
Internet Appendix for “Fast Filtering with Large 

Option Panels”

A. Option Valuation

We use a strike-optimized method based on the formula of Carr and Madan (1998). The 

time-t price of a call option with strike K and maturity τ can be written as:
(A.1) Ct =

∫ ∞

k

e−rτ (est+τ − ek)fs(st+τ )dst+τ ,

where st = log(St) and k = log(K). In the above formula, as k approaches −∞, the call

option price converges to St rather than zero and thus is not square-integrable. Carr and

Madan introduce a dampening factor α to solve the problem and let:

(A.2) c = eαkC.

Now the Fourier transform can be applied to c:

ψ(u) =

∫ ∞

−∞
eiukcdk,

=

∫ ∞

−∞
eiukeαk

∫ ∞

k

e−rτ (est+τ − ek)fs(st+τ )dst+τdk,

=

∫ ∞

−∞
e−rτfs(st+τ )

∫ st+τ

−∞
[est+τ+(α+iu)k − e(α+1+iu)k]dkdst+τ ,

=

∫ ∞

−∞
e−rτfs(st+τ )[

est+τ (α+1+iu)

(α + iu)(α + 1 + iu)
]dst+τ ,

=
e−rτ

(α + iu)(α + 1 + iu)

∫ ∞

−∞
e(α+1+iu)st+τfs(st+τ )dst+τ ,

=
e−rτϕst+τ

(α + 1 + iu)

(α + iu)(α + 1 + iu)
,

(A.3)



where ϕst denotes the risk neutral characteristic function of the log-price. Dropping the

notation for dependence on t, the call option value is given by:

C = eαk
1

2π

∫ ∞

−∞
e−iukψ(u)du.(A.4)

Since the imaginary part of ψ(u) is odd and the real part is even, Equation (A.4) can be

further simplified as

C =
e−αk

π

∫ ∞

0

Re[e−iukψ(u)]du.(A.5)

Carr and Madan (1998) evaluate Equation (A.5) with the fast Fourier transform algorithm.

However, given the availability of improved computing power, we instead directly solve

equation (A.5) with a numerical integration method (See Crisóstomo (2018) for a

comparison of the two methods in terms of speed and accuracy). We vectorize equation

(A.5) with respect to the strikes and we apply Simpson’s rule for computing the call prices.

B. The Orthogonal MCMC Algorithm

In this section, we present the implementational details of the Orthogonal MCMC

(O-MCMC) algorithm. In a nutshell, the algorithm consists in running Z MCMC

algorithms in parallel and makes the Markov chains interacting at some iterations, called

the horizontal moves. It starts from a population of Z initial values {Θ1
1, . . . ,Θ

1
Z}, which

are the initial states of the Z Markov chains. Then the algorithm applies M iterations in

which it alternates between vertical and horizontal moves. For each of the Z chains, the
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vertical moves update the current state independently of the other chains by using a

standard adaptive random-walk (RW) sampler. The horizontal moves update the states of

all the chains at once using the sample Metropolis-Hasting sampler, a method that implies

interaction between the Markov chains. The O-MCMC algorithm is detailed in the

algorithm below.
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The O-MCMC algorithm

For z = 1, . . . , Z, initialize the state Θz of the chain, the RW covariance matrix Σz, the number αz

of accepted draws to zero (αz = 0), the type of proposal distribution of the chain AFz = mod(z, 2)
and set RWAF,z = 2.382/d in which d is the number of model parameters.
for iter=1 to M do

If mod(iter,10)=0, then do a horizontal move at this iteration. Else, do a vertical move.
Vertical move
for z=1 to Z do

Set Θiter
z = Θiter-1

z and sample ηz ∼ N(0, Id).
Compute a proposal Θ̃z = Θiter-1

z + Czηz in which CzC
′
z = (1 + AFz(RWAF,z − 1))Σz.

