
Internet Appendix

IA.A Inferring Dependence

Formal Description of BRA

We present hereafter the formal steps to infer dependence such that
Pd

j=1 !jXj = S in each of

the n states. To simplify exposition, it is convenient to define transformations Yj := !jXj , so that

yij := !jxij . Let Gj denote the distribution of Yj . We then introduce the following n ⇥ (d + 1)

matrix M:

M =

2

66664

y11 y12 . . . y1d �s1

y21 y22 . . . y2d �s2
...

...
. . .

...
...

yn1 yn2 . . . ynd �sn

3

77775
, (21)

where the last column consists of the elements �si, which are all possible discrete realizations of

the negative sum �S; i.e., �si := �F
�1
S ( i�0.5

n ).

The objective is to find a rearrangement of the first d columns such that the row sums of the

d+1 columns of M are all equal to zero. In other words, the opposite of the last column is the sum

of the previous columns, i.e., S =
Pd

j=1 Yj . Denote this last column by Yd+1 = �S. This procedure

is equivalent to finding a rearrangement of the matrix M such that Y1 + · · ·+ Yd+1 is identically

equal to zero and thus such that var(Y1 + · · · + Yd+1) = 0. We allow for rearrangements within

columns, as doing so a↵ects the dependence among Yj , j = 1, . . . , d but not their respective

marginal distributions. By contrast, swapping values among columns will a↵ect the marginal

distributions and is not allowed. Clearly, for Y1+ · · ·+Yd+1 to have the smallest possible variance,

it must hold that for all ` = 1, . . . , d+1, Y` is as negatively correlated as possible with
Pd+1

j=1,j 6=` Yj

(Puccetti and Rüschendorf 2012, Theorem 2.1), i.e., is antimonotonic. This observation lies at

the core of this rearrangement method.

In fact, it must actually hold that for any decomposition of {1, . . . , d+ 1} = I1 [ I2 into two

disjoint sets I1 and I2, the sums S1 :=
P

k2I1 Yj and S2 :=
P

k2I2 Yj are antimonotonic and not

only for singleton sets of the form I1 = {j}. This observation makes it possible to generalize the

standard RA by rearranging “blocks of columns” instead of one column at a time: the columns

in the first set I1 are stacked into a matrix (block) Y1, and its rows are rearranged (i.e., entire

rows are swapped) such that the row sums of Y1 (reflecting S1) are in increasing order. As for

the matrix Y2 that is formed by stacking the remaining columns, the rows are rearranged such

that the row sums (reflecting S2) are in decreasing order.
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Algorithm for inferring dependence

1. Select a random sample of nsim possible partitions of the columns {1, . . . , d + 1} into two

nonempty subsets {I1, I2}. In our case, d = 9 and it is feasible to consider all nontrivial

partitions, thus we take nsim = 2d � 1.

2. For each of the nsim partitions, create the matrices (blocks) Y1 and Y2 with corresponding

row sums S1 and S2 and rearrange rows of Y2 so that S2 is antimonotonic to S1.

3. If there is no improvement in var
⇣Pd+1

j=1 Yj

⌘
, output the current matrix M; otherwise,

return to step 1.

At each step of this algorithm, we ensure that the variance decreases or remains the same:

the columns, say Yj before rearranging and eYj after rearranging, satisfy the inequality38

var

0

@
d+1X

j=1

Yj

1

A > var

0

@
d+1X

j=1

eYj

1

A .

The method we propose for inferring dependence is inspired by the so-called rearrangement

algorithm (RA) of Puccetti and Rüschendorf (2012) and of Embrechts, Puccetti, and Rüschendorf

(2013), which was originally introduced to deal with the assessment of model risk, adjusted by

Bernard and McLeish (2016) and Bernard, Bondarenko, and Vandu↵el (2018) to make it suitable

for inferring dependence, and termed the block rearrangement algorithm (BRA).

