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This Online Appendix provides additional discussion and results associated with the paper.

Section A.1 discusses measurement error associated with realized (co)-variances and whether

associated biases could explain our evidence of CFV. Section A.2 considers commonality in

correlations across different factor sets. Section A.3 describes how we construct statistical

factors that are analyzed in the main paper. Section A.4 provides details concerning our

construction of mimicking portfolios for macroeconomic factors. Section A.5 discusses an al-

ternative approach to forecasting factor volatilities using a reduced rank regression approach.

Section A.6 considers impulse response functions for shocks to the vector autoregressive in-

dex model introduced in Section A.5. Finally, Section A.7 further discusses tests involving

CFV and aggregate measures of financial and operating leverage.

A.1. Measurement error in volatility proxies

In the main paper, we measure the volatility of various factors and anomaly portfolios

via realized (co)-variances that are computed as the sum of squared daily returns over lower

frequency intervals (months, quarters, or years). Here we discuss measurement error associ-

ated with these proxies and evaluate the possible argument that corresponding measurement

error could spuriously drive our main results concerning common factor volatility (CFV). We

first discuss the nature of the potential problem. Then we discuss results under alternative

approaches that mitigate or avoid the problem.

A.1.1. Measurement error and biases in realized variances and co-variances

The literature on volatility measurement using high-frequency data assumes that asset

values follow a continuous time jump-diffusion process. To avoid technical details that are

1



inessential to the key measurement issues, we focus on a setting without jumps. In this

case, it is commonly assumed that the d-dimensional log price process evolves according to

a (multivariate) diffusion process:

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs, (A.1)

where bs is a d-dimensional progressively measureable drift process, σ is a d× d-dimensional

progressively measurable stochastic volatility process, and Ws is a d-dimensional standard

Brownian motion.1 Some additional technical assumptions are imposed on the process, see,

e.g., Aı̈t-Sahalia and Jacod (2014). Define the d× d integrated covariance of Xt as:

ICt =

∫ t

0

Σsds, (A.2)

where Σs = σsσ
′
s is the d× d ‘spot-covariance’ process associated with Xt.

Under ideal conditions, high-frequency financial data permit highly precise measurement

of the integrated covariance ICt. Suppose, for example, that the process Xt is observed

on a regular sampling grid with time interval ∆n between observations. Define the realized

covariance as the d× d matrix

RC(∆n)t =

bt/∆nc∑
j=1

∆Xj∆X
′
j, (A.3)

where ∆Xj = Xj−Xj−1, i.e., the d×1 return vector during the j-th intraperiod interval. In

1It is possible to consider more general jump-diffusion processes as well, by adding a (finite variation)
jump component Jt to the price process in Eq. (A.1). Truncated alternatives to the realized (co)-variation
measures discussed here allow for the separation of the jump versus diffusive components of return variation
as the sample frequency increases. However, our application primarily involves daily returns and we do not
aim to separate the jump versus diffusive component of return variation in the paper. Consequently, we omit
jumps from this discussion for tractability.
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this setting, the realized covariance is a consistent estimator of the integrated covariance, i.e..

RC(∆n)t
p→ ICt as ∆n → 0. Heuristically, this result implies that given sufficiently finely

sampled returns, the integrated covariance is effectively observed. Barndorff-Nielsen and

Shephard (2004) provide an asymptotic distribution theory associated with the convergence

result here, which has subsequently been extended to even more general processes.

Our analysis in the main paper effectively treats the integrated covariance as truly ‘real-

ized,’ i.e., we implicitly assume RC(∆n)t = ICt. Given this implicit assumption, we focus on

the properties of ICt for factor sets and in particular on measuring common dynamics in the

diagonal elements of ICt and their square roots (the realized volatilities for the factors). To

more clearly fix ideas, suppose that the object of interest is a real-valued function of the time

series of integrated covariances for a set of factors or assets, denoted g(IC1, .., ICQ), where

1, .., Q indexes, e.g., quarters. For example, the function of interest might be the proportion

of variation explained by the first principal component of the realized volatility series for

the underlying factors or assets. In the main paper, we estimate this quantity of interest

by replacing the true unknown integrated covariances with their empirical counterparts, i.e.,

we consider g(RC(∆n)1, ..., RC(∆n)Q). Although this ‘plug-in’ approach seems natural, in

general the estimator g(IC1, .., ICQ) suffers from small sample bias that in some cases can

be economically significant (see, e.g., Vetter (2015) and Kalnina and Tewou (2019)).

The key concern with respect to our analysis involves whether small sample bias has a

first-order effect upon the measured strength of commonality in factor volatility series. In

other words, the concern is whether there could be a sufficiently large upward bias in the

estimated first eigenvalue associated with a PCA decomposition of realized volatility series so

as to drive apparent strong commonality among factor volatility series when in fact the true

commonality is much weaker. One can raise similar small sample bias concerns regarding
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other related empirical exercises in the paper, such as loadings regressions of factor volatility

series on a (high-frequency) proxy for common factor volatility.