Accept the proposal draw Θ̃z according to the Metropolis acceptance ratio:

(B.1) min

[(
f(R1:T , C1:T |Θ̃z)f(Θ̃z)

f(R1:T , C1:T |Θiter-1
z )f(Θiter-1

z )

)
, 1

]

if the proposal draw has been accepted, then Θiter
z = Θ̃z and set αz = αz + 1, .

if AFz=1, then update the covariance matrix Σz according to Atchadé and Fort (2010):
Set Σz to the empirical covariance of {Θ1

z, . . . ,Θ
iter
z } and RWAF,z =

max
[
RWAF,z +

( αz
iter

−0.33)

iter0.6
, 0.0001

]
else Update the covariance matrix Σz according to Robust Adaptive Metropolis (RAM):

Set ηRAM = min[1, d
iter3/2

] and Σz = Cz(Id +
ηRAM( αz

iter
−0.33)

η′zηz
ηzη

′
z)C

′
z

end if
end for
Horizontal move
Compute the mean µ̄ and the empirical covariance matrix Σ̄ of {Θ1

1, . . . ,Θ
iter
Z }.

for z=1 to Z do
Draw a proposal candidate Θiter

0 ∼ N(µ̄, Σ̄).

Select k ∈ {1, . . . , Z} with probability proportional to γk ∝ fN (Θiter
z |µ̄,Σ̄)

f(R1:T ,C1:T |Θiter
z )f(Θiter

z )
where

fN (·|µ̄, Σ̄) is the normal density with expectation and covariance µ̄, Σ̄, respectively.
Set Θiter

k = Θiter
0 if the draw is accepted according to the probability:

(B.2) min




∑Z
z=1

fN (Θiter
z |µ̄,Σ̄)

f(R1:T ,C1:T |Θiter
z )f(Θiter

z )∑Z
z=0

fN (Θiter
z |µ̄,Σ̄)

f(R1:T ,C1:T |Θiter
z )f(Θiter

z )
−mini∈0,...,Z

fN (Θiter
i |µ̄,Σ̄)

f(R1:T ,C1:T |Θiter
i )f(Θiter

i )

 , 1


end for
Burn-in period

If mod(iter,10)=0 and iter≤ 0.4M , then replace the current state Θiter
k and

the chain attributes (AFk, Σk, . . . ) of the least performing chain (i.e., k =
argmini∈1,...,Zf(R1:T , C1:T |Θi)f(Θi)) with the state and the attributes of the best performing
chain.
end for

4



C. Likelihood Evaluation Using The Particle Filter

This section details the particle filter used for evaluating the integrated

log-likelihood function of the SVCJ model with parameter

Θ = {κ, θ, σ, ρ, ηs, ηv, λ, µs, σs, ηJs , µv, ηJv , ρJ , σc}. Let us denote the latent variables at

time t by Lt = (Vt, Bt, J
v
t )

29. The particle filter is based on the following decomposition of

the posterior distribution of the latent states:

π(L0:T |Θ, R1:T , C1:T ) ∝ f(R1:T , C1:T , L0:T |Θ),

= f(R1|L0,Θ)
T∏
t=1

f(Rt+1, Ct|Lt,Θ)f(Lt|Lt−1, Rt,Θ).

(C.1)

Relying on this decomposition, a standard particle filter samples the latent variables from

Lt|Lt−1, Rt,Θ and then evaluates the likelihood function f(Rt+1, Ct|Lt,Θ) which can

decomposed into f(Rt+1|Lt,Θ) and f(Ct|Lt,Θ) as explained in Section C.

A. Particle filter

The section details the particle filter of the SVCJ model which deals with both

options and returns. To estimate the SVCJ model with returns only, it suffices to skip the

option likelihood evaluation (i.e., Step 3 (b)) and the step 5 (b) on the particle

rejuvenation. In this case, the risk-neutral parameters {ηv, ηJs , ηJv} are set to zero which

implies that µ̄Q
s = µ̄s.

The particle filter operates as follows. For i = 1, . . . , N , sample the latent variable

Li
0 = (V i

0 , B
i
0, (J

v
0 )

i) from the prior distribution. Set πi
0 =

1
N

and ∆t = 1
252

. Then, for each

time t from t = 1, . . . , T , do for i = 1, . . . , N :

29Note that in contrast to the previous exposition of the latent state Lt = (Vt, Bt, J
s
t , J

v
t ) we drop here

the jump in mean state Js
t because it can be directly integrated out rather than simulated.
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1. Step 1: Resampling

The set
{
πi
t−1

}N
i=1

constitute a discrete probability distribution of

Lt−1 = (Vt−1, J
v
t−1, Bt−1) from which we resample using a stratified method. The

resampled
{
Li
t−1

}N
i=1

as well as its ancestors are stored for the next period.

