i.e., N = 1), in which case (63) gives

B,.A: (x) = 0,40 () + Ao ()

which is easily verified by evaluating the divergence of a isotropic vector, namely

1

O, {AD (r) %}] Expressed with explicit indexes as well as in the implicit-index form of
(59), isotropic tensors of rank 2 to 4 that are symmetric under interchange of any pair of

indexes are:

riT;

Aij (I") = Ao (‘T') ; - + A] (T) 6,}_:,: = Ag (T) W[Q] + Al (T') (5{2] (64)
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T T TE T; T Tk
A () = A0 (1) 2278 4 43 (1) (B + Lo+ 26, ) = Ao (1) Wi + 40 (1) { Wi}
(65)
A (r) = Ao (r) 2 Tm + A1 (r) (T:;Zj 6ot + ot = ot Tjrk@z + nné + %t‘?}k % %5@)
+A2 (7) (855681 + birbjt + 610a)
= Ao (r) Wi + Ay (r) { Wiy } + 42 (r) {64} (66)

One can see the brevity of the implicit-index formula as the rank of the tensor increases.
The first-order divergences obtained by differentiating the above explicit-index formulas as

well as from (63) are

Ve A @ = [(8+2) 4o () +0.4, ()] 2 (67)

= [Bax () + Co ()] { Wibig)} - (69)

V.- Ag () = [(a,_ + %) Ao (r) + (23 - 3) A (r )] il [(ar + é) A (r)] &, (69)
= [Bs,1 (r) + Co ()] {W[z]é[oj} +C1(r) {W[0]5[2j} - (70)

Ve-Apy(r) = [(8 + g) Ao (r) + ( 30, — —) A (r )] Tj:;m
+ [(a ) A; () + 8,4 ('r)] ( Gyt + Lo+ 5;3) (71)
= [Baa (r) + Co (r)] {Wigbio } + (Bez (r) + 01 (r) { Wi } - (72)

In the implicit-index formulas in (68), (70), and (72), terms from (63) that are zero because
of (45) have been omitted. Equation (63) has been checked by using the implicit-index
formulas in (68), (70), and (72) to obtain the explicit-index formulas in (67), (69), and (71),
respectively.

The Laplacian of a symmetric, isotropic tensor is also needed for the term QUVfD[ N]

in (18). Application of (36) to V*W/y_sp| and use of (51)-(52) gives
T T;
VW n_2p] = {WN 9P-1]Or, Or,, — } +2 {W[N 2P-2) (3 :) (&,, f)} (73)
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Now, {W[N_Qp 110r, Br“—;}} (N"fp) terms, each one is of the form Wy_zp_1)0,,0; 3,,1 =
W[N—QP—]] (;723,5) = _T_'ZW[N-—ZP]' Also, {W[N—QP—Z] (81-“‘,,.&) (arﬂ',f')} ( )

Py
terms, each one is of the form Wy_sp_ (3,_“7{'*) (&,ﬂ ;1) = Win_2p-23 (61:3 i )
;_—1§W[N_2p_2]6,;j — T%W[N_gp]. From (48), {W[N_zp_z]é?[g}} has (NEQP) terms; thus, (7

3)

gives

2 2 |(N—-2P N —2P
VWin_op) = 2 {WEN—2P—2J5[21} = [( 9 ) - ( 1 )} Wiv-2p]. (74)

The binomial coefficients prevent a nonzero term in (74) when Wiy_sp_y or Win_2p_g
vanish in (73) as required by definition (45) provided that we define

(N—QP N-2P

1 )EleN—QP<I,and( 0

)EO if N—2P < 2. (75)

Of course, (75) is consistent with 1/K! = 0 for K < 0 (Abramowitz and Stegun, 1964,

equation 6.1.7). Given (75), we can define, for brevity

SN_2p52(N_22P) +2(N_12P). (76)

Now (74) and (76) give

S
ad 22P Win-2p)- (77)

VW y_op) = T—22 {W[N—2P—2]6[2]} =
Now, use of (77) gives
v? {W[N—2P]5{2P]} = {[V2W[N—2Pl] 5[213]}
= {[% {W[N—QP—2]6[2]} = Sﬁgzpww—gp]] 5[2P1}
= E {{W[N-QPm ]5{2]}5[2PJ} - SN_zP {W[N—2P15[2P]} (78)

R(N, P) N—
= —~(-—— {W[N 2(P+1) ]5[2(P+1)]} - 2P {w[N 2P]62Pl} (79)

