Internet Appendix for “Fast Filtering with Large

Option Panels”

A. Option Valuation

We use a strike-optimized method based on the formula of Carr and Madan (1998). The
time-t price of a call option with strgoke K and maturity 7can be written as:

(A.1) C, = / e (e — ) fo(Sp4r)dS iy,
k

where s; = log(S;) and k = log(K). In the above formula, as k approaches —oo, the call
option price converges to S; rather than zero and thus is not square-integrable. Carr and

Madan introduce a dampening factor a to solve the problem and let:

(A.2) c=e™C.

Now the Fourier transform can be applied to c:
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where ¢,, denotes the risk neutral characteristic function of the log-price. Dropping the

notation for dependence on t, the call option value is given by:

1 [
(A.4) C= eo‘k%/ e~k (u)du.

Since the imaginary part of ¢ (u) is odd and the real part is even, Equation (A.4) can be

further simplified as

(A.5) C = /0 N Rele™ "% (u)]du.

Carr and Madan (1998) evaluate Equation (A.5) with the fast Fourier transform algorithm.
However, given the availability of improved computing power, we instead directly solve
equation (A.5) with a numerical integration method (See Criséstomo (2018) for a
comparison of the two methods in terms of speed and accuracy). We vectorize equation

(A.5) with respect to the strikes and we apply Simpson’s rule for computing the call prices.
B. The Orthogonal MCMC Algorithm

In this section, we present the implementational details of the Orthogonal MCMC
(O-MCMC) algorithm. In a nutshell, the algorithm consists in running Z MCMC
algorithms in parallel and makes the Markov chains interacting at some iterations, called
the horizontal moves. It starts from a population of Z initial values {01, ..., 0%}, which
are the initial states of the Z Markov chains. Then the algorithm applies M iterations in

which it alternates between vertical and horizontal moves. For each of the Z chains, the



vertical moves update the current state independently of the other chains by using a
standard adaptive random-walk (RW) sampler. The horizontal moves update the states of
all the chains at once using the sample Metropolis-Hasting sampler, a method that implies
interaction between the Markov chains. The O-MCMC algorithm is detailed in the

algorithm below.



The O-MCMC algorithm

For z =1,..., Z, initialize the state ©, of the chain, the RW covariance matrix ., the number «,
of accepted draws to zero (v, = 0), the type of proposal distribution of the chain AF, = mod(z, 2)
and set RWap . = 2.382 /d in which d is the number of model parameters.
for iter=1 to M do
If mod(iter,10)=0, then do a horizontal move at this iteration. Else, do a vertical move.
Vertical move
for z=1 to Z do
Set Ot = @lfer! and sample 1, ~ N(0, I).
Compute a proposal ©, = oiterl + C.n, in which C,C. = (1 + AF,(RWar,. —1))%..
Accept the proposal draw ©, according to the Metropolis acceptance ratio:

(B.1) min

( F(Rir, C1ir|02)£(62) >1
f(Rl:T,Cl;T|@izter‘1)f(@izter—1) ’

if the proposal draw has been accepted, then ©!'" = O, and set a, = a, + 1, .
if AF.=1, then update the covariance matrix ¥, according to Atchadé and Fort (2010):

Set ¥, to the empirical covariance of {O©l...,0%} and RWap, =
max [RWr,. + 5522, 0.0001

else Update the covariance matrix X, according to Robust Adaptive Metropolis (RAM):

Nram (535 —0.33)

Set npan = min(l, 4] and 5, = C, (I + a0, e
end if
end for
Horizontal move
Compute the mean i and the empirical covariance matrix ¥ of {©1,..., ©ler},

for z=1to Z do B
Draw a proposal candidate O ~ N(z, 3).