2. Step 2: Simulating the State Forward

(a) Simulate the jumps at time t:

f(Bt = 1|Rt, Vt−1, Bt−1, J
v
t−1,Θ) =

λ∆tf(Rt|Bt = 1, Vt−1, Bt−1, Jv
t−1,Θ)

λ∆tf(Rt|Bt = 1, Vt−1, Bt−1, Jv
t−1,Θ) + (1− λ∆t)f(Rt|Bt = 0, Vt−1, Bt−1, Jv

t−1,Θ)

(C.2)

in which the function f(Rt|Bt = 1, Vt−1, Bt−1, J
v
t−1,Θ) is an exponentially

modified gaussian density function as shown in Section B while

f(Rt|Bt = 0, Vt−1, Bt−1, J
v
t−1,Θ) stands for a standard Normal density. In

particular, Rt|Bt = 0, V i
t−1, Bt−1, (J

v
t−1)

i,Θ ∼

N

(
(rt−1 − δt−1 + (ηs − 1

2
)V i

t−1 − λµ̄Q
s )∆t,∆tV

i
t−1

)
.

(b) If Bi
t = 1, simulate the jumps in volatility at time t:

f((Jv
t )

i|V i
t−1, B

i
t = 1, Rt,Θ) ∝ f(Rt|(Jv

t )
i, V i

t−1, Bt = 1,Θ)f((Jv
t )

i|Θ),(C.3)

in which Rt|(Jv
t )

i, V i
t−1, B

i
t = 1,Θ ∼

N
(
(rt−1 − δt−1 + (ηs − 1

2
)V i

t−1 − λµ̄Q
s )∆t+ (µs + ρJ(J

v
t )

i),∆tV i
t−1 + σ2

s

)
and

f((Jv
t )

i|Θ) =
exp(−(Jv

t )
i/µv)

µv
.

(c) Compute the error term wi
t given by

(C.4) wi
t = Rt − (rt−1 − δt−1 + (ηs −

1

2
)V i

t−1 − λµ̄Q
s )∆t− (µs + ρJ(J

v
t )

i)Bi
t
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(d) Simulate the spot variances at time t:

(C.5)

V i
t ∼ N

(
V i
t−1+κ(θ−V i

t−1)∆t+
σρ∆tV i

t−1

σ2
sB

i
t +∆tV i

t−1

wi
t+(Jv

t )
iBi

t, σ
2∆tV i

t−1

(
1−

ρ2(∆tV i
t−1)

σ2
sB

i
t +∆tV i

t−1

))

3. Step 3: Computing the unnormalized weights

For each particle i = 1, . . . , N , compute the unnormalized weights according to the

likelihood:

ω̃i = f(Rt+1|Li
t,Θ)f(Ct|Li

t,Θ).

(a) The likelihood related to the asset returns, i.e. f(Rt+1|Li
t,Θ), is given by

f(Rt+1|Lt,Θ) = (1− λ∆t)f(Rt+1|Bt+1 = 0, Vt, Bt, J
v
t ,Θ) + (λ∆t)f(Rt+1|Bt+1 = 1, Vt, Bt, J

v
t ,Θ),

(C.6)

with

f(Rt+1|Bt+1 = 0, Vt, Bt, J
v
t ,Θ) =

exp
( (Rt+1−(rt−δt+(ηs− 1

2
)Vt−λJ µ̄Q

s )∆t)2

2Vt∆t

)√
2π(Vt∆t)

,

f(Rt+1|Bt+1 = 1, Vt, Bt, J
v
t ,Θ) =

Aλ exp(Aλ
2

(AλA
2
σ − 2sgn(ρJ )(Rt+1 −Aµ)))

2
erfc(

sgn(ρJ )(Aµ −Rt+1) +A2
σAλ√

2A2
σ

),

(C.7)

in which Aλ = |ρJ |µv, Aµ = (rt − δt + (ηs − 1
2
)Vt − λµ̄Q

s )∆t+ µs and A
2
σ = ∆tVt + σ2

s.