Before proceeding, we emphasize that the concern described above is distinct from a

different concern oriented around the role of frictions in the observed price process, i.e.,

market microstructure noise. In the presence of noise, the econometrician does not observe

the true price process Xt but rather observes Yt = Xt + Ut, where Ut is a process that

captures measurement error driven by various forms of microstructure effects. The precise

effects of microstructure noise on the standard realized (co)-variance depend on the particular

assumptions imposed on the noise process. One leading case assumes Gaussian white noise,

i.e., a noise distortion that is N(0, φ2) independent of the sampling frequency. In this case,

as the sampling frequency becomes arbitrarily fine, the standard realized variance no longer

converges in probability to the integrated variance but instead explodes and reflects more

the variance of the contamination noise than the true integrated variance (see, e.g., Zhang,

Mykland, and Aı̈t-Sahalia (2005)). From the perspective of our analysis, if the severity of

microstructure noise varies over time in common among a set of factors or anomaly portfolios,

then realized volatility measures that contain bias due to microstructure noise might co-move

due to this bias rather than true commonality in the underlying portfolio variances.

A.1.2. Robustness of key results

In this section, we discuss various robustness checks that indicate that our main result

of CFV is unlikely to be driven by biases associated with realized (co)-variance quantities.

First, concerning microstructure noise, we note that microstructure noise is most severe at

high intraday sampling frequencies. Most of our results rely on daily returns, which offer

less precise estimates of volatility and related quantities under ideal conditions relative to
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intradaily data, but are less affected by microstructure-driven biases. Still, because factor

and anomaly portfolios potentially contain positions in small, relatively illiquid stocks, there

remains a concern in this direction. However, we address this concern in the main paper

by looking at an alternative set of daily factor returns based on the mid-point between the

daily bid and ask closing prices recorded by CRSP (see Table 2). We obtain similar evidence

of CFV using these alternative realized variances, and therefore we conclude that market

microstructure effects are unlikely to be the ultimate source of CFV that we document in

the paper.

We now turn to the issue of whether CFV could be driven by small sample biases as-

sociated with computing functions of realized covariance matrices such as eigenvalues or

correlations. We conduct two different robustness checks. The first check continues to mea-

sure volatility as the sum of squared daily (market-adjusted) returns, but measures volatility

at an annual rather than quarterly frequency. Moving to an annual measurement frequency

reduces the noise associated with realized (co)-variances due to the fact that the correspond-

ing estimates now utilize essentially four times the intra-period data relative to the quarterly

case.2 If it were the case that our evidence of CFV at the quarterly frequency was largely

driven by biases associated with estimation noise in volatility proxies, then we would expect

to observe materially different results upon moving to the annual frequency. However, this

is not the case. We continue to find strong evidence of CFV when measuring factor volatil-

ity at the annual frequency. The first principal component of annual factor volatility series

remains about 60% for the same factor sets reported in Table 1 of the paper.

As a second alternative approach, we apply parametric generalized autoregressive con-

ditional heteroskedasticity (GARCH) models of the conditional variance of low frequency

2As Kalnina and Tewou (2019) note, “The biases due to preliminary estimation of volatility can be made
theoretically negligible when an additional, long-span, asymptotic approximation is used.”
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(quarterly) factor and anomaly portfolio returns.3 A simple but appealing benchmark model

is the GARCH (1,1) model with constant mean:

rt = µ+ ut (A.4)

ht = ω + αu2
t−1 + βht−1 (A.5)

ut ∼ N(0, ht), (A.6)

where rt denotes the excess return on a particular factor or anomaly portfolio, ut is the

unpredictable return component, ht equals the conditional variance of factor returns, and

µ, ω, α, and β are parameters.4 We estimate the model of Eq. (A.4)–(A.6) for each anomaly

or portfolio in a particular set using quarterly returns. Next, we compute the time series of

fitted conditional variances ĥi,t, where i = 1, . . . , N denotes different portfolios in the set.

We then extract a common component from the fitted conditional volatility series (
√
ĥt)

using several alternative approaches:

• As the cross-sectional average of the fitted volatility series

• As the first principal component extracted from the fitted volatility series

• As the first principal component extracted from the standardized fitted volatility series

Key results are as follows. First, the first PC extracted from the fitted volatility series

explains a significant fraction of variation in the data. As a concrete example, the first

PC explains almost 60% of the variation in the GARCH-based volatility series for these

3A third possible approach would involve following Pelger (2020) (2017 working paper version), who
uses implied volatilities from option data to mitigate the measurement problems associated with realized
quadratic covariations over short intervals. However, Pelger (2020) examines volatilities for (total) returns
on individual stocks. In contrast, we focus on long-short factor and anomaly portfolios. Unfortunately,
traded options associated with these factor portfolios are not generally available, and therefore we do not
pursue this approach.

4More explicitly, ht = Et−1[rt − Et−1(rt)].
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portfolios. This is, of course, roughly analogous to results we obtain using the ‘realized

variance’ approach in the main paper. Second, the common volatility component extracted

using this alternative GARCH-based approach is similar to the CFV proxy obtained using

the realized variance approach in the main paper. Figure A.1 illustrates this result for the

KNS anomaly portfolios. The contrasts the standardized quarterly CFV measure based

on the realized variance approach used in the main paper with the analog based on the

alternative GARCH-based approach. Note that the GARCH model is for the conditional

variance, i.e., the ex ante expectation of volatility conditional on available information.