: 3B : [N (O |a,5)
Select k € {1,...,Z} with probability proportional to v, TR Crr O [ (07e7) where

fn(|i1,X) is the normal density with expectation and covariance [i, 3, respectively.
Set ©F" = OF" if the draw is accepted according to the probability:

7 fn@©feT|ns)
s 2=1 f(Ry.p,Ci.p|Oer)f(O1ter)
(B.2) min - = T — 1
z I (OFer|n,%) i fn (O R, 2)
: : — min;eo,....z - -
#=0 f(Ry.7,Cr.r|0F°T) f(OF°T) BN f(Ri.7,Cr.7|OFF) f(O}FF)
end for

Burn-in period

If mod(iter,10)=0 and iter< 0.4M, then replace the current state @}Cter and
the chain attributes (AFg, Xk, ...) of the least performing chain (ie., k =
argminiel,.._vzf(RlzT,Cl:T\Gi)f(Gi)) with the state and the attributes of the best performing
chain.
end for




C. Likelihood Evaluation Using The Particle Filter

This section details the particle filter used for evaluating the integrated
log-likelihood function of the SVCJ model with parameter
O ={K,0,0,0,M5Mys A, Lhgy Ts, M yss fhs N yo, Py Oc }- Let us denote the latent variables at
time t by L; = (V;, By, J?)*. The particle filter is based on the following decomposition of

the posterior distribution of the latent states:

7T(L0:T|@, Ry.r, Cl:T) X f(R1:T> Cir, Lo:T|@),
(C.1) T
= f(Ri|Lo, ©) [ [ f(Ris1. Co| Ly, ©) f (Li| Li—s, Ry, ©).

t=1

Relying on this decomposition, a standard particle filter samples the latent variables from
Li|Li—1, R, © and then evaluates the likelihood function f(R;y1,Ci|Ls, ©) which can

decomposed into f(Ry11|L:, ©) and f(Cy|Ls, ©) as explained in Section C.

A. Particle filter

The section details the particle filter of the SVCJ model which deals with both
options and returns. To estimate the SVCJ model with returns only, it suffices to skip the
option likelihood evaluation (i.e., Step 3 (b)) and the step 5 (b) on the particle
rejuvenation. In this case, the risk-neutral parameters {n,,n,.,7,.} are set to zero which
implies that ¢ = .

The particle filter operates as follows. For ¢ = 1,..., N, sample the latent variable
L = (V§, Bi, (J§)") from the prior distribution. Set 7§ = & and At = 55 Then, for each

time t fromt=1,..., T, dofori=1,..., N:

2INote that in contrast to the previous exposition of the latent state Ly = (V;, By, J;, JY) we drop here
the jump in mean state J because it can be directly integrated out rather than simulated.



1. Step 1: Resampling

The set {Wi_l}i]il constitute a discrete probability distribution of
Ly = (Vi_1,JP 4, Bi—1) from which we resample using a stratified method. The

resampled {Li_l}i]\il as well as its ancestors are stored for the next period.

2. Step 2: Simulating the State Forward

(a) Simulate the jumps at time ¢:

(C.2)

MAtf(Rt|Bt =1,Vi—1,Bs—1,J;7_1,0)
f(Bt = 1|R¢t,Vi—1,Bi—1,J{_1,0) = =1

MALf(Rt|By = 1,Vi—1, Bt—1,J7_1,0) + (1 = AAt) f(Re| Bt = 0, Vi1, Bt—1, J{_1,0)

in which the function f(R;|B; =1,V;_1, B;_1,J/ 1,0) is an exponentially
modified gaussian density function as shown in Section B while

f(R| By =0,Vi_y,B;_1, J} 1, 0) stands for a standard Normal density. In
particular, Ry|B; = 0,V}' |, B;_1,(J? 1)}, 0 ~

N(m_l S+ (g, — DV, — AR)AL, Atvy‘_l).