Noting the appearance of Wy_sp_9) in (78) and recalling that Wy_sp_g) = 0if N—2P-2 <
0, the coefficient R (N, P) is defined by

R(N,P) =0if N-2P -2 <0, (80)
otherwise, R (N, P) 52(N;2P)/ [(QPA; 2) (2P+1)!!]. (81)
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The coefficient (N _22‘0 ) 7 [(2 ;\_:_2) (2P + 1)!!} is the number of terms in {W[N_gp_2]6[2]} di-
vided by the number in {W[N_Q(P.;_l)](sp(}:’_i_l)}} as obtained from (48). Because of (42),

(80)-(81) can be simplified to
R(N,P) = [2P* (N - 2P)! (P +1)//N!| @ (N — 2P - 2), (82)

where © (z) =1 for z > 0 and © (z) = 0 for z < 0.

The Laplacian of the product of two functions f and g is (33). When applied to (59),
the case f = Ap(r) and g = {W[N_2p}6[2p}} are needed. Recall that 9, A (r) = %0, A (r).
The last term in (33) vanishes as follows: (8, f) (9,,9) = HSTAP ('r)] ;0. {W[N_zpjé[gpl} =
[%GTA (r)] {[r,-é‘nW[N_QP}] 6[2p]} = 0; this vanishes because (52) shows that 7;0, Wy_sp) =
0. Then (79) used in (33) combined with V2A (r) = (3,? + %3,,) A (r) give

V2 [Ap (r) {W[N—2P}5[2P]}] = [(af + gar - Sﬁjp) Ap (r)] {W{N_2p]5[zp]}

R(N,P

2 ) {WIN—2<P+1)}512cP+1)1} : (83)

+Ap (r)

M
The Laplacian operation on (59) is simply the sum, ), of terms (83).
P=0
Appendix F: Matrix Algorithms

For computations, it is useful to write (21) as a matrix equation. Let the column
index be J = P + 1, and the row index be I = (N;/2) + 1, such that both J and I range
from 1to M +1in (21). Use N3 =0 in (22)-(23) to define the following matrix elements

My (1,J) =0, for J < I, ie., My (I,J) =0 below the main diagonal; (84)

My (1,J) = (N =21 +2)1(21 - 2)!/ [(N = 2(J = 1)) (I = 1)! (J = I)1], for J > 1. (85)

The chosen M +1 linearly independent components of Dy are arranged in a column vector
having Din.n_2142271-2,0) in its I-th row, and the M + 1 scalar functions Dy p are likewise
arranged in a column vector having Dy ;_; in its I-th row. Then (21) is written as the

matrix equation
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D{N:N,O,O] \ (MN(]‘!I) MN (112) e = MN (I,M_l‘ 1) \ ( DN,O
Din:n-2,20] B 0 My (2,2) -+ My(2,M+1) Dy (36)
\D[N:N—2M,2M,O] ) \ 0 0 oo My (M +1,M +1) \DN‘M}

Denote a matrix having matrix elements A (I, .J) by A (L, J)| Then (86) and its solution are

(respectively)

Dv:n—2s+2.20-20] =My (I, J)[Dni=1, and Pna—1] = My () Dinn-274+220-20] (87)

where 1 is the inverse of My (I, J) The determinant of is the product
of its diagonal elements; from (85) that product is nonzero, hence ' exists. This
inverse matrix is to be calculated numerically. In effect, evaluation of the components
Din.N-27+2,27-2,0) by means of experimental data c;r DNS data and use of the solution in
(87) produces the Dy p for use in (21) to completely specify Dyy.

A matrix algorithm is useful for determining the isotropic formula for the first-order
divergence V- Diy4y. By replacing N by N +1 and the symbol A by D in the divergence
formula (63), we have

Ml‘

Ve -Divgp =Y, {W[N-z(P-1)]5[2(P-1)]} Op (N +1,P) Dy p

M'
+> {W[N—2P]5[2P]}OC (P) Dn1,p, (88)
P=0
Os(N+1,P) = ((N+1)—2P+1) (a,.—w), (89)
Oc (P) = la,_ 4 LF:F—U] , (90)
M'=N/2if Nis even,and M' =1+ (N —1) /2 if N is odd. (91)