Thus, we filter the realized variance-based CFV proxy via a ARMA(1,1) filter to obtain the

analogous conditional expectation. These are the series plotted in Figure A.1. The time

series correlation of the two series is approximately 0.71. We explored several variations

on the GARCH modeling approach including, for example, allowing for some persistence in

quarterly factor returns by including lagged returns in the mean equation. These variations

produce qualitatively similar results.

The low-frequency GARCH-based approach described above has some weaknesses. First,

the approach is parametric and requires an explicit specification of both the conditional mean

and volatility function for returns. Thus, there is a concern regarding misspecification that

is absent from the nonparametric high-frequency approach to volatility measurement. In

addition, model parameters must be estimated from data, i.e., the fitted conditional volatility

series do not equal the true volatility series even if the model is correctly specified due to

parameter estimation error. But this parameter estimation error is of a rather different nature

than the high-frequency estimation error associated with realized variance series constructed

from daily returns. Consequently, the fact that we obtain similar core insights regarding the

presence and nature of CFV using the parametric GARCH method is quite reassuring.
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A.2. Commonality in correlations?

We now consider commonality in the dynamics of correlations among factor and anomaly

portfolios. Table A.2 provides summary statistics regarding quarterly correlation measures

for raw and market-adjusted factor and anomaly portfolios. For each portfolio within a

specified set, we compute time series of quarterly realized correlations as the sample pairwise

correlations of daily returns within the corresponding quarter. As an example, if the factor

set consists of five factors, we obtain 10 quarterly time series, each reflecting the dynamics of

a particular pairwise correlation among these factors. We then compute a simple measure of

the common component of the correlations as the first principal component extracted from

the pairwise correlations. The table shows the percent of total variation captured by this

common component measure (‘% Expl.’). To shed light on whether the dynamics of the

common correlation component are similar to that of common factor volatility, we report

the time series correlations between the common correlation measure and a CFV measure

based on market-adjusted industry portfolios. The right-hand side of Table A.2 provides

similar statistics for correlations constructed using market-adjusted factor returns. This

helps convey to what extent common correlation arises due to common market exposure.

The common correlation measures explain much less of the total variation for most port-

folio sets relative to the common volatility series described in Table 1. For raw factor

correlations, the percent explained is between 10–30% with the exception of the long-only

industry portfolios which are subject to common market exposure. Upon examining cor-

relations constructed from market-adjusted returns, the fraction of variation explained by

the first principal component of the correlation series is always under 30%. Correlations

with the CFV measure are relatively weak. Although factor return correlations exhibit time
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series variation, there does not appear to be a dominant common factor, and the common

component of variation does not consistently closely relate to time-varying market volatility.

A.3. Statistical Factor Methods

This Appendix discusses our implementation of methods to extract statistical factors

from stock returns. We assume that returns adhere to an approximate factor model:

rt = Bft + εt, (A.7)

where rt denotes anN×1 realization of de-meaned stock returns at time t, ft denotes a aK×1

vector of random factors, and B equals a (fixed)N×K factor loading matrix B. We construct

statistical factors using two general approaches in the paper. One approach constructs

factors from an underlying set of portfolios formed by sorts on various firm characteristics

associated with anomalies. The second approach constructs factors from individual firm-level

stock returns and closely follows Connor and Korajczyk (1986, 1988); Connor, Korajczyk,

and Linton (2006).

Let R equal the T ×N matrix of realized returns over a sample of length T and F denote

the T ×K realizations of factors. We assume that returns are generated by an approximate

factor model with a fixed N × K loadings matrix B such that (1/N)B′B approaches a

nonsingular limiting matrix as N becomes large. The approximate factor model does not

require that the covariance matrix of ε is diagonal, as in a so-called strict factor model,

but limits the extent of correlation by bounding the largest eigenvalue associated with the

error covariance matrix (Chamberlain and Rothschild (1983)). The asymptotic principal
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components approach performs an eigen-decomposition on the T × T cross-product matrix:

Σ = (1/N)r′r. (A.8)

Connor and Korajczyk (1986, 1988) show that the first K eigenvectors of the cross-product

matrix in Eq. (A.8) are consistent estimates for the space spanned by the factors F , in the

sense of converging in probability to LF, where L denotes a K × K nonsingular matrix.5

This result assumes a constant limiting average idiosyncratic return variance. In practice,

it is likely that idiosyncratic return variance changes over time (consistent with evidence of

CIV discussed in the main paper). Jones (2001) provides a modification of the method that

is robust to the presence of time-variation in the average limiting idiosyncratic variance.

We apply the asymptotic principal components method each year to individual stocks

listed on NYSE and subject to the following screens: 1) the stock has non-missing returns

for at least 50% of trading days during the year; and 2) no more than 30% of observed

returns equal exactly zero in the year. These screens, as well as our focus on NYSE stocks

are intended to address liquidity issues especially given that we perform the decomposition

using daily stock returns. We address the unbalanced panel structure by computing the

cross-product matrix element-by-element using only the set of securities that have returns

for both time dates. As robustness checks, we explore variations on the sample screens

applied to firms. We also find that estimated factors using the standard asymptotic principal

components method are similar to those we obtain using the Jones (2001) procedure.