Toy Example of BRA

To explain the method for constructing a joint dependence, we provide here an oversimplified

example. There are d = 3 assets and n = 5 states of the world. Therefore, Y1, Y2, Y3 and �S all

take five values with probability 1/5, which are collected in a matrix:

M =

2

6666664

1 1 0 �19

2 2 3 �13

3 3 4 �10

5 5 5 �8

6 7 9 �6

3

7777775
. (22)

The first three columns of matrix M depict the random vector (Y1, Y2, Y3). Its joint outcomes are

displayed in the five rows, each row reflecting one of the five states of the world. The random

vector (Y1, Y2, Y3) does not yet describe a compatible dependence, because the five row sums

38Indeed, var
⇣Pd+1

k=1 Yk

⌘
= var

⇣
Yj +

P
k 6=j Yk

⌘
, and a necessary condition for var

⇣Pd+1
k=1 Yk

⌘
to become

minimum is that each Yj is antimonotonic with
P

k 6=j Yk.
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(taken over all four columns) do not equal to zero; i.e., we do not yet meet the constraint that

Y1 + Y2 + Y3 � S = 0. However, permuting elements within a column is allowed, as it does not

a↵ect the marginal distributions. We thus aim at permuting elements within columns to satisfy

the condition that Y1 + Y2 + Y3 � S = 0 at each of the five states.

With only five rows, it is feasible to try every possible permutation. However, in a realistic

situation, this would be impractical, as the number of distinct configurations, (n!)d, would be

extremely large. In our empirical application, we employ our method using at least n = 1, 000

states and, therefore, we need an e�cient way to find a candidate solution. To achieve such

e�ciency, we observe that the condition Y1 + Y2 + Y3 � S = 0 is equivalent to the condition

that the random variable Y1 +Y2 +Y3 �S has zero variance. Clearly, to minimize the variance of

Y1+Y2+Y3�S, it must hold that Y1 is as negatively correlated as possible with Y2+Y3�S, which

means that the elements of the first column of the matrix M in (22) should appear in opposite

order (be antimonotonic) to those that correspond to Y2+Y3�S. Since permuting (rearranging)

values within columns does not a↵ect the marginal distributions, we rearrange the values in the

first column to achieve this situation.

Let us illustrate this fundamental principle using the first column of the matrix in (22). We

rearrange this column such that its realizations are placed in opposite order to the realizations of

Y2 + Y3 � S. After this step, we obtain the matrix M
(1):

Y2 + Y3 � S =

2

6666664

�18

�8

�3

2

10

3

7777775
M

(1) =

2

6666664

6 1 0 �19

5 2 3 �13

3 3 4 �10

2 5 5 �8

1 7 9 �6

3

7777775
. (23)

For the starting configuration M, the variance of row sums is var(Y1 + Y2 + Y3 � S) = 126.

After rearranging the first column, we obtain M
(1) and var(Y1 + Y2 + Y3 � S) = 58 has been

strictly decreased. We have not found a solution yet, but we are getting one step closer. We

now repeat the same process for each of the subsequent columns of the matrix. We can further

improve this procedure by noting that in order to yield zero row sums, we actually need Y1 + Y2

to be antimonotonic to Y3 � S and, likewise, Y1 + Y3 to be antimonotonic to Y2 � S, and Y2 + Y3

to Y1�S. To simplify presentation, in what follows, we denote Y4 = �S. For the original matrix,

we have V := var(Y1 + Y2 + Y3 + Y4) = 126.
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Step 1: Rearranging Y1,

