Derivatives and Market (Il)liquidity

Internet Appendix

Shiyang Huang* Bart Z. Yueshen ${ }^{\dagger} \quad$ Cheng Zhang ${ }^{\ddagger}$

September 2023

This internet appendix contains the following parts:

- Section S1 studies a path-dependent general quadratic derivative; and
- Section S2 provides additional useful lemmas.

[^0]
S1 Introducing a path-dependent derivative

This internet appendix studies a possibly path-dependent quadratic derivative, $f(D)=D^{2}-a P_{1}^{2}-$ $b D P_{1}-c D-e P_{1}-f$. In particular, we allow $f(D)$ to depend on the underlying asset price P_{1} (even though $f(D)$ is realized at $t=2$), hence "path-dependent."

Proposition S1. With $f(D)=D^{2}-a P_{1}^{2}-b D P_{1}-c D-e P_{1}-f$, there exists a unique equilibrium at $t=1$. The demand schedules for the underlying are

$$
\begin{aligned}
& X_{1 d}(p, q ; s, z)=X_{1 d}^{n d}(p ; s, z)+[(b-2) p+c] Y_{1 d}(p, q ; s, z) ; \text { and } \\
& X_{1 s}(p, q)=X_{1 s}^{n d}(p)+[(b-2) p+c] Y_{1 s}(p, q) .
\end{aligned}
$$

The demand schedules for the general variance swap are

$$
\begin{aligned}
& Y_{1 d}(p, q ; s, z)=\frac{1}{2 \alpha}\left(\left(q+\left((a+b-1) p^{2}+(c+e) p+f\right)\right)^{-1}-G_{1 d}\right) ; \text { and } \\
& Y_{1 s}(p, q)=\frac{1}{2 \alpha}\left(\left(q+\left((a+b-1) p^{2}+(c+e) p+f\right)\right)^{-1}-G_{1 s}\right)
\end{aligned}
$$

The underlying's market clears at $P_{1}=P_{1}^{\text {nd }}$, the same as in the benchmark (Equation (6)). The derivative's market clears at $Q_{1}=G_{1}^{-1}-(a+b-1) P_{1}^{2}-(c+e) P_{1}-f$. The conditional precision $\left\{G_{1 d}, G_{1 s}, G_{1}\right\}$ are the same as those defined in Proposition 1.

Proof. Consider a type- j investor. Her terminal wealth $W_{2 j}$ is given by

$$
\begin{equation*}
W_{2 j}=W_{0}+\left(P_{1}-P_{0}\right) X_{0}+\left(D-P_{1}\right) X_{1 j}+\left(f(D)-Q_{1}\right) Y_{1 j}+(D-\bar{D}) z_{j} . \tag{S1}
\end{equation*}
$$

Lemma 1 ensures that she holds the same posterior distribution for D with or without the derivative. In particular, D remains conditionally normal. Let $z_{s}=0, z_{d}=z$, and $W_{1}=W_{0}+\left(p-P_{0}\right) X_{0}$.

Evaluating the expected utility (e.g., Lemma A. 1 of Marín and Rahi (1999)) yields,

$$
\begin{aligned}
& \mathbb{E}_{1 j}\left[-e^{-\alpha W_{2 j}}\right] \\
= & -\frac{1}{\sqrt{1+2 \alpha \operatorname{var}_{1 j}[D] Y_{1 j}}} \exp \left[\alpha\left(-W_{1}+z_{j}(\bar{D}-p)-Y_{1 j}\left((1-a-b) p^{2}-(c+e) p-f-q\right)\right)\right] \\
& \cdot \exp \left[-\alpha\left(X_{1 j}+z_{j}+((2-b) p-c) Y_{1 j}\right)\left(\mathbb{E}_{1 j}[D]-p\right)-\alpha Y_{1 j}\left(\mathbb{E}_{1 j}[D]-p\right)^{2}\right] \\
& \cdot \exp \left[\frac{\alpha^{2} \operatorname{var}_{1 j}[D]\left(X_{1 j}+z_{j}+Y_{1 j}\left(2 \mathbb{E}_{1 j}[D]-b p-c\right)\right)^{2}}{2\left(1+2 \alpha \operatorname{var}_{1 j}[D] Y_{1 j}\right)}\right] .
\end{aligned}
$$

The first-order condition with respect to $X_{1 j}$ yields

$$
X_{1 j}=\frac{\mathbb{E}_{1 j}[D]-p}{\alpha \operatorname{var}_{1 j}[D]}-z_{j}-((2-b) p-c) Y_{1 j}
$$

Plug this back to $\mathbb{E}_{1 j}\left[-e^{-\alpha W_{2 j}}\right]$ and evaluate the first-order condition with respect to $Y_{1 j}$ to get:

$$
Y_{1 j}=\frac{1}{2 \alpha}\left(\frac{1}{q+(a+b-1) p^{2}+(c+e) p+f}-\frac{1}{\operatorname{var}_{1 j}[D]}\right) .
$$

Finally, clearing the market yields the equilibrium prices $p=P_{1}$ and $q=Q_{1}$ as stated in the proposition. (The utility maximization problem is a strictly concave one. Hence, the above solution implied by the first-order conditions is unique.)