In addition to performing statistical factors decompositions for individual stocks, we also

extract statistical factors from sets of portfolios. In this case, the method applied differs

5Subsequent papers, e.g., Bai (2003), extend the approach to settings with N and T → ∞, whilst also
permitting heteroskedasticity and limited dependence in the cross-section and time series.
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because the sample size T is greater than the number of assets N . In this case we apply

the RP-PCA method of Lettau and Pelger (2020). This approach represents a generalized

PCA that permits the incorporation of a form of ‘penalty term’ to account for cross-sectional

pricing errors. The approach boils down to applying PCA to the N ×N matrix:

ĉov(rt) + γ r r′, (A.9)

where the first term equals the sample covariance matrix of returns, r denotes the N × 1

vector of average portfolio excess returns, and γ reflects the penalty term for pricing errors.

Setting γ = −1 results in standard PCA. Following Lettau and Pelger (2020), we set γ = 10

and estimate factors using monthly portfolio returns. As shown by Lettau and Pelger (2020),

the latter approach produces materially different factors that better fit the cross-section of

returns (out-of-sample). The RP-PCA analysis produces a set of K loadings estimates, and

factors are then obtained via standard projection methods. Given the loadings estimates

from the RP-PCA procedure applied to monthly returns, we then construct daily factor

returns that are used in order to compute realized variances and related quantities. For the

‘LP factors’ based on 74 portfolios corresponding to extreme deciles based on 37 anomaly

sorts, we confirm that our implementation produces factors that closely match statistics

presented by Lettau and Pelger (2020) for factors based on the same portfolios using their

sample period. We then construct an alternative set of RP-PCA factors (‘LP-ALT’) based on

80 Fama-French industry and characteristics-sorted portfolios that cover the longer sample

period 1930–2020. The portfolios consist of 30 industry-sorted portfolios, along with 10 decile

portfolios based on each of the following characteristics: size, book-to-market, momentum,

short-term reversal, and long-term reversal.
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The final set of statistical factors we construct, denoted ‘HKS factors’ follows Haddad,

Kozak, and Santosh (2020) as closely as possible. In particular, we utilize monthly returns

for the same underlying set of decile-sorted portfolios for 50 anomaly characteristics. We

market- and volatility-adjust these returns following the same procedure as Haddad et al.

(2020), and we then estimate factor loadings by applying PCA (equivalent to γ = −1 in

RP-PCA) applied to the first half of the sample. These fixed loadings estimated over the

‘in-sample’ period are then applied to generate factors over the second ‘out-of-sample’ half

of the total sample period, which is 1974–2020.

A.4. Macroeconomic Mimicking Portfolios

We construct mimicking portfolios for the Chen, Roll, and Ross (1986) factors following

the method of Cooper and Priestley (2011). For each of the six risk factors (unexpected

inflation, industrial production growth, bond risk premium, term spread, real interest rate

and consumption growth), factor realizations are projected onto the space of excess returns.

We obtain the risk free rate and 24 portfolios from Kenneth French’s website. The 24

portfolios are made up of 6 size and book-to-market sorted portfolios, 6 size and operating

profitability sorted portfolios, 6 size and investment sorted portfolios, 6 size and momentum

sorted portfolios. Each portfolio’s excess return is first regressed on the 6 macro risk factors.

That is we run 24 time series regressions to get a 24 by 6 matrix of loadings. We augment

this matrix with a column of ones to include an intercept term in the second stage where we

define weights. This matrix is denoted B. As in Cooper and Priestley (2011) we define the

weight vector for the 24 portfolios by

w = (B′V −1B)−1B′V −1
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where V is the 24 by 24 diagonal matrix with variances of the residuals from the 24 time series

regressions along the diagonal. The mimicking portfolios are then defined as the weighted

average of excess returns on the 24 portfolios where weights are given by w.

A.5. Volatility Index Models

This section describes the alternative reduced rank regression procedure used to estimate

a volatility index model for volatility forecasting.

A.5.1. VARI Model and Reduced Rank Regression Method

As motivation, let Yt denote a K × 1 vector time series of factor or anomaly portfolio

volatility series. These might be realized volatility series, realized variances, or log transfor-

mations of realized variance/volatility. A natural starting point to model the joint dynamics

of the factor volatility series is the standard vector autoregression (VAR) model:

Yt = µ+ Φ1Yt−1 + · · ·+ ΦpYt−p + εt, (A.10)

where Φi for i = 1, . . . , p denote K × K matrices of coefficients that characterize factor

volatility dynamics as a function of the past p volatility realizations, and εt denotes a (possibly

heteroskedastic) vector white noise process.

A drawback of the ‘unrestricted’ VAR model of Eq. (A.10) is the fact that the number of

parameters grows at a rate proportional to K2. Consequently, a large number of parameters

must be estimated even for modest-sized systems. In the context of modeling factor realized

volatility series, it is common to ignore dynamic relations among factors and apply a stan-
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dard autoregressive (AR) specification, or variants such as the heterogeneous autoregressive

(HAR) model of Corsi (2009). Many papers apply models of this type, sometimes augmented

with additional lagged financial or macroeconomic predictors (see, e.g., Schwert (1989) for

market volatility, and Moreira and Muir (2017) for characteristics-based factor volatility).