(b) The likelihood related to the option prices, i.e. f(Ct|Li
t,Θ), is given by

f(Ct|Li
t,Θ) =

(
Ht∏
h=1

1√
2πσ2

c

exp

{
−1

2

[
Ct,h − CM

t,h(V
i
t |Θ)

]2
σ2
c

}) 1
Ht

.(C.8)

Note that this step is computationally intensive. In particular, for each particle

i = 1, . . . , N and for each option h = 1, . . . , Ht, the option price CM
t,h(V

i
t |Θ) must be

computed. To reduce the computational burden, we apply the quantile spot variance

method. It consists of evaluating the option prices for Q spot variances (that are

evenly-spaced quantiles of the spot variance particles) and then interpolating the
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option prices of the other spot variances using a polynomial interpolation function,

see Section D for more details.

4. Step 4: Assessing the particle approximation quality

Check the effective sample size (ESS):

ESS =

( N∑
j=1

ω̃j
)2

∑N
i=1(ω̃

i)2
.

(C.9)

If ESS is larger than a targeted ESS (set to 0.5N in our implementation), then go to

step 5 (a). Otherwise, the particles do not correctly approximate the current

distribution. In such a case, skip step 5(a) and go to step 5 (b) to address the

problem.

5. Step 5 (a): Computing the likelihood and Normalizing the Weights

Compute the unbiased approximation of the integrated likelihood function as:

f(Rt+1, Ct|Θ, R1:t, C1:t−1) ≈
1

N

N∑
i=1

ω̃i.(C.10)

Then, compute the normalized weights πi
t as follows:

(C.11) πi
t =

ω̃i

N∑
j=1

ω̃j

Skip Step 5(b).

6. Step 5 (b): Rejuvenating the particles using several MCMC algorithms

Build a sequence of k = 1, . . . , K bridging distributions,

(C.12) πϕk
(Lt|R1:t+1, C1:t,Θ) =

[f(Rt+1, Ct|Lt,Θ)]ϕkf(Lt|R1:t, C1:t−1,Θ)

fϕk
(Rt+1, Ct|R1:t, C1:t−1,Θ)

,
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in which fϕk
(Rt+1, Ct|R1:t, C1:t−1,Θ) =

∫
[f(Rt+1, Ct|Lt,Θ)]ϕkf(Lt|R1:t, C1:t−1,Θ)dLt,

i.e. the normalizing constant, and ϕk stands for an increasing function with ϕ1 = 0

and ϕK = 1 such that, following Jasra, Stephens, Doucet, and Tsagaris (2011), ESS is

targeted at 0.5N. Note that fϕ1
(Rt+1, Ct|R1:t, C1:t−1,Θ) = 1 when ϕ1 = 0.

For each distribution of the sequence, i.e. for k = 2, . . . , K,

(a) Compute the unnormalized weights:

ω̃i,ϕk =
(
f(Rt+1|Li

t,Θ)f(Ct|Li
t,Θ)

)ϕk−ϕk−1 .

(b) Compute the ratio of normalizing constants:

fϕk
(Rt+1, Ct|R1:t, C1:t−1,Θ)

fϕk−1
(Rt+1, Ct|R1:t, C1:t−1,Θ)

≈ 1

N

N∑
i=1

ω̃i,ϕk .

(c) Compute the normalized weights π
i,ϕk
t as follows:

(C.13) π
i,ϕk
t =

ω̃i,ϕk

N∑
j=1

ω̃j,ϕk

.

(d) Re-sample the particles according to the normalized weights {πi,ϕk
t }Ni=1 and keep

track of the particle ancestors that remain active.

(e) Apply M iterations of an MCMC algorithm exhibiting πϕk
(Lt|Θ, R1:t+1, C1:t) as

invariant distribution. First, set σ2
Q = V̂ar(V i

t ) in which V̂ar(V i
t ) stands for the

empirical variance of the particles. Then, For m = 1, . . . ,M , apply the following

MCMC steps:

i. For i = 1, . . . , N , draw proposal candidates Ṽ i
t ∼ N(V i

t , σ
2
Q),

B̃i
t ∼ Bern(λ∆t) and (J̃v

t )
i ∼ exp(µv).
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ii. For i = 1, . . . , N , accept/reject the proposal draws according to the

Metropolis acceptance probability:

min

(f(Rt+1, Ct|Ṽ i
t , B̃

i
t, (J̃

v
t )

i,Θ)

f(Rt+1, Ct|V i
t , B

i
t, (J

v
t )

i,Θ)

)ϕk
f(Ṽ i

t |V i
t−1, B̃

i
t, (J̃

v
t )

i, Rt,Θ)

f(V i
t |V i

t−1, B
i
t, (J

v
t )

i, Rt,Θ)
, 1

 .(C.14)