With the variance swap $f(D)=D^{2}-a P_{1}^{2}-b D P_{1}-c D-e P_{1}-f$, the two liquidity measures can be found, following Proposition 2, as

$$
\begin{aligned}
& \lambda=\frac{\alpha}{1-\pi} \frac{G_{1}-G_{0}}{G_{1}-G_{1 s}} \frac{1}{G_{1}-0.5 b\left(G_{1}-G_{0}\right)}=\frac{G_{0}}{G_{1}-\frac{b}{2}\left(G_{1}-G_{0}\right)} \lambda^{n d} \text { and } \\
& \gamma=\left(1-\frac{G_{0}}{G_{1}}\right)\left(1-\frac{G_{1 s}}{G_{1}}\right) \frac{1}{G_{1 s}-G_{0}}=\gamma^{n d} .
\end{aligned}
$$

As can be seen, the possibly path-dependent derivative might change the result of $\lambda<\lambda^{n d}$ from Corollary 1. This happens if and only if the coefficient $b \geq 2$, i.e., the loading on $D P_{1}$. This is because with such path-dependent derivatives, the built-in dependence of $f(D)$ on P_{1} creates some "mechanical" delta-hedging needs for the investors. In the quadratic example above, the total delta-hedging ratio is $\hat{\mathbb{E}}_{1 j}\left[\frac{\partial f}{\partial D}\right]=2 P_{1}-b P_{1}-c$, and we can see that the term $-b P_{1}$ contributes to it,
simply because of the built-in interaction between the actual terminal payoff D and the intermediate price P_{1}. In particular, when $b \geq 2$, the sign of the delta-hedging ratio above changes, mechanically affecting the information-to-noise ratio in the underlying and, hence, also the price impact λ.

On the other hand, the price reversal γ is unaffected, because for both types of investors, $j \in\{d, s\}$, the above delta hedging ratio remains the same. Hence, the net delta-hedging trading remains zero, as in the case of a path-independent variance swap in the paper, and there is no additional price pressure, ensuring $P_{1}=P^{n d}$. As such, γ remains unaffected.

Proposition S2. With $f(D)=D^{2}-a P_{1}^{2}-b D P_{1}-c D-e P_{1}-f$, the underlying's $t=0$ equilibrium price remains the same as stated in Proposition 6.

Proof. The proof of Proposition S1 gives an investor's expected utility at $t=1, \mathbb{E}_{1 j}\left[-e^{-\alpha W_{2 j}}\right]$, taking $p=P_{1}$ and $q=Q_{1}$ as given. Consider a demander $(j=d)$ first. Expanding with $W_{1}=W_{0}+\left(P_{1}-P_{0}\right) X_{0}$ and $\mathbb{E}_{1 d}[D]$ with s and z gives
where $P_{1}=P_{1}^{\text {nd }}$ can be further written as a linear combination of s and z. Taking the expectation of the above over $\{s, z\}$ yields the "interim" utility $U_{0 d}$ of a demander; that is, the expected utility after the type realizes but before the signal and the endowment shock are observed:

$$
U_{0 d}=-\sqrt{\frac{G_{1 d}}{G_{1}}} \cdot e^{\frac{G_{1}-G_{1 d}}{2 G_{1}}-\alpha W_{0 d}}\left(1+\frac{G_{0}}{G_{1 d}-G_{0}}\left(1-\frac{G_{1 d}}{G_{1}}\right)^{2}\left(1+\frac{\alpha^{2}}{\tau_{\varepsilon} \tau_{\mathrm{z}}}\right)-\frac{\alpha^{2}}{G_{0} \tau_{\mathrm{z}}}\right)^{-\frac{1}{2}}
$$