Y2 + Y3 + Y4 =

2

6666664

�18

�8

�3

2

10

3

7777775
M

(1) =

2

6666664

6 1 0 �19

5 2 3 �13

3 3 4 �10

2 5 5 �8

1 7 9 �6

3

7777775
V = 58.

Step 2: Rearranging Y2,

Y1 + Y3 + Y4 =

2

6666664

�13

�5

�3

�1

4

3

7777775
M

(2) =

2

6666664

6 7 0 �19

5 5 3 �13

3 3 4 �10

2 2 5 �8

1 1 9 �6

3

7777775
V = 12.4.

Step 3: Rearranging Y3,

Y1 + Y2 + Y4 =

2

6666664

�6

�3

�6

�4

�4

3

7777775
M

(3) =

2

6666664

6 7 9 �19

5 5 0 �13

3 3 5 �10

2 2 3 �8

1 1 4 �6

3

7777775
V = 4.

In this case, the order of the fourth and fifth rows for Y3 is arbitrary, and the rearrangement is

not unique. Both lead to the same new variance of 4.

Step 4: Rearranging Y4,

Y1 + Y2 + Y3 =

2

6666664

22

10

11

7

6

3

7777775
M

(4) =

2

6666664

6 7 9 �19

5 5 0 �10

3 3 5 �13

2 2 3 �8

1 1 4 �6

3

7777775
V = 2.8.

Step 5: Rearranging the block [Y1 Y2] does not reduce the variance, as it is already (weakly)

antimonotonic. We can keep it unchanged or swap the first and second rows. We do the latter to
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illustrate the algorithm:

Y1 + Y2 =

2

6666664

13

10

6

4

2

3

7777775
Y3 + Y4 =

2

6666664

�10

�10

�8

�5

�2

3

7777775
M

(5) =

2

6666664

5 5 9 �19

6 7 0 �10

3 3 5 �13

2 2 4 �8

1 1 3 �6

3

7777775
V = 2.8.

Step 6: Rearranging the block [Y1 Y3] does not help either, as it is already antimonotonic:

Y1 + Y3 =

2

6666664

14

6

8

6

4

3

7777775
Y2 + Y4 =

2

6666664

�14

�3

�10

�6

�5

3

7777775
M

(6) =

2

6666664

5 5 9 �19

6 7 0 �10

3 3 5 �13

2 2 4 �8

1 1 3 �6

3

7777775
V = 2.8.

Step 7: Rearranging the block [Y1 Y4], we need to swap the second, fourth, and fifth rows:

Y1 + Y4 =

2

6666664

�14

�4

�10

�6

�5

3

7777775
Y2 + Y3 =

2

6666664

14

7

8

6

4

3

7777775
M

(7) =

2

6666664

5 5 9 �19

1 7 0 �6

3 3 5 �13

6 2 4 �10

2 1 3 �8

3

7777775
V = 2.

Step 8-11: Now, we go back to Step 1 and look again at columns Y1, Y2, Y3, and Y4. Columns

Y1, Y3, and Y4 are already antimonotonic, while rearranging column Y2 decreases the variance to

1.6:

M
(11) =

2

6666664

5 5 9 �19

1 7 0 �6

3 3 5 �13

6 1 4 �10

2 2 3 �8

3

7777775
V = 1.6.

Step 12: Next, we apply again the rearrangement on block [Y1 Y2]. We switch rows 2 and 3

and find that the variance is equal to 0. The algorithm has converged and the final matrix is

fM = M
(12) =

2

6666664

5 5 9 �19

3 3 0 �6

1 7 5 �13

6 1 4 �10

2 2 3 �8

3

7777775
V = 0. (24)
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We have arrived to the ideal situation in which the row sums of the rearranged matrix are all

equal to zero; i.e., we have found an admissible multivariate model for the assets (Y1, Y2, Y3), which

is consistent with the distribution of their sum S and which can now be used to compute various

statistics of interest. For instance, we can find the conditional probability P (Y2 > 3|Y1 > 3) = 0.5.

To specifically study the dependence among the three assets, we can remove the e↵ect of the

marginal distributions by applying the transformation Yj ! Gj(Yj), j = 1, 2, 3. Then we obtain

the following discrete dependence structure:

eU =

2

6666664

0.8 0.8 1

0.6 0.6 0.2

0.2 1 0.8

1 0.2 0.4

0.4 0.4 0.6

3

7777775
. (25)

In practice, due to discretization errors and the fact that the algorithm is a heuristic, the

variance of the row sums might not be exactly equal to zero. However, empirically the procedure

usually performs extremely well. Although the final row sums do deviate from zero, deviations

are trivial for all practical purposes and could be safely ignored.