When we have approximated all the distributions in the sequence, we end up with a

set of particles that approximates the distribution f(Lt|R1:t+1, C1:t,Θ). The

integrated likelihood at time t is computed as

f(Rt+1, Ct|Θ, R1:t, C1:t−1) =
K∏
k=1

fϕk
(Rt+1, Ct|R1:t, C1:t−1,Θ)

fϕk−1
(Rt+1, Ct|R1:t, C1:t−1,Θ)

,

≈ (
K∏
k=1

1

N

N∑
i=1

ω̃i,ϕk),

(C.15)

where the approximation is unbiased as shown in Herbst and Schorfheide (2019). To

end this step of the particle filter, set the normalized weights to πi
t =

1
N

for each

particle i = 1, . . . , N .

B. Analytical expressions for the distributions used in the particle
filter

Transition distribution Lt|Lt−1, Rt,Θ used in Step 2.

The SIR algorithm requires to sample the state variable Lt from the transition

distribution Lt|Lt−1, Rt,Θ. The transition density can be expressed as,

f(Lt|Lt−1, Rt,Θ) = f(Vt, Bt, J
v
t |Vt−1, Bt−1, J

v
t−1, Rt,Θ),

= f(Vt|Bt, J
v
t , Vt−1, Bt−1, J

v
t−1, Rt,Θ)f(Jv

t |Rt, Bt, Vt−1, Bt−1, J
v
t−1,Θ)f(Bt|Rt, Vt−1, Bt−1, J

v
t−1,Θ).

(C.16)

Therefore, we first sample Bt, then J
v
t and finally Vt. The sampling of each latent variable

is detailed below.

Sampling Bt:
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The posterior density of Bt is given by

f(Bt = 1|Rt, Vt−1, Bt−1, J
v
t−1,Θ) =

λ∆tf(Rt|Bt = 1, Vt−1, Bt−1, Jv
t−1,Θ)

λ∆tf(Rt|Bt = 1, Vt−1, Bt−1, Jv
t−1,Θ) + (1− λ∆t)f(Rt|Bt = 0, Vt−1, Bt−1, Jv

t−1,Θ)

(C.17)

in which we use that fact that Bt is independent of Lt−1. The function

f(Rt|Bt = 1, Vt−1, Bt−1, J
v
t−1,Θ) is a exponentially modified gaussian density function as

shown below while f(Rt|Bt = 0, Vt−1, Bt−1, J
v
t−1,Θ) stands for a standard Normal density.

Sampling Jv
t :

The variance jump distribution when Bt = 1 is given by

f(Jv
t |Vt−1, Bt = 1, Rt,Θ) =

f(Rt|Jv
t , Vt−1, Bt = 1,Θ)f(Jv

t |Θ)∫
f(Rt|Jv

t , Vt−1, Bt = 1,Θ)f(Jv
t |Θ)dJv

t

,(C.18)

in which
∫
f(Rt|Jv

t , Vt−1, Bt = 1,Θ)f(Jv
t |Θ)dJv

t is known as an exponentially modified

Gaussian density and stands for the normalizing constant of the distribution. We sample

the jump size using a Griddy-Gibbs approach using a grid of 200 equally-spaced values.

Sampling Vt:

The spot variance is sampled from the distribution conditional on the

contemporaneous return:

Vt|Vt−1, Bt, J
v
t , Rt,Θ ∼ N

(
Vt−1 + κ(θ − Vt−1)∆t+ ρσ

√
Vt−1∆t wt + Jv

t Bt, σ
2∆tVt−1(1− ρ2)

)
,

(C.19)

in which wt =
Rt−(rt−1−δt−1+(ηs− 1

2
)Vt−1−λJ µ̄

Q
s )∆t−(µs+ρJJ

v
t )Bt√

∆tVt−1+σ2
sBt

. Note that we do not sample the

spot variance from its prior distribution (i.e., Vt|Vt−1, J
v
t , Bt,Θ) as it is the case in standard

SIR algorithms. Due to the timing convention adopted in this paper, the spot variance is

sampled from a distribution that accounts for the contemporaneous asset return. In that

regard, this particle filter does not blindly sample the latent variables and is similar to an

auxiliary particle filter (without the need of augmenting the posterior space with an

auxiliary variable).
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Likelihood evaluation given the latent variables used in Step 3.