The class of ‘VAR-index’ (VARI) models (Reinsel (1983)) offers an approach that effi-

ciently incorporates multivariate volatility information. The simplest version of the VARI

model takes the form:

Yt = µ+ βIt−1 + εt, (A.11)

where It−1 = ω′Yt−1 is a scalar index constructed as a linear combination of lagged series

Yt−1 and β reflects the index ‘loadings’ for each volatility series. Under this model, a one-

dimensional index It drives all dynamics for the multivariate volatility series Yt. The model

can easily be extended to permit q < K indices, although we focus on single-index models

in this paper, and to accommodate additional lags.6

The assumption that a single scalar volatility index fully captures volatility dynamics

across a potentially large set of factor or anomaly portfolios is strong. We therefore consider

a more general specification that permits dynamics to depend both on the lagged index as

well as the lagged own-factor volatility. The expanded model is:

Yt = µ+ φDYt−1 + βIt−1 + εt, (A.12)

where φD is a K × K diagonal matrix. The null hypothesis that β = 0 for all volatility

series is of particular interest. This reflects the case in which there exists no added value

6It is straightforward to show that the indices themselves follow a corresponding VAR process under the
VARI model. Cubadda, Guardabascio, and Hecq (2017) show how the VARI model can be extended to
incorporate heterogeneous autoregressive (HAR) structures in the spirit of Corsi (2009).
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from incorporating the index in the volatility forecasting model in addition to the lag of

own-factor volatility.

Given the weights ω that define the volatility index It = ω′Yt in Eq. (A.12), other key

parameters (µ, φD, and β) can be estimated via standard linear regression. But how to

obtain the weights? We take a simple approach in the main paper that directly associates

the volatility index It with CFV. Implicitly, this amounts to taking ω to equal the weighting

vector for individual volatility series in CFV. Below we discuss an alternative reduced rank

regression procedure that directly estimates the weights along with other model parameters.

An advantage of this approach is that the volatility index weights are chosen in order to

maximize predictive power for volatility within the model. Drawbacks are that the estimation

approach is more involved and weights must be estimated recursively in order to conduct

out-of-sample forecast analysis.

The reduced rank estimation procedure essentially amounts to canonical correlation anal-

ysis (Hotelling (1936)) and is analogous to the procedure used to estimate error correction

models related to cointegrated systems (Engle and Granger (1987)). To describe the ap-

proach formally, we focus on the simpler pure VARI model of Eq. (A.11). The reduced rank

regression model can be written in the general form:

Y = µ+ ABX + ε, (A.13)

where Y , µ, and ε are K × 1 vectors, X is an R × 1 vector, A is K × q, B is q × r (both

full rank). In our application, X represents the lagged dependent variable, so that R = K

and the matrix C ≡ AB is K × K but of reduced rank q.7 It is assumed that the vector

7The decomposition C = AB is not unique, because for any nonsingular conformable matrix G it is the
case that C = (AG−1)(GB), which is an alternative decomposition of the same form.
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Z = (Y ′, X ′)′ is (covariance) stationary. Let µY and µX denote the means of Y and X,

respectively. ΣXX denotes the covariance matrix of X and ΣY X and ΣXY denote the cross-

covariance matrices. Dealing initially with the population model, it can be shown that (see,

e.g,. Izenman (2013)), under the assumption that the true rank of C is q, the mean sum of

squared error criterion is minimized by setting

C(q) =

q∑
j=1

vjv
′

jΣY XΣ
1/2
XX , (A.14)

where vj denotes the j-th eigenvector associated with the j-th largest eigenvalue of the K×K

symmetric matrix

ΣY XΣ−1
XXΣXY . (A.15)

Let Vq = [v1 . . . vq] denote the K × q matrix consisting of the first j eigenvectors associated

with the matrix of Eq. (A.15) This gives rise to the following (population) RRR estimation

formulas:

A(q) = Vq (A.16)

B(q) = V ′qΣY XΣ−1
XX (A.17)

µ(q) = µY − A(q)B(q)µX , (A.18)

where µY and µX denote the means of Y and X, respectively. Given a sample of size T from

Z = (X, Y ), feasible versions of the estimators may be obtained by replacing population

moments by the corresponding sample moments. This involves replacing µY and µX with

sample means, and population covariances and cross-covariances with corresponding sample

moments, e.g., Σ̂XX = (1/T )
∑T

t=1Xc,tX
′
c,t, where Xc,t denotes the centered version of Xt.
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Because in our application the explanatory variable X consists of the lagged dependent

variable, our implementation of RRR relates closely to the so-called canonical correlation

analysis of Hotelling (1936). See Izenman (2013), for example, for a detailed discussion of

the connection.

A.5.2. Results and Diagnostics

We estimate the reduced rank regression model for alternative assumptions regarding the

reduced rank number q. Intuitively, when q = 1 there is a single relevant volatility index,

whereas when q = 2 there are two relevant volatility indices, and so on. In order to assess the

quality of fit and determine the appropriate choice of q, we rely on the ‘rank trace’ criterion

(see, e.g., Izenman (2013))). Let Ĉ∗ denote the unrestricted (full rank) estimate of C and Σ̂∗εε

the corresponding estimated residual covariance matrix. In contrast, Ĉ(q) and Σ̂
(q)
εε denotes

the analogs for the reduced rank regression estimate assuming a rank of q. The rank trace

diagnostic focuses on the following metrics for coefficient and model fit, respectively:

∆Ĉ(q) =
||Ĉ∗ − Ĉ(q)||
||Ĉ∗||

(A.19)

∆Σ̂(q)
εε =

||Σ̂∗εε − Σ̂
(q)
εε ||

||Σ̂∗εε − Σ̂Y Y ||
, (A.20)

where ||A|| denotes the classical Euclidean norm.