Illustration of BRA for d = 2

There are two assets, whose returns X1 and X2 are normally distributed with zero mean and

standard deviations �1 = 0.2 and �2 = 0.4. The two marginal distributions are fixed, but we vary

the distribution for the weighted sum S = 1
2X1 +

1
2X2. We consider three cases:

(1) S is N(0,�2
S), where �S is chosen such that the implied correlation is 0;

(2) S is N(0,�2
S), where �S is chosen such that the implied correlation is 0.97;

(3) S follows a skewed distribution with a heavy left tail, modeled by a mixture of two normals.

The three cases (no dependence, strong dependence, and asymmetric dependence) are shown

in Figures IA.1–IA.3. In each figure, the top panels show PDFs and CDFs of X1, X2 and S,

which are all centered at zero. We discretize the three CDFs into n = 1, 000 equiprobable states

(only ten of them are shown on the plots) and run BRA to extract the dependence and joint

distribution between X1 and X2. Those are represented by 1,000 dots and are shown in the two

bottom panels.
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Figure IA.1: No Dependence.
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Figure IA.2: Strong Dependence.
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Figure IA.3: Asymmetric Dependence.

IA.B Additional Case Studies

We report the option-implied dependence for two additional selected dates: October 20, 2017

and March 23, 2020. The first date represents a very calm period in the midst of a historic bull

market. On that day, the market 3-month implied volatility was only 0.084. The market return

was 22.7% over the trailing 12-month period and 10.7% over the following 3 months. The second

one represents a very turbulent period at the peak of COVID-19 crisis, which was followed by

an extreme V-shaped recovery. We show dependences in Figures IA.4 and IA.5 and correlations

in Figures IA.6 and IA.7. We observe that Financial, Energy, and Technology sectors are highly

correlated with themselves and the other sectors. The best diversifiers are Materials and Utilities.

The pairwise correlations are higher across the board for the second date compared to the first

date. The average global correlation ⇢
Q is 0.52 for October 20, 2017 and 0.74 for March 23,

2020. From Figures IA.6 and IA.7, it is clear that the down correlations again tend to be much

higher than the up correlations. The average down and up correlations are 0.54 and 0.06 for

October 20, 2017 and 0.64 and 0.35 for March 23, 2020. It is interesting to observe that, on the

second date, there is evidence of a strong right-tail dependence (in addition to an even stronger

left-tail dependence). In particular, the middle panels of Figure IA.5 display a strong dependence

in the deep right tail for both Financial and Utilities sectors. This suggests that, in the midst

of the COVID-19 crisis, prices of sector options reflected a distinct possibility of a large market

rally, with most sectors increasing at the same time. The market indeed had a stunning recovery,
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increasing by more than 35% over the next three months.
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Figure IA.4: Implied dependence on October 20, 2017. The first column shows the de-
pendence of the Financial sector (top panels) and the Utilities sector (bottom panels) relative to
the S&P 500 index. The middle column shows the same dependence but for normally distributed
variables. The third column displays the corresponding contour plots.
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Figure IA.5: Implied dependence on March 23, 2020. The first column shows the depen-
dence of the Financial sector (top panels) and the Utilities sector (bottom panels) relative to the
S&P 500 index. The middle column shows the same dependence but for normally distributed
variables. The third column displays the corresponding contour plots.
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Figure IA.6: Implied Correlations for the Nine Sectors on October 20, 2017. The left
panel shows the correlation matrix. The right panel shows the implied down correlation ⇢

d,Q
j,S

(y-axis) versus the implied up correlation ⇢
u,Q
j,S (x-axis). Also shown is the 45-degree line.
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Figure IA.7: Implied Correlations for the Nine Sectors on March 23, 2020. The left
panel shows the correlation matrix. The right panel shows the implied down correlation ⇢

d,Q
j,S

(y-axis) versus the implied up correlation ⇢
u,Q
j,S (x-axis). Also shown is the 45-degree line.