(b) If B! = 1, simulate the jumps in volatility at time ¢:

(C3) fI)IVi,, Bl =1, R;,0) o f(R|(J2), Viy, By =1,0) £((J})1]©),

in which R,|(J?)!, Vi, Bi = 1,0 ~
N((re—1 =01 4 (ny — HVi, = ANa@)AL + (py + p,(J7)1), AtV + 02) and

F(I)i|O) = oxp(=(J7)' /1)

My

(c) Compute the error term w! given by

Lo i _ VNP i
Wiy = M)At — (ug + py (1)) B;

(C4)  wi=Ry— (re—1— 61+ (n, — 5



(d) Simulate the spot variances at time ¢:

(C.5)
opAtV;
o2B} + AtV

Wi+ BL AV (1

v;wN(v;ﬁm(e—v:l)AH p AV ))

2B + AtV
3. Step 3: Computing the unnormalized weights
For each particle 2 = 1,..., N, compute the unnormalized weights according to the

likelihood:

(Di = f(Rt+1|Li7 @>f(ct|Lzzta @)

(a) The likelihood related to the asset returns, i.e. f(R;1|Li, ©), is given by

(C.6)
f(Rt-l—l‘Lh @) - (1 - )\At)f(Rt+1‘Bt+1 = 07 V;fa Bt7 Jtva @) + (AAt)f(Rt+1|Bt+1 = ]-7 ‘/157 Bt7 JZ)7 6)7

with

(1)

exp (<Rt+1—m—«st+<ns—é)vf,—Am?)sz)

f(Ri41|Bit4+1 =0,V4, By, J7,0) = 2V Al ,

2w (Vi At)
Ay exp(42 (AyA2 — 2sgn(p;)(Rip1 — A)) . sgn(py)(Ay — Resr) + AZA
f(Ri+1|Biy1 = 1, V4, B, J7,©) = (Z( 5 J ) erfc( gn(p.)( #\/ﬂg—l) A)y

in which Ay = |p,|p,, Ay = (re — 6 + (n, — H)Vi — Aa@)At + p, and A2 = AtV, + o2,

(b) The likelihood related to the option prices, i.e. f(C;|Li, ©), is given by

o (B 1 [Cu = CHIOI ) ™
C. i @)= _- :
( 8) f(Ct|Lt7 @) (}E \/FO’% CeXp { 92 O_z .

Note that this step is computationally intensive. In particular, for each particle
1=1,...,N and for each option h =1, ..., H;, the option price C’%L(Vﬂ@) must be
computed. To reduce the computational burden, we apply the quantile spot variance
method. It consists of evaluating the option prices for () spot variances (that are
evenly-spaced quantiles of the spot variance particles) and then interpolating the

7



option prices of the other spot variances using a polynomial interpolation function,

see Section D for more details.

. Step 4: Assessing the particle approximation quality

Check the effective sample size (ESS):

N
(X&)
ESS = 2

S (@2

(C.9)

If ESS is larger than a targeted ESS (set to 0.5N in our implementation), then go to
step 5 (a). Otherwise, the particles do not correctly approximate the current
distribution. In such a case, skip step 5(a) and go to step 5 (b) to address the

problem.

. Step 5 (a): Computing the likelihood and Normalizing the Weights

Compute the unbiased approximation of the integrated likelihood function as:
;N
(C].O) f(Rt+lact|@aR1:t701:t—l) ~ N;wl~

Then, compute the normalized weights 7} as follows:

Wi

N -
>, W

7=1

(C.11) =

Skip Step 5(b).

. Step 5 (b): Rejuvenating the particles using several MCMC algorithms

Build a sequence of k =1,..., K bridging distributions,

[f(Rt—i-la Ct|Lt7 @)]¢kf(Lt|tha Cl:t—17 @)

C.12 T, (Ll Riti1, Crt, ©) = ’
( ) ¢k( t| Lit+1 Lt ) f¢k<Rt+1,Ct|R1:t701:t—17®)




in which f¢k (Rt+1, Ot|R1:t; Cl:t—la @) = f[f(Rt+1, Ct|Lt: 6)]¢kf(Lt|R1:ta 01:15—1, @)st7
i.e. the normalizing constant, and ¢, stands for an increasing function with ¢, =0
and ¢, = 1 such that, following Jasra, Stephens, Doucet, and Tsagaris (2011), ESS is

targeted at 0.5N. Note that fs (Rit1, Ci| Ry, Cr:e—1,0) = 1 when ¢, = 0.