The likelihood function f(Rt+1, Ct|Lt,Θ) is decomposed into f(Rt+1|Lt,Θ) and

f(Ct|Lt,Θ). Since the options in Ct = (Ct,1, . . . , Ct,Ht) are conditionally independent,

f(Ct|Lt,Θ) is simply a product of Gaussian distributions. The evaluation of f(Rt+1|Lt,Θ),

however, requires integrating out the latent variable Lt+1. In particular, we have

f(Rt+1|Lt,Θ) =

∫
f(Rt+1, Lt+1|Lt,Θ)dLt+1,

=

∫
f(Rt+1|Lt+1, Lt,Θ)f(Lt+1|Lt,Θ)dLt+1,

=

∫
f(Rt+1|Bt+1, J

v
t+1, Vt, Bt, J

v
t ,Θ)f(Bt+1, J

v
t+1|Vt, Bt, J

v
t ,Θ)dBt+1dJ

v
t+1,

=

∫
f(Rt+1|Bt+1, J

v
t+1, Vt, Bt, J

v
t ,Θ)f(Bt+1|Θ)dBt+1f(J

v
t+1|Θ)dJv

t+1,

= (1− λ∆t)f(Rt+1|Bt+1 = 0, Vt, Bt, J
v
t ,Θ)

+ (λ∆t)

∫
f(Rt+1|Bt+1 = 1, Jv

t+1, Vt, Bt, J
v
t ,Θ)f(Jv

t+1|Θ)dJv
t+1,

(C.20)

where we use the fact that the density of Rt+1 does not depend on Jv
t+1 when there is no

jump at time t+ 1. Analytical expressions for f(Rt+1|Bt+1 = 0, Vt, Bt, J
v
t ,Θ) and∫

f(Rt+1|Bt+1 = 1, Jv
t+1, Vt, Bt, J

v
t ,Θ)f(Jv

t+1|Θ)dJv
t+1 are obtained as follows.

1. Analytical expression of f(Rt+1|Bt+1 = 0, Vt, Bt, J
v
t ,Θ).

f(Rt+1|Bt+1 = 0, Vt, Bt, J
v
t ,Θ) =

exp
( (Rt+1−(rt−δt+(ηs− 1

2
)Vt−λµ̄Q

s )∆t)2

2Vt∆t

)√
2π(Vt∆t)

.(C.21)

2. Analytical expression of
∫
f(Rt+1|Bt+1 = 1, Jv

t+1, Vt, Bt, J
v
t ,Θ)f(Jv

t+1|Θ)dJv
t+1.

The distribution of the first term in the integral is a standard normal distribution:

Rt+1|Bt+1 = 1, Jv
t+1, Vt, Bt, J

v
t ,Θ ∼ N

(
(rt − δt + (ηs −

1

2
)Vt − λµ̄Q

s )∆t+ µJs
+ sgn(ρJ )|ρJ |Jv

t+1, Vt∆t+ σ2
s

)
,

(C.22)

where sgn(ρJ) denotes the sign of ρJ and | · | denotes the absolute value operator. To

integrate out the variance jump, note that |ρJ |Jv
t+1 ∼ exp(|ρJ |µv). Therefore, when

12



we integrate out the exponential distribution, we end up with an exponentially

modified Gaussian density function. To facilitate the notation, we derive the density

function for two random variables given by X ∼ N(µ+ sgn(ρJ)J, σ
2) and J ∼ exp(α).