The differential operators, i.e., 3, = 9/0r, in (89)-(90) are obtained from (61)-(62), and (91)
is obtained by replacing N by N + 1 in (20) and simplifying and rearranging the terms.
Comparison of (91) with (20) shows that if N is even then M’ = M; thus the matrix

representation of {W[N_Qp]6[2 p]} within (88) is the same as in (86), which representation
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was abbreviated by above. On the other hand, if N is odd, then M' = M + 1,
and the last column of the matrix representation of {W[N_QP](S[QP]} within (88) corresponds
to P=M'=1+(N — 1) /2, in which case {W[N_gplélgp}} contains W_y = 0 such that the
last column of the matrix is zero. Thus, the matrix representation of {W{N_gp]:ﬁggp]} within

(88) is

0
My (I, J) = | My, J) : | if N is odd;
0

My (I, ) =Mn (I, J) if N is even.

In addition to the coefficient {W[N_gp](ﬁ[gp]}, (88) contains the coefficient
{W[N_g(p__l)]é[g(p_l]]}. From the matrix representation of {W[N_gp]é[gp]}, namely (84)-

(85), the matrix representation of {W[N_Q(P_l)]6[2(13_1)]} is (recall that J = P+1)

for J—1<1I, My (I,J)=0, ie., My (I,J) =0 on and below the main diagonal;

whereas for J > I:
My (I,J) = (N =20 +2)1 2 - 2)l/ [(N - 2(J — )2 (T = 1)1 (J - )] .

The matrix having these elements is denoted by My (I, J)  Because of (91), if N is odd,
then the matrix My (I, J)| contains the matrix My (I, J) shifted to the right by one column

and a first column of zeros is included; that is,

0
My (1, J) = My (I, J—=1) if NV is odd.
0

Because of (91), the same is true if N is even except that the right-most column ofMn (1, J)
is discarded. Thus,
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My T, J)= | : My, J=1) | if N is even (discard the right-most column).
0
Define operator matrices that are of dimension M’ + 1 by M’ + 1, that have zeros

off of the diagonal, and that have the operators (89)-(90) on the diagonals. Thus, recall

that J = P + 1, and that 8, = 3/9,, and define matrix elements
N-2
B(I,J) = 61y (N — 27 +4) (a,. - %) and C (I, J) = &1 (a,, 5 2;_7) . (92)

The matrices corresponding to Og (N +1,P) and O¢ (P) in (89)-(90) are denoted by
B(I,J )[ and [C (£, J )L respectively.

Let the components of V. - Dy be denoted by (Vr . D[N“])[N T which
V1,422,013

denotes the fact that V- Dy is a tensor of order N. In matrix notation, (88) gives

( (Vr - DEN+1})[N:N,U,O] ) ! Dy )
(Ve Do) vsza | M LT BUT)+ M T )T ) Dna
\ (V,. ' D[N+I])[N:N~2M,2M,O] ), \ Dy,mr )

(93)

The solution of (86) is Pn+11-1 = My1 (I, J) Dive1n+1-27+227-20] (when it is ap-

plied to Dyy1)), substitution of which into (93) gives

| (V“'DW“])[N:N,O,UI ] ( Div41:n+1,00] \
(Vr.D[N+1])[N:N_2’2,0] _FTT) D[N+1:Ai+1-2,2,0] 1 (04)

\(v"D{N“J)[N;N—zM,zM,O]) \D[N+1:N+1—2M’,2M’,0])
where, V(1.7 = My CNBE+ My TNCTI My TI. (95)
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We see that is the operator matrix that operates on the column matrix represen-
tation of Dyy.y) to produce V, - Dyyq); this is true for any completely symmetric isotropic
tensor, not just true for Dy, y)-

It is helpful to illustrate this algorithm for N = 2 and N = 3. Two examples are
needed because the algorithm differs for even N as compared to odd N. For N = 2, (95) is

0 Mx(1,1) ) [ B(1,1) 0

+
Y T) 0 0 0 B(2,2)
My(1,1) M>(1,2) | | C(L,1) O
+
0 M(22) 0 C(2,2)
-1
M3 (1,1) M;5(1,2
3(1,1) Ms(1,2) (96)
0 M;(2,2)
8 +2 -2
e T T ] (97)
&+

Computer evaluation of (96) produced (97). Consequently, (94) is

(Vr ’ D[3])[2:0,2.0] 0 6,, + % D{3:1s2$01 (31- * %) 0122

(Vr : D[3])[2:2,0,0] _ o, +2 -4 D00 | (&- 2 ,%) Dyy; — 2Dy

1

where explicit-index notation is given at far right by use of Dja:300 = D111 and Dz 20 =
Di20.
For N = 3,Y (I, J) from (95) is