IA.C Stability of the Algorithm

To assess the stability of our MFDR, we conduct a Monte-Carlo study. We distinguish between two

separate e↵ects: (i) instability of the optimization algorithm (BRA) itself, and (ii) instability of

the inputs (i.e., measurement errors in the marginal distributions Fj and FS estimated in the first

step of MFDR). The first e↵ect (unrealistically) assumes that the inputs are measured perfectly

and focuses on how much noise is introduced by the optimization algorithm. Since the BRA is

an heuristic approach, it finds an approximate solution. In addition, since the algorithm relies on
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initial randomization, each run actually yields a di↵erent approximate solution. However, as we

show next, the first e↵ect is extremely small and can easily be ignored in practice. Moreover, the

e↵ect can be made arbitrarily small by increasing the number of states n. The second e↵ect is not

specific to our method only. The existing approaches need estimates of MFIV or �
Q, and those

too require the knowledge of the whole distribution. Options prices are recorded with considerable

measurement errors (due to illiquidity, non-synchronous trading, and other market imperfections)

and these errors a↵ect the estimation of the corresponding risk-neutral distributions and derived

measures. The second e↵ect is typically much larger than the first one.

To assess the first e↵ect, we proceed as follows. For each day in our sample, we run the

algorithm Nsim = 10 times for fixed inputs. As before, we use the distributions Fj and FS

estimated from midpoint prices of available options. This gives us Nsim joint distributions, which

are not identical due to noise introduced by the BRA. From each joint distribution we compute

the corresponding correlations ⇢
g, ⇢

d, and ⇢
u and then bootstrap 50,000 times to obtain the

confidence intervals for the time-series averages. The results for this experiment are reported

in the first three columns in Table IA.1. The confidence intervals are extremely narrow. For

example, the widest 1%–99% interval is for the up correlation and it is only 0.00017. As it turns

out, the confidence intervals for a single day are already very narrow, but the intervals calculated

for the sample averages become negligible.39

The last three columns in Table IA.1 report on the second e↵ect. We conduct a similar ex-

periment, except now joint distributions are estimated from perturbed option prices. We want to

add noise to option prices and assess how this a↵ects the estimates of the three types of correla-

tions. It is not completely obvious how to model realistic measurement errors. Our approach is to

assume that the true, but unobserved, option price is uniformly distributed between the bid and

the ask. That is, instead of the midpoint prices, we use simulated prices. This leads to Nsim sets

of perturbed marginal distributions Fj and FS and, thus, perturbed joint distributions. The last

three columns in Table IA.1 demonstrate that the second e↵ect is 5 times or more larger than the

first e↵ect, but it is still very small in economic terms. Again, the confidence intervals for the up

correlation are widest because the information on the right tail of RND is typically less precise

than for the left tail (there are more OTM puts available than OTM calls). The 1%–99% interval

for the up correlation is now 0.00086.

39As mentioned earlier, the accuracy of the BRA can be further improved by increasing the number of
states, to, say, n = 10, 000. This only increases the computation time but has no real e↵ect on the empirical
results.
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Fixed Inputs Perturbed Inputs
P0.90-P0.10 P0.95-P0.05 P0.99-P0.01 P0.90-P0.10 P0.95-P0.05 P0.99-P0.01

Global 0.000001 0.000083 0.000098 0.00025 0.00050 0.00047
Down 0.000001 0.000106 0.000126 0.00033 0.00064 0.00061

Up 0.000002 0.000151 0.000178 0.00047 0.00092 0.00086

Table IA.1: Stability of MFDR. The table reports the size of the confidence intervals for the
average global, down, and up correlations. The confidence intervals are obtained via bootstrap
for the two cases: (1) when the BRA inputs are fixed (the first three columns), and (2) when the
BRA inputs are perturbed (the last three columns). The confidence intervals are computed as
the di↵erence between percentiles at 10% and 90%, 5% and 95%, and 1% and 99%, respectively.