Figure A.2 presents plots characterizing the fit of the VARI(1) model for various choices of

rank (i.e., different numbers of indices q) as applied to quarterly volatility series for 10 factor

portfolios. Panel A applies the ‘rank trace’ approach to diagnose the effective rank of the

coefficient matrix (see, e.g., Izenman (2013))). Reduced rank coefficient estimates for models

with the correct rank q (or greater) should be ‘close’ to full-rank estimated coefficients. In
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addition, the fit for models with appropriate rank or greater should be ‘close’ to the full-rank

fit. The particular metrics take values in the interval [0,1] with 0 representing ideal fit. The

plot area of Panel A of Figure A.2 is the unit square. The upper right (1,1) point corresponds

to a zero rank model (mean model). The (0,0) point corresponds to the full rank unrestricted

VAR(1) model. Points between correspond to models with different ranks, several of which

are labeled. A rank one or ‘single index’ model achieves roughly 85% accuracy relative to an

unrestricted VAR(1) model. Increasing the rank improves fit, but incremental improvements

are modest. The coefficient criterion indicates that low rank models are imperfect, as they

do not closely approximate the full rank coefficient estimates. Intuitively, the rank trace

analysis suggests that a single index model captures much concerning volatility dynamics,

but there exist ‘idiosyncratic’ dynamics among the factor volatilities that are imperfectly

captured. It is for this reason that we ultimately use the expanded forecasting model of Eq.

(A.12) that includes own-lagged volatility as well as the lagged volatility index.

The VARI(1) model yields a single index that drives the volatility system dynamics. This

raises an important question: how different are measures of CFV from the volatility index

that emerges from the reduced rank regression forecasting approach described here? Panels

B and C of Figure A.2 address this question. Panel B contrasts the (normalized) weights

corresponding to the index identified by RRR in a single-index model with the weights

corresponding to the static PC measure of CFV. The PC weights are uniformly positive

and relatively close to equal weights. In contrast, the RRR single volatility index applies

relatively different weights to the factor volatility series, including several negative weights.

Despite the notable difference in weights, however, Panel C shows that the dynamics of

the resulting volatility index under RRR approach are in fact very similar to those of a

measure based on the first PC from the volatility series. This is reassuring, in these sense
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that alternative static and dynamic approaches to obtaining a linear summary measure of

commonality in factor volatility produce highly correlated ‘CFV’ measures.

A.6. Impulse Responses in VARI Models for Volatility

Figure A.3 depicts impulse response functions (IRFs) associated with various types of

volatility shocks for the AR(1)-Index model of Eq. (A.12) applied to 10 factor portfolio

volatility series. To enhance the visibility of the plots, we report results only for the first

six factors (MKT, SMB, HML, CMA, RMW, UMD); however results for the omitted fac-

tors (STR, LTR, BAB, QMJ) are qualitatively similar and are available upon request. We

consider general types of shocks. The first is a unit shock to a particular factor volatility

series, with all other volatility series shocks set to zero. The orange dashed line in each panel

of Figure A.3 illustrates the response for that factor to a one unit ‘own-volatility’ shock.

Responses are consistent with the effects of shocks in standard AR(1) models: the response

at lag j equals ρji , where ρi is the AR(1) slope coefficient, and the impact therefore decays

geometrically. The green dash-dot line shows for each factor the responses to a one unit

shock to market volatility (for all factors). Because the upper left panel pertains to the

MKT factor, the shock is in this case equivalent to an own-volatility shock. For the other

five factor volatility series, however, the impact of the market shock occurs via its relation

to the volatility index. As a benchmark, note that in a ‘pure AR’ model such that all VAR

coefficient matrices are diagonal, the market volatility shock would have no impact on other

factor volatility series. In the AR(1)-Index model, the market volatility shock increases the

index. This leads to persistent positive impact responses for other volatility series. The

magnitude of the response depends upon the extent to which the volatility series loads on
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the index. For example, the CMA factor exhibits the smallest loading, and consequently

CMA volatility responses to the market volatility shock are minimal. UMD and HML load

relatively heavily on the index factor and consequently the ‘cross factor’ impact of the market

volatility shock is larger.

The final two IRF curves in each panel of Figure A.3 characterize the effects of a common

shock to volatility. The solid blue line depicts responses to a unit length shock exactly in

the direction of the single index weights estimated by reduced rank regression (RRR). The

magnitude of the immediate impact of this shock depends largely on the magnitude of

the weighting that each volatility receives in the index. Panel B of Figure 7 shows that

UMD receives the largest weight, whereas SMB receives a relatively small (absolute) weight.