For each distribution of the sequence, i.e. for k =2,... K,
(a) Compute the unnormalized weights:
5 = (f(Run | Li, ©)F(Ci|Li, ©)) ",

(b) Compute the ratio of normalizing constants:

fo, (Rig1, C| Ry, Cri—1, ©) ~ 1 i@mk
f(ﬁk,l (Rt—‘rlacthl:t)Cl:t—l)@) N i—1

(¢) Compute the normalized weights 7% as follows:

i7¢k

&

(C.13) Tt =

(I}‘]’qﬁk

=

1

j
(d) Re-sample the particles according to the normalized weights {77?*}¥ | and keep

track of the particle ancestors that remain active.

(e) Apply M iterations of an MCMC algorithm exhibiting my, (L¢|©, Ry:441, Crt) as
invariant distribution. First, set o7, = Var(V}}) in which Var(V}?) stands for the
empirical variance of the particles. Then, For m = 1,..., M, apply the following

MCMC steps:
i. Fori=1,...,N, draw proposal candidates V; ~ N(V}, 6%),
Bi ~ Bern(AAt) and (J?)" ~ exp(,).

9



ii. Fori=1,..., N, accept/reject the proposal draws according to the

Metropolis acceptance probability:

(C.14) min 1

S0 i ( Fuyi Pe ety B ([ Foyi
f (B, CIVE, B, (J)',0) \  F(VEIViLy, By, ()", Be, ©)
f(Rt-‘rlv Ct’Vth B;: (Jtv)l? 9) f(vtl|vtl—17 Biv (']tv)27 Ry, @)7

When we have approximated all the distributions in the sequence, we end up with a
set of particles that approximates the distribution f(L;|Ri441,Ch, ©). The

integrated likelihood at time ¢ is computed as

H oy (Riq1, Ci| Rit, Cri-1,0)
f¢k 1 Rt+170t|R1t701t 1,@)

MH%ZﬁM
k=1 =1

where the approximation is unbiased as shown in Herbst and Schortheide (2019). To

f(Rt+17 Ct|@a Rl:t7 C’1:15 1
(C.15)

end this step of the particle filter, set the normalized weights to 7! = % for each

particlet =1,..., N.

B. Analytical expressions for the distributions used in the particle
filter

Transition distribution L,|L; 1, Ry, © used in Step 2.
The SIR algorithm requires to sample the state variable L; from the transition

distribution L;|L;_1, Ry, ©. The transition density can be expressed as,

(C.16)
f(Lt|L¢—1, Rt,©) = f(V4, Bt, J{|Vi—1, Bi—1, Ji_1, Rt, ©),
= f(V&|Bt, J¢, Vi1, Bi—1, J{_1, Rt, ©) f(J{|Rt, Bt, Vi—1, Bi—1, J{_1,©) f(Bt|Rt, Vi—1, Bi—1, J{_1,©).

Therefore, we first sample B;, then J; and finally V;. The sampling of each latent variable
is detailed below.
Sampling B;:

10



The posterior density of B; is given by

(C.17)
MAtf(Re|By = 1,Vi—1, Bt—1,J;_1,0)

By = 1|Ry, Vi1, Bi_1,J’_1,0) =
F(Be = 1R, Vie1, B, Jio1, ©) AAtf(Re|Br = 1, Vi1, Bt—1,J7_1,0) + (1 — AAL) f(Re|Bs = 0, Vi1, Br—1,J7_1,©)

in which we use that fact that B; is independent of L;_;. The function

f(R| By =1,Viq, By_1, J{ 1, 0) is a exponentially modified gaussian density function as
shown below while f(Ry|B; =0,V,_1, B;_1,J} 1, 0) stands for a standard Normal density.
Sampling J;:

The variance jump distribution when B; = 1 is given by
_ f(Rt|Jz]>wflaBt:]-a@)f(‘]t’u‘@)
JF(Re|JY Vier, By = 1,0) f(JF[©)d Ty

(C.18) F(JP Vi1, By = 1, Ry, ©)

in which [ f(R¢|JY, Vi1, By = 1,0) f(J|©)dJ; is known as an exponentially modified
Gaussian density and stands for the normalizing constant of the distribution. We sample
the jump size using a Griddy-Gibbs approach using a grid of 200 equally-spaced values.
Sampling V;:

The spot variance is sampled from the distribution conditional on the

contemporaneous return:
(C.19)
VilVic1, Be, JY, R, © ~ N (Vi1 + k(0 — Vie1) At + po/Viei At wy + J By, 0> AtVi_1 (1 — p?)),

Ri—(ri—1—81—1+(n,— $)Vic1 = Ay iS) At—(u,+p ; J?) By
\/AtVt_1+a§Bt

in which w; = . Note that we do not sample the
spot variance from its prior distribution (i.e., V;|V;_1, J7, By, ©) as it is the case in standard
SIR algorithms. Due to the timing convention adopted in this paper, the spot variance is
sampled from a distribution that accounts for the contemporaneous asset return. In that
regard, this particle filter does not blindly sample the latent variables and is similar to an
auxiliary particle filter (without the need of augmenting the posterior space with an

auxiliary variable).

11



Likelihood evaluation given the latent variables used in Step 3.

The likelihood function f(R;41, Ci|Lt, ©) is decomposed into f(Ryy1]Lt, ©) and
f(Ct|Lt, ©). Since the options in Cy = (Cty, ..., Ctp,) are conditionally independent,
f(Ct| Ly, ©) is simply a product of Gaussian distributions. The evaluation of f(Rii1|L:, ©),
however, requires integrating out the latent variable L;.,. In particular, we have

f(Ris1]Lt, ©) :/f(Rt+1,Lt+1Lt79)st+1,

= /f(Rt+1Lt+1a Li,0)f(Ltg1|Lt, ©)dLiy,

(C.20) = /f(Rt—l—lBt—i-la Jii1, Ve, Bty Iy, ©) f(Bigr, Jiq Vi, Br, JY s ©)dBryadJy
= [ #(RealBor, Ja, Vi B 7. ©) f(Brial©)dBu /(7 [€)d T
= (1 = AAt) f(Rt41|Bty1 = 0, Vi, By, J;, ©)

+ ()\At) / f(Rt+1‘Bt+1 = 17 Jtv+17 ‘/’t7 Bt7 Jtva @)f(JtUJrlle)th%rl?
where we use the fact that the density of R;;; does not depend on J¢,; when there is no
jump at time ¢ + 1. Analytical expressions for f(R;1|Biy1 = 0,V;, By, JP,©) and

[ f(Ris1|Begr = 1, J7 1, Vi, By, JP,©) f(J711©)dJ},, are obtained as follows.

1. Analytical expression of f(R1|Biy1 = 0,V;, By, J7, O).

(Reg1—(re=0e+(n,— 2)Vi= M) At)?
exp ( Vi AL )

2w (V,At)

(C.21) f(Ris1|Bey1 = 0, V4, By, J7,©) =

2. Analytical expression of [ f(Ry1|Bey1 = 1, J%0, Vi, By, P, ©) f(J24]©)d Y.

The distribution of the first term in the integral is a standard normal distribution:

(C.22)
1
Rey1|Biyr = 1,044, Ve, B, J,© ~ N ((Tt =0+ (s — E)W — MEE)At + g, +sgnlpy)lps| i, ViAt + U?) )

where sgn(p;) denotes the sign of p; and | - | denotes the absolute value operator. To

integrate out the variance jump, note that |p;|J;,; ~ exp(|p,|p,). Therefore, when

12



we integrate out the exponential distribution, we end up with an exponentially
modified Gaussian density function. To facilitate the notation, we derive the density
function for two random variables given by X ~ N(u+sgn(p,)J,0?) and J ~ exp(a).
In our setting, those parameters are equal to o = |p |,

p=(re — 6+ (n, — 5)Vi — Ai@) At + p, and 02 = AtV, + o2, The exponentially

modified Gaussian density is given by

( —(z—p—sgn(p;)J)?