IA.D Down and Up Variance and Correlation Risk

Premia

Let B denote a regime variable which takes on values of zero and one with probability of p = 0.5.

This binary variable switches between two regimes, L and H (“Low” and “High”). As before, the

vector (X1, ..., Xd) denotes returns for the d sectors, so that

(X1, ..., Xd) = (XL
1 , ..., X

L
d )IB=0 + (XH

1 , ..., X
H
d )IB=1.

In each regime (B = 0 or B = 1), the d returns are multivariate normal with homogeneous

parameters. In particular, in regime L, all components have the same expected return µ
L
i = µ

L,

same individual volatility �
L
i = �

L, and same pairwise correlation ⇢
L
ij = ⇢

L. Similar notation

applies for regime H. Generally, the parameters di↵er under the physical probability P and the

risk-neutral probability Q. Under Q, the expected return must be equal to the risk-free rate r

assumed to be zero, i.e., 0.5µL,Q + 0.5µH,Q = 0. We keep the parameters of the mixture model

fixed under P, but consider three di↵erent scenarios under Q, as reported in Table IA.2. We focus

on the equally weighted index S =
Pd

j=1 !jXj with !j = 1/d and d = 9. In each scenario, we

simulate Nsim = 10, 000, 000 returns, compute the corresponding VRP and CRP (global, down,

and up), and report the results in Table IA.3.

µL µH �L �H ⇢L ⇢H

Under P -0.05 0.15 0.25 0.20 0.7 0.3
Under Q, Scenario 1 -0.10 0.10 0.30 0.10 0.7 0.3
Under Q, Scenario 2 -0.10 0.10 0.30 0.15 0.7 0.0
Under Q, Scenario 3 -0.10 0.10 0.30 0.15 0.6 0.4

Table IA.2: Parameters of the Mixture Model under P and Q.
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V RP g V RP d V RP u CRP g CRP d CRP u

Scenario 1 -0.0044 -0.0140 0.0014 -0.098 -0.125 -0.138
Scenario 2 -0.0038 -0.0153 0.0017 -0.008 -0.089 0.033
Scenario 3 -0.0038 -0.0067 0.0005 -0.008 0.020 -0.047

Table IA.3: Variance and Correlation Risk Premia in the Mixture Model. The table
reports global, down, and up VRP and CRP for the three scenarios, whose parameters are given
in Table IA.2.

IA.E DJIA Options

As a robustness check, we applied our MFDR methodology to options on the Dow Jones Industrial

Average (DJIA). To obtain the composition of the DJIA index, we used data from Compustat

and merged it with data from CRSP using the CCM Linking Table. Specifically, we followed the

approach of Dobelman, Kang, and Park (2014) and used GVKEY and IID to link to PERMNO.

The data on returns and market prices are obtained from CRSP. To approximate the index weights

on each day, we used the price of each stock in the index from the previous day as a proxy.

To match the historical data with options, we used the historical CUSIP link provided by

OptionMetrics. We used the DJIA index directly as the underlying asset for options (ticker DIA).

However, applying the MFDR methodology to DJIA options posed two challenges. Firstly, in the

first step of MFDR, we needed to estimate the RND for each index component, which required

options with a wide range of strikes, that densely covered the support of the RND. However, many

stocks did not satisfy this requirement, especially in the early part of the sample. To overcome

this challenge, we relied on the Volatility Surface File from OptionMetrics, and selected options

with 91 days to maturity for each underlying asset. The Volatility Surface File contained the

interpolated volatility surface for each security on each date for the set of standardized strikes

with (absolute) delta from 0.1 to 0.9. The surface data involved extensive inter- and extrapolations

of the market data with a smoothing kernel. As such, the surface data is not suitable for testing

trading rules, but it proved to be a valuable source of information that could be used to generate

signals for trading as demonstrated by previous studies such as DeMiguel, Plyakha, Uppal, and

Vilkov (2013) and Driessen, Maenhout, and Vilkov (2009), among others.