B(1,1) 0 0

0 Ms(1,1) M5(1,2)
0 B(22 0 |+

0 0 Ms(22
0 0 B(3,3)

c@ai o 0

Ms(1,1) Ms(1,2) 0
5(1,1) Ms(1,2) 5 GEd o

0 M;(2,2)0
0 0 C(3,3)

30



My(1,1) My(1,2) M,(1,3)
0 Mi(2,2) My(2,3)
0 0 M4 (313)

4 4

As with (97), the matrix was evaluated using a computer program. Consequently, (94) is

D[4:4,U,D]
(Ve -Dy)),, (642 -
3:300] | _ T Diaa 2 (98)
4 _ 4 o
(vr ’ D[4]) [3:1,2,0) \ 0 o+ = Ty D[4-u4 0]

_ ( (ar F %) Dy — .,E.Duzz , (99)

\ (3r + %) D112z — 34;132222

where explicit-index notation is used in (99).
A matrix algorithm is also needed for the Laplacian of a symmetric tensor. Per-

forming the Laplacian of (59) and use of (83) gives

g M {W[N-2P15[2P]} (33 + 29, — SN,,?P) Dy p
ViDpw) (r) =3 .
P=0 T+ {W[N—2(P+1)]‘5[2(P+1)}} B8 ) Dy p

It is necessary to recall the definitions (76) and (82). The matrix representation of

(100)

{W[N_2p]6[2p]} within (100) is the same as in (84)-(85), namely My (I,J)]  The matrix
representation of {W[N_Q(P+1)]6[2( p+1)]} within (100) is obtained from (84)-(85) by replacing
Jby J+1, e,

for J+1<1, Mg (I,J)=0,
whereas for J+1 > 1,
MF(I,0) = (N — 21 +2)! (21 = 2)!/ [(N — 2)127 (I = 1) (J + 1 - I)}] . (101)

This is just the square matrix that appears in (86) except that the left-most column in

(86) is discarded and the matrix is then shifted leftward by one column and the right-most
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column is zeros. Those zeros appear because in the right-most column J =P +1=M +1
such that M7 (I, M + 1) contains the factor 1/ (N — 2 (M +1))! whichis 1/ (-2)! =0 if N
is even and is 1/ (—1)! = 0 if N is odd(see Abramowitz and Stegun, 1964, equation 6.1.7).
Thus,

0

M# (L) =| My(I,J+1) : (discard the left-most column).

0

Define two operator matrices that are zero off the main diagonal and contain
(33 + 25, — @1";;—“3) and BZ%F) on the main diagonal; ie., their matrix elements
are E(I,J) = 615 (af-i-%a,,-s”—*fé;’—‘ll) and F (I,J) = 6;;R(N,J —1)/r*.  Analogous

to the derivation of (94), the matrix representation of (100) is

( (VED[N])[N: N0 j g Div:no,0)
2
(er[N ]) [N:N-2,2,0] X, J) D[N‘l\i_z’z’ol , (102)
\ (VED[NI)[N:N—QMQM,Oi ) \D[N:NﬁzM'zM’o] )

where, XTI )= [WNU,JEIEU, =)"j|_|-|.!"/f;\,rig (I,J)|!Fif,Ji]|MNEI,Jj] 1_

For both N =2 and N = 3, the matrix representation of ﬁ is

My (1,1) My (1,2) E(1,1) 0 .
vat 0 My(2,2) 0 E@22) )| My@1,1) My(1,2)
My(1,2) 0\ [ F@,1) 0 0 My(2,2)
’ My (2,2) 0 0 F(2,2)
For N =2 (102) is
(VEDM)[M,O.O] h _IXT,J) Dpz:2,00] _ (VEDEQI)H _
(VEDM)P:O,Q,D] ) Dioz20 (VEDM)zz
82+29. - 4 = Dy ) _ (02 +20, — &) D+ 5D -
B 2+20,—% |\ D 2Dy + (B +20.— ) Do

32



where the matrix was evaluated using a computer program. For N = 3 the matrix algorithm

is

(VED[s])Hl _X{T7) Dy, _ 2+ -,"EEL == % ,1.% Dy
(VED[sl 129 Do 2 -5+ 02+ 20, D1a9

(arz + 29, - ,%) Dy + 3D

2D+ (—,82 + 02 + ,g,ar) D129
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