In our setting, those parameters are equal to α = |ρJ |µv,

µ = (rt − δt + (ηs − 1
2
)Vt − λµ̄Q

s )∆t+ µs and σ
2 = ∆tVt + σ2

s. The exponentially

modified Gaussian density is given by

f(x|µ, σ2, α) =

∫ ∞

0

exp(
−(x−µ−sgn(ρJ )J)2

2σ2 )
√
2πσ2

α exp(−αJ)dJ,

=
α

√
2πσ2

∫ ∞

0
exp(−

(x− µ)2 + J2 − 2(sgn(ρJ )(x− µ)− σ2α)J

2σ2
)dJ,

=
α exp(− (x−µ)2

2σ2 )
√
2πσ2

∫ ∞

0
exp(−

J2 − 2(sgn(ρJ )(x− µ)− σ2α)J

2σ2
)dJ,

=
α exp(

−(x−µ)2

2σ2 )
√
2πσ2

∫ ∞

0
exp(

−(J − (sgn(ρJ )(x− µ)− σ2α))2 + (sgn(ρJ )(x− µ)− σ2α)2

2σ2
)dJ,

=
α exp(

−(x−µ)2+(sgn(ρJ )(x−µ)−σ2α)2

2σ2 )
√
2πσ2

∫ ∞

0
exp(−(

J − (sgn(ρJ )(x− µ)− σ2α)
√
2σ

)2)dJ,

=
α exp(

−(x−µ)2+(sgn(ρJ )(x−µ)−σ2α)2

2σ2 )
√
2πσ2

∫ ∞

− (sgn(ρJ )(x−µ)−σ2α)√
2σ

exp(−t2)
√
2σdt,

=
α exp(

−(x−µ)2+(sgn(ρJ )(x−µ)−σ2α)2

2σ2 )

2
erfc(

sgn(ρJ )(µ− x) + σ2α
√
2σ

),

=
α exp(

(σ2α2−2sgn(ρJ )(x−µ)α)
2

)

2
erfc(

sgn(ρJ )(µ− x) + σ2α
√
2σ2

),

=
α exp(α

2
(ασ2 − 2sgn(ρJ )(x− µ)))

2
erfc(

sgn(ρJ )(µ− x) + σ2α
√
2σ2

).

(C.23)

D. A Monte Carlo Experiment

In contrast to standard particle filter methods, the quantile spot variance method

makes it possible to estimate the models we consider in this paper with both returns and

large panels of option data. Because of the improvement in computational efficiency, it is

also possible to study the sampling properties of the estimator in a (small-scale) Monte

Carlo exercise.

Table A1 presents the results of the Monte Carlo study. We simulate fifty samples
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of return time series and option panels for two parameterizations of the SV model. The

length of the samples is one year and the sample frequency is daily. Column 2 in Table A1

shows the two sets of parameters. They are chosen based on the empirical results below.

The main difference between them is that the ρ parameters are set at −0.90 and −0.70

respectively, and we modify the σ to keep the unconditional return kurtosis constant (see

Das and Sundaram (1999) for the model-implied moments). The simulated option samples

are similar to the sample used in the empirical analysis and summarized in Table 1. For a

one-year sample, we thus end up with 6731 options.

Table A1 shows that for both parameterizations, the medians of the parameter

estimates based on the 50 replications are close to the true values, with good precision as

indicated by the first and third quartiles. The estimates of the ρ and σ parameters are

slightly biased downward. The price of risk parameters ηs and ηv are precisely estimated.
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Table A1: Monte Carlo Results

Parameter True value Median Q25 Q75
κ 2.0000 2.0144 1.9089 2.1613
θ 0.0350 0.0361 0.0333 0.0378
σ 0.3800 0.3669 0.3647 0.3693
ρ -0.9000 -0.9277 -0.9324 -0.9226
ηs 2.5000 2.5302 2.3948 2.6702
ηv 1.0000 0.9956 0.8855 1.1384

Parameter True value Median Q25 Q75
κ 2.0000 2.0537 1.9047 2.1757
θ 0.0350 0.0358 0.0341 0.0385
σ 0.4900 0.4642 0.4551 0.4682
ρ -0.7000 -0.7288 -0.7397 -0.7233
ηs 2.5000 2.5074 2.3946 2.5709
ηv 1.0000 0.9911 0.8603 1.0759

Notes: We report Monte Carlo results based on two configurations of the SV model. For each of the two
parameter settings, we simulate 50 samples of returns and option panels samples for a one-year period.
The maturity and moneyness structure of the simulated option panels are based on the 2015 option
sample, implying 6731 options used for estimation of each SV model.
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Table A1: Parameter Estimates in Existing Studies: The SVJR Model

Panel A: Based on Returns

Author Period κ θ σ ρ λ µs σs

ABL 1953-1996 3.704 0.013 0.184 -0.620 5.040 0.000 0.012
CV 1980-2000 12.187 0.019 4.274 -0.271 0.372 0.051 exp(+)

5.379 0.026 exp(−)
CGGT 1953-1999 3.276 0.015 0.151 -0.279
EJP 1980-2000 3.226 0.021 0.240 -0.467 1.512 -0.025 0.041