The second challenge we encountered when applying the MFDR methodology to DJIA options

was the increased computational demands required to solve the optimization problem in the third

step of MFDR. The computational time of the BRA method increased exponentially with the

number of components, making it infeasible for d = 30. To speed up the solution-finding process,

we used a variant of the original method called the “randomized” BRA. This method cycles

through a random subset of partitions of columns, instead of onsidering all possible partitions.

Additionally, the method assigns higher probabilities to smaller blocks. While the randomized

BRA method finds the solution much faster, there is a slight loss of accuracy. However, this has
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a negligible e↵ect on the accuracy of the aggregate measures (such as the global, down, and up

correlations).40

We present the results in Table IA.4 and Figure IA.8. Over the 14-year sample period, the

average implied global, down, and up correlations are 0.538, 0.507, and 0.144 for the 30 stocks

in DJIA as compared to 0.678, 0.527, and 0.444 for the nine sectors in S&P 500 (Table 4). This

suggests that the correlations for individual stocks are much lower than those for sectors. The

implied dependence for individual stocks is still highly asymmetric, with the down correlation

being much larger than the up correlation.

Nobs Under P Under Q Premium t-stat

Global 3475 0.415 0.538 -0.123 -10.8
Down 3475 0.284 0.507 -0.222 -16.5

Up 3475 0.228 0.144 0.084 7.5
Down-Up 3475 0.056 0.363 -0.307 -21.2

Table IA.4: Correlation Risk Premium for DJIA. The table reports statistics for the risk
premia ✓, ✓d, and ✓

u computed for the average global, down, and up correlations estimated for
DJIA index. The last row is the correlation spread, �⇢ = ⇢

d � ⇢
u. The last column shows the

Newey-West t-statistics computed with 63 lags.

Figure IA.8 plots across time the average implied correlation (blue line) and realized correlation

(red line). There are three panels, corresponding to the three types of correlations (global, down,

and up). The first panel documents that the global correlation risk premium (CRP) ✓, which

appears as the di↵erence between the blue and the red lines, is mostly negative. Across the sample

period, it has an average of -0.123 and with a t-statistic of -10.8, see Table IA.4. The second and

third panels demonstrate that the average realized down correlations are systematically lower than

their implied counterparts, while the opposite is true for the up correlations. The up correlations

are lower than the down correlations under P and this asymmetry is more pronounced under Q,

with ⇢
u,Q

< ⇢
u,P

< ⇢
d,P

< ⇢
d,Q

. As a result, the average down CRP ✓
d is negative (-0.222), while

the average up CRP ✓
u is positive (0.084). Both risk premia are highly significant with t-statistic

of -16.5 and 7.5, respectively.

40On our computer cluster, the third step of MFDR can be computed for each day in approximately 2
seconds for the nine sectors of the S&P 500 and approximately 12 seconds for the 30 stocks of the DJIA.
Thus, the randomized BRA for d = 30 takes about 6 times longer than the original BRA for d = 9. The
total computational time for all 3500 days in the sample is greatly reduced by utilizing parallel computing.
We estimate that the third step of MFDR would take 10 to 40 times longer for the 100 stocks in the

S&P 100 than for the DJIA. Without further steps to accelerate the procedure, an application to the 500
stocks in the S&P 500 would unlikely be feasible.
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Figure IA.8: Implied and Realized Correlations for DJIA. Implied correlations (blue) are
computed from option-implied dependence; realized correlations (red) are computed from sector
index returns. The corresponding means of the two series are shown with the horizontal dashed
lines. The grey shaded areas indicate the financial crisis and COVID-19 crisis.
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