o0 ex
Sl 0%, a) = / e v exp(—aud)d,
/ exp(— w*u)2+J2*Q(Sgn(PJ)(I*M)*UQOf)J)dJ
v27ra 202 ’
aexp o0 — 2(sgn x—p) —ola)J
B %2 / exp(— gn(p,)( d D) ) Y,
Voro? 20
_aexp() / (= = (5800 ) = 1) — 0%0))2 + (san(p,) o ) P
V2mwo? 202 ’
— (2= )2+ (sgn(p ) (z—p) —0%)?
_ acexp( 202 ) [ J — (sgu(py)(z — p) —o%a) o
(C.23) - — / exp(—( e )2)dJ,
—(z—p)?+(sen(p ) (z—p)—02a)?
aexp( % ) [
- 2 = (ssn(o ) (o) a2y SP(—E7)V 200,
yixoa — V2o
—(z—p)2+(sgn z—p)—o2a)?
_ aexp( (a—p)"+ (e ;f,'])( 2 ! )erfc(sgn(pj)(“ —x) +02a)
2 V2o ’
02a27 sgn €Tr— «
B aexp(( 2sg 2(PJ>( D) )) sgn(p,)(u — ) + 020
= erfc( )s
2 202
_ aexp(§(ac? — 2sgn(p,)(z — 1)) oxfe(SBNPA) 1 — ) + o’a )

2 202

D. A Monte Carlo Experiment

In contrast to standard particle filter methods, the quantile spot variance method
makes it possible to estimate the models we consider in this paper with both returns and
large panels of option data. Because of the improvement in computational efficiency, it is
also possible to study the sampling properties of the estimator in a (small-scale) Monte
Carlo exercise.

Table A1 presents the results of the Monte Carlo study. We simulate fifty samples
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of return time series and option panels for two parameterizations of the SV model. The
length of the samples is one year and the sample frequency is daily. Column 2 in Table A1
shows the two sets of parameters. They are chosen based on the empirical results below.
The main difference between them is that the p parameters are set at —0.90 and —0.70
respectively, and we modify the o to keep the unconditional return kurtosis constant (see
Das and Sundaram (1999) for the model-implied moments). The simulated option samples
are similar to the sample used in the empirical analysis and summarized in Table 1. For a
one-year sample, we thus end up with 6731 options.

Table Al shows that for both parameterizations, the medians of the parameter
estimates based on the 50 replications are close to the true values, with good precision as
indicated by the first and third quartiles. The estimates of the p and o parameters are

slightly biased downward. The price of risk parameters 7, and 7, are precisely estimated.
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Table Al: Monte Carlo Results

Parameter True value Median Q25 Q75
K 2.0000 2.0144 1.9089 2.1613
0 0.0350 0.0361 0.0333 0.0378
o 0.3800 0.3669 0.3647 0.3693
P -0.9000 -0.9277 -0.9324 -0.9226
s 2.5000 2.5302 2.3948 2.6702
M, 1.0000 0.9956 0.8855 1.1384

Parameter True value Median Q25 Q75
K 2.0000 2.0537 1.9047 2.1757
0 0.0350 0.0358 0.0341 0.0385
o 0.4900 0.4642 0.4551 0.4682
p -0.7000 -0.7288 -0.7397 -0.7233
s 2.5000 2.5074 2.3946 2.5709
My 1.0000 0.9911 0.8603 1.0759

Notes: We report Monte Carlo results based on two configurations of the SV model. For each of the two
parameter settings, we simulate 50 samples of returns and option panels samples for a one-year period.
The maturity and moneyness structure of the simulated option panels are based on the 2015 option
sample, implying 6731 options used for estimation of each SV model.
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Table Al: Parameter Estimates in Existing Studies: The SVJR Model