Consequently, the initial response of UMD volatility is much larger than that for SMB. Aside

from variation in the initial response to an ‘index shock,’ it is notable that the responses

across all factor volatility series are quite persistent and more persistent than own-volatility

shocks. This is attributable to the fact that the index process implied by the model is more

persistent than the own-volatility component not captured by the index. The red dotted

line depicts responses to alternative ’common’ volatility shock that is defined as an equal-

weighted positive, unit length shock across volatility series. The effects of this shock are

again quite persistent across all factor volatility series. There are; however, some differences

between the responses when the common shock is equal-weighted versus in the direction of

the RRR index weights. In particular, there is more variation in the response patterns in

the latter case, attributable to heterogeneity among factors in the relative weight allocated

in the RRR index.

These extended results provide additional insight and intuition regarding the forecasting

value of incorporating information concerning the strong common feature in factor volatility.
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Common or ‘index’ volatility shocks have economically significant effects on dynamics across

the factor volatility series. Including the index leads to a more nuanced notion of the

dynamics of factor volatility. In particular, the impact of factor volatility shocks depends

on whether the corresponding shock occurs in isolation, i.e., in ‘idiosyncratic’ fashion, or

whether shocks coincide in the form of an ‘index shock’. Shocks to the index reflecting

common volatility dynamics turns out to be more persistent than pure own-volatility shocks.

A.7. CFV and Financial and Operating Leverage

This section provides additional details regarding tests briefly discussed in Section 5 of

the paper concerning a potential relation between CFV and financial and operating leverage.

We test whether CFV is correlated with measures of financial and operating leverage

as well as growth options. Book financial leverage is short-term debt plus long-term debt

divided by total assets. Book operating leverage is operating profits divided by total assets,

as in Novy-Marx (2010). We also consider market versions of these measures, in which the

denominator is market equity plus book total liabilities. Our final measure is the market-to-

book ratio as a proxy for growth options. We compute the average of each of these variables

every quarter. Accounting variables are lined up with market variables on the fiscal quarter

end date. Table A.3 presents results for regressions of innovations in CFV on innovations in

each of these variables. (Innovations are residuals from an ARMA (1,1) model.) Innovations

in book operating and financial leverage have small correlations with innovations in CFV,

with R2 values of 1%. The next two models include market leverage and contemporaneous

average stock returns. Returns are included because innovations in market leverage are

positively correlated with returns, and returns are negatively correlated with volatility. (Not
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including returns results in a negative sign for the leverage measures.) These specifications

show that the incremental explanatory power of market leverage measures is small. Finally,

the market-to-book ratio only weakly relates to CFV.
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Table A.1: Correlations Among Alternative CFV Proxies

This table presents the (sample) correlation matrix for the set of alternative CFV proxies
depicted in Figure 3 of the paper. Five quarterly CFV proxies are compared. The first
four correspond to CFV proxies from characteristics-based factors, anomaly long-short
portfolios, industry-sorted portfolios, and macroeconomic tracking factors, respectively.
The ‘Char.-Based’ proxy equals the average realized volatility across 9 characteristics-based
factors. The ‘Anomalies’ proxy equals the average quarterly realized volatility across the the
GHZ anomaly portfolio series. ‘Industries’ equals the average quarterly realized volatility
across the Fama-French 17 value-weighted industry portfolio volatility series. The ‘Macro’
proxy equals the average quarterly realized volatility for the Chen, Roll, Ross factors. All
underlying realized volatility series are computed using market-adjusted daily returns. The
thick blue line depicts a ’Pooled CFV’ measure that equals the equal-weighted average of
quarterly realized volatility series across the pooled set of portfolio returns from all of the
aforementioned sets. The sample period is 1964.3–2020.1 (quarterly).

Pooled CFV Char.-Based Anomalies Industries Macro

Pooled CFV 1.00 0.95 0.99 0.97 0.97
Char.-Based 0.95 1.00 0.94 0.91 0.95
Anomalies 0.99 0.94 1.00 0.95 0.96
Industries 0.97 0.91 0.95 1.00 0.94
Macro 0.97 0.95 0.96 0.94 1.00
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Fig. A.1: Similarity among Alternative CFV Measures

This figure compares two quarterly proxies for common factor volatility (CFV) based on a set of
43 anomaly portfolios (KNS portfolios). The blue line depicts a quarterly CFV measure based on
‘realized variances’ computed as the sum of squared daily factor returns over the corresponding
quarter. We apply an ARMA (1,1) model to the raw CFV measure based on realized volatility in
order to produce a time series of expected (common) volatility that is comparable to the GARCH-
based CFV measure. The orange line depicts an alternative CFV measure based on conditional
factor variances estimated using a GARCH (1,1) model with constant mean applied to quarterly
returns for each factor. Given the underlying quarterly factor volatility series, the CFV proxy is
computed as the cross-sectional average of individual volatility series across the 43 different anomaly
series. Both CFV measures are then standardized to facilitate comparison.
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Table A.2: Commonality in Correlations

The table shows statistics associated with quarterly correlation measures for factor and anomaly
portfolios. The first column specifies the set of factors. The second column indicates the sample
period. N equals the number of correlation pairs for the corresponding factor set. Factor sets
indicated with an asterisk (*) are such that total correlation pairs exceed the number of time series
observations T . In these cases we randomly selected T pairs to analyze. The column ( % Expl.)
shows the percent of total variance explained by the first principal component (PC) extracted
from the quarterly correlation series for the set of portfolios. ρ̂(CFV) denotes the time-series
correlation between the PC measure of common correlation for the factor set and a measure of
common factor volatility (CFV). Results are shown both for raw correlations (columns 4 and 5)
and for correlations computed using residuals from a market model regressions (columns 6 and 7)
estimated each calendar year using daily returns, except for the high-frequency factor set (denoted
with a †) for which regressions are monthly using 5-minute intraday returns. See Section 2 for
definitions of other portfolio sets.