Eraker 1987-1990 3.024 0.021 0.202 -0.468 0.756 -0.037 0.066
Bates1 1953-1996 4.380 0.014 0.244 -0.612 0.744 -0.010 0.052
CJM 1996-2004 6.589 0.032 0.450 -0.777 2.790 -0.013 0.013

Panel B: Based on Options

Author Period κ θ σ ρ λ µs σs

BCC 1988-1991 2.030 0.040 0.380 -0.570 0.590 -0.050 0.070
BCJ 1987-2003 5.796 0.012 0.240 -0.467 1.512 -0.100 0.041
CJM 1996-2004 2.638 0.063 0.448 -0.782 2.832 -0.015 0.006

Panel C: Based on Returns and Options

Author Period κ θ σ ρ λ µs σs

Pan 1989-1996 6.400 0.015 0.300 -0.530 12.300 -0.008 0.039
3.300* 0.030* -0.192*

Eraker 1987-1990 4.788 0.042 0.512 -0.586 0.504 -0.010 0.167
2.772* 0.072* -0.050*

HLM 1990-2007 1.711 0.049 0.653 -0.740 2.332 -0.021 0.019
0.415* 0.203* 2.831*

Notes: We report parameter estimates for the SVJR model from existing studies. Estimates in Panel A
are physical values. Estimates in Panel B are risk-neutral values. In Panel C, estimates with a star (*)
indicate risk-neutral values and the rest are physical values. All parameters are annualized. BCC: Bakshi
et al. (1997), based on the S&P 500; ABL: Andersen, Benzoni, and Lund (2002), based on the S&P 500;
CV: Chacko and Viceira (2003), based on the S&P 500; CGGT: Chernov, Gallant, Ghysels, and Tauchen
(2003), based on the DJIA; EJP: Eraker et al. (2003), based on S&P 500; Eraker: Eraker (2004), based on
S&P 500; Bates1: Bates (2006), based on S&P 500; CJM: Christoffersen et al. (2010), based on the S&P
500; BCJ: Broadie et al. (2007), based on the S&P 500; Pan: Pan (2002), based on the S&P 500; HLM:
Hurn et al. (2015), based on the S&P 500.
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Table A2: Parameter Estimates in Existing Studies: The SVCJ Model

Panel A: Based on Returns

Author Period κ θ σ ρ λ µs σs µv ρJ
EJP 1980-

2000
6.552 0.014 0.199 -0.484 1.663 -0.018 0.029 0.037 -0.601

Eraker 1987-
1990

4.032 0.014 0.146 -0.461 1.008 -0.032 0.049 0.032 0.312

Panel B: Based on Options

Author Period κ θ σ ρ λ µs σs µv ρJ
BCJ 1987-

2003
14.112 0.006 0.199 -0.484 1.663 -0.066 0.029 0.108 -0.601

AFT 1996-
2010

2.049 0.033 0.354 -0.934 4.435 0.005 0.004 0.052 -0.502

Panel C: Based on Returns and Options

Author Period κ θ σ ρ λ µs σs µv ρJ
Eraker 1987-

1990
5.796 0.034 0.411 -0.582 0.504 -0.061 0.036 0.041 -0.693

2.772* 0.071* -0.075*

Notes: We report parameter estimates for the SVCJ model from existing studies. Estimates in Panel A are
physical values. Estimates in Panel B are risk-neutral values. In Panel C, estimates with a star (*) indicate
risk-neutral values and the rest are physical values. All parameters are annualized. EJP: Eraker et al.
(2003), based on the S&P 500; Eraker: Eraker (2004), based on the S&P 500; BCJ: Broadie et al. (2007),
based on the S&P 500; AFT: Andersen et al. (2015a), based on the S&P 500.
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Figure A1: Parameter Trace for SV Model Parameters. Return-Based Estimation

(a) κ (b) θ

(c) σ (d) ρ

(e) ηs

Notes: We plot the traces for each parameter in the SV model. We use 10,000 iterations. The first 4,000 of
the iterations are treated as burn-in.
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Figure A2: Parameter Trace for SV Model Parameters. Joint Estimation

(a) κ (b) θ

(c) σ (d) ρ

(e) ηs (f) ηv

Notes: We plot the traces for each parameter in the SV model. We use 10,000 iterations. The first 4,000 of
the iterations are treated as burn-in.
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