Panel A: Based on Returns

Author

Period

0

A

K g P Hs Os
ABL  1953-1996  3.704 0.013 0.184  -0.620  5.040 0.000 0.012
CV 1980-2000  12.187  0.019 4.274  -0.271  0.372 0.051  exp(+)
5.379  0.026  exp(—)
CGGT 1953-1999  3.276 0.015 0.151  -0.279
EJP 1980-2000 3.226 0.021 0.240 -0.467 1.512 -0.025 0.041
Eraker 1987-1990  3.024 0.021 0.202 -0468 0.756  -0.037  0.066
Bates; 1953-1996  4.380 0.014 0.244  -0.612 0.744  -0.010  0.052
CJM  1996-2004  6.589 0.032 0.450  -0.777 2790 -0.013  0.013
Panel B: Based on Options
Author Period K 0 o P A T3 O
BCC  1988-1991  2.030 0.040 0.380  -0.570  0.590  -0.050  0.070
BCJ 1987-2003  5.796 0.012 0.240  -0467  1.512  -0.100  0.041
CJM  1996-2004  2.638 0.063 0.448  -0.782  2.832  -0.015  0.006
Panel C: Based on Returns and Options
Author Period K 0 o p A Iy Os
Pan 1989-1996  6.400 0.015 0.300  -0.530 12.300 -0.008  0.039
3.300%  0.030* -0.192*
Eraker 1987-1990  4.788 0.042 0.512 -0.586  0.504 -0.010 0.167
2.772%  0.072* -0.050%*
HLM  1990-2007  1.711 0.049 0.653  -0.740 2332  -0.021  0.019
0.415*  0.203* 2.831%

Notes: We report parameter estimates for the SVJR model from existing studies. Estimates in Panel A
are physical values. Estimates in Panel B are risk-neutral values. In Panel C, estimates with a star (*)
indicate risk-neutral values and the rest are physical values. All parameters are annualized. BCC: Bakshi
et al. (1997), based on the S&P 500; ABL: Andersen, Benzoni, and Lund (2002), based on the S&P 500;
CV: Chacko and Viceira (2003), based on the S&P 500; CGGT: Chernov, Gallant, Ghysels, and Tauchen
(2003), based on the DJIA; EJP: Eraker et al. (2003), based on S&P 500; Eraker: Eraker (2004), based on
S&P 500; Bates;: Bates (2006), based on S&P 500; CJM: Christoffersen et al. (2010), based on the S&P
500; BCJ: Broadie et al. (2007), based on the S&P 500; Pan: Pan (2002), based on the S&P 500; HLM:

Hurn et al. (2015), based on the S&P 500.
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Table A2: Parameter Estimates in Existing Studies: The SVCJ Model

Panel A: Based on Returns

Author  Period K 0 o P A g O Ly 13
EJP 1980- 6.552  0.014 0.199 -0484 1.663 -0.018 0.029 0.037 -0.601
2000
Eraker 1987- 4.032  0.014 0.146 -0461 1.008 -0.032 0.049 0.032 0.312
1990

Panel B: Based on Options

Author  Period K 0 o p A e Os Ly 0
BCJ 1987- 14.112  0.006  0.199 -0.484 1.663 -0.066 0.029  0.108 -0.601
2003
AFT 1996- 2.049 0.033 0.354 -0.934 4.435 0.005 0.004 0.052 -0.502
2010

Panel C: Based on Returns and Options

Author  Period K 0 o P A Mg O Ly P
Eraker 1987- 5796 0.034 0411 -0.582 0.504 -0.061 0.036  0.041 -0.693
1990
2.772%  0.071%* -0.075*

Notes: We report parameter estimates for the SVCJ model from existing studies. Estimates in Panel A are
physical values. Estimates in Panel B are risk-neutral values. In Panel C, estimates with a star (*) indicate
risk-neutral values and the rest are physical values. All parameters are annualized. EJP: Eraker et al.
(2003), based on the S&P 500; Eraker: Eraker (2004), based on the S&P 500; BCJ: Broadie et al. (2007),
based on the S&P 500; AFT: Andersen et al. (2015a), based on the S&P 500.
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Figure Al: Parameter Trace for SV Model Parameters. Return-Based Estimation
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Notes: We plot the traces for each parameter in the SV model. We use 10,000 iterations. The first 4,000 of

the iterations are treated as burn-in.
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Figure A2: Parameter Trace for SV Model Parameters. Joint Estimation
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Notes: We plot the traces for each parameter in the SV model. We use 10,000 iterations. The first 4,000 of

the iterations are treated as burn-in.
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