Raw Market-Adjusted

Portfolios Sample N % Expl. ρ̂(CFV ) % Expl. ρ̂(CFV )

Panel A: Characteristics-Based Factors

SMB,HML,UMD,BAB,(S/L)TR 1930.4-2020.1 15 15.95 0.06 15.92 0.03
FF5 + UMD 1963.3-2020.1 10 19.34 0.26 24.50 0.37
FF5 Augmented 1963.3-2020.1 45 13.74 0.19 17.26 0.25
All Factors 1963.3-2016.4 55 16.91 0.36 13.53 0.31
HF FF5 + UMD† 1996.1-2017.4 10 25.32 0.31 31.05 0.40

Panel B: Anomaly Long-Short Portfolios

GHZ Anomalies* 1964.3-2018.4 217 10.58 0.54 8.81 0.45
KNS Anomalies* 1963.4-2017.4 216 15.80 0.32 14.80 0.35

Panel C: Industry Portfolios

FF 12 Industries 1926.3-2020.1 66 58.46 0.04 13.22 0.28
FF 30 Industries* 1926.3-2020.1 374 50.94 0.02 10.42 0.24

Panel D: Macroeconomic Factors

CRR Factors 1963.3-2018.4 21 12.51 0.15 14.71 0.03
CRR - (OIL + CONS.) 1963.3-2018.4 10 18.52 0.21 20.67 0.14

Panel E: Statistical Factors (Excluding ‘Market’)

FF Sorted Ports. 1931.1-2020.1 45 18.85 0.02 22.47 0.06
KNS Decile Ports. 1973.1-2018.2 45 13.38 0.37 14.17 0.16
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Table A.3: Potential explanations for the commonality in volatility

The table presents results of regressions of innovations in CFV on innovations in measures of
financial and real options. Book (Mkt) leverage is total long and short term debt divided by book
(market) value of total assets. Book (Mkt) operating leverage is operating expense divided by book
(market) total assets, Market total assets are market equity + total assets - book equity. M/B is
the ratio of market to book equity. All financial variables are averages across all firms reporting
earnings in the quarter for which volatility is measured. Returns are the average returns of all firms
in the quarter over which volatility is measured. Standard errors are Newey-West with 3 lags.

(1) (2) (3) (4) (5) (6) (7)

Intercept -0.00 0.00 0.02 0.01 0.02 -0.04 -0.04
(-0.01) (0.00) (1.71) (1.23) (1.60) (-0.89) (-0.93)

Financial Leverage (Book) 2.37 1.52
(1.62) (1.42)

Operating Leverage (Book) 0.42 0.03
(2.45) (0.18)

Returns -0.65 -0.44 -0.61 -0.67 -0.65
(-3.84) (-2.41) (-3.32) (-4.04) (-3.93)

Financial Leverage (Mkt) 2.90
(2.03)

Operating Leverage (Mkt) 0.17
(1.04)

M/B 0.02 0.03
(1.53) (1.90)

R2 0.01 0.01 0.15 0.17 0.15 0.16 0.17
N 188.00 188.00 188 188 188 188.00 188.00
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Fig. A.2: VAR Model with Reduced Rank Restrictions: Factor Portfolios

This figure shows plots characterizing the fit of first order vector autoregression (VAR(1)) models
that impose reduced rank restrictions on the coefficient matrix. The models are estimated via
reduced rank regression for rank choices ranging from one to full rank (10) for quarterly volatility
series for the following factor portfolios: MKT, SMB, HML, RMW, CMA, UMD, STR, LTR,
BAB, and QMJ. The sample period is 1964–2017. Panel A shows the ‘rank trace’ analysis to help
determine the appropriate rank. See the discussion in section 3 and the Appendix for details and
interpretation. Panel B contrasts the weights of the 10 factor volatility series in a single ‘index’ or
rank 1 model with those for the first (static) principal component (PC) extracted from the same
volatility series. Portfolios numbered 1 through 10 correspond to the 10 factors as listed above.
Panel C plots standardized time series for the single index based on a reduced rank model with
rank 1 with the CFV measure based on the first PC.
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Fig. A.3: Impulse Response Functions: VAR-Index Model for Factors

This figure plots impulse response functions (IRFs) corresponding to various shocks in the VAR(1)-
Index model applied to 10 factor portfolio volatility series. To enhance visibility, we show IRFs for
only the first 6 among the 10 factors. These are MKT, HML, SMB, CMA, RMW, UMD. Results
for the four omitted factor volatilities (STR, LTR, BAB, and QMJ) are qualitatively similar. The
solid blue line depicts responses to a unit length shock in the direction of the single index estimated
by reduced rank regression (RRR). The red dotted line depicts responses to alternative ’common’
volatility shock that is equal-weighted across volatility series (and unit length). The orange dashed
line shows for each factor the responses to a one unit ’idiosyncratic’ own-volatility shock. Finally,
the green dash-dot line shows for each factor the responses to a one unit shock to market volatility.
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