where

$$
\begin{aligned}
W_{0 d}:= & W_{0}+\left(\bar{D}-P_{0}\right) X_{0}-\frac{\alpha}{G_{0}} X_{0} \bar{X}+\frac{\alpha}{2 G_{0}} \bar{X}^{2}-\frac{\alpha}{2}\left[1+\frac{G_{0}}{G_{1 d}-G_{0}}\left(1-\frac{G_{1 d}}{G_{1}}\right)^{2}\left(1+\frac{\alpha^{2}}{\tau_{\varepsilon} \tau_{\mathrm{z}}}\right)-\frac{\alpha^{2}}{G_{0} \tau_{\mathrm{z}}}\right]^{-1} \\
& \cdot\left\{\left(\frac{G_{1}-G_{0}}{G_{1}}\right)^{2}\left(\frac{1}{G_{0}}+\frac{1}{\tau_{\varepsilon}}\right)\left(1+\frac{\alpha^{2}}{\tau_{\varepsilon} \tau_{\mathrm{z}}}\right)\left(X_{0}-\bar{X}\right)^{2}\right. \\
& \left.+\left(\frac{1}{G_{0}}+\frac{1}{\tau_{\varepsilon}}\right)^{2} \frac{\alpha^{2}}{\tau_{\mathrm{z}}}\left[2\left(1-\frac{G_{0}}{G_{1}}\right)\left(1-\frac{G_{0}}{G_{1 d}}\right) X_{0} \bar{X}+\left[\frac{G_{0}}{G_{1 d}}\left(1-\frac{G_{1 d}}{G_{1}}\right)^{2}-\left(1-\frac{G_{0}}{G_{1}}\right)^{2}\right] \bar{X}^{2}\right]\right\} .
\end{aligned}
$$

Note that condition $\alpha^{2} G_{0}^{-1} \tau_{\mathrm{z}}^{-1}<1$ ensures $U_{0 d}$ is well-defined; in particular, the term inside the brackets is always positive. Similarly, the interim utility $U_{0 s}$ of liquidity suppliers can be derived as

$$
U_{0 s}=-\sqrt{\frac{G_{1 s}}{G_{1}}} \cdot e^{\frac{G_{1}-G_{1 s}}{2 G_{1}}-\alpha W_{0 s}}\left(1+\frac{G_{0}}{G_{1 s}-G_{0}}\left(1-\frac{G_{1 s}}{G_{1}}\right)^{2}\right)^{-\frac{1}{2}},
$$

where

$$
W_{0 s}=W_{0}+\left(\bar{D}-P_{0}\right) X_{0}-\frac{\alpha}{2 G_{0}} X_{0}^{2}+\frac{\alpha G_{1 s}}{2 G_{1}^{2}}\left[1+\frac{G_{0}}{G_{1 s}-G_{0}}\left(1-\frac{G_{1 s}}{G_{1}}\right)^{2}\right]^{-1} \cdot\left(X_{0}-\bar{X}\right)^{2}
$$

At $t=0$, investors choose X_{0} to maximize

$$
\pi U_{0 d}+(1-\pi) U_{0 s}
$$

The first-order condition, together with the market clearing condition $X_{0}=\bar{X}$, leads to

$$
\pi \cdot\left(\bar{D}-p-\alpha G_{0}^{-1} \bar{X}-\alpha \Sigma \bar{X}\right) M+(1-\pi)\left(\bar{D}-p-\alpha G_{0}^{-1} \bar{X}\right)=0
$$

where

$$
M=e^{\frac{G_{15}-G_{1 d}}{2 G_{1}}} \sqrt{\frac{G_{1 d}}{G_{1 s}}} \exp \left(\frac{\alpha}{2} \Delta_{2} \bar{X}^{2}\right) \sqrt{\frac{1+\pi^{2} \Delta_{0}}{1+\Delta_{0}(1-\pi)^{2}-\alpha^{2} /\left(\tau_{\mathrm{z}} G_{0}\right)}},
$$

and Δ_{0} and Δ_{2} are the same coefficients as given in the proof of Propositions 5 and 1. (Note that the second-order conditions are satisfied as well as both $U_{0 d}$ and $U_{0 s}$ are monotone transformations of quadratic terms in X_{0}.) It can be seen that the above first-order condition is linear in the market clearing price p, which then uniquely solves the equilibrium P_{0} stated in the proposition.

Conditional on the realization of P_{0}, in the no-derivative benchmark, following Vayanos and Wang (2012), the liquidity demanders' interim utility is

$$
U_{0 d}^{n d}=-e^{-\alpha W_{0 d}^{n d}}\left(1+\frac{G_{0}}{G_{1 d}-G_{0}}\left(1-\frac{G_{1 d}}{G_{1}}\right)^{2}\left(1+\frac{\alpha^{2}}{\tau_{\varepsilon} \tau_{\mathrm{z}}}\right)-\frac{\alpha^{2}}{G_{0} \tau_{\mathrm{z}}}\right)^{-\frac{1}{2}}
$$

where $W_{0 d}^{n d}=W_{0 d}$. As $0<\frac{G_{1}}{G_{1 d}}<1, \sqrt{\frac{G_{1 d}}{G_{1}}} \cdot e^{\frac{G_{1}-G_{1 d}}{2 G_{1}}}$ is a decreasing function of $\frac{G_{1 d}}{G_{1}}$. Therefore, $\sqrt{\frac{G_{1 d}}{G_{1}}} \cdot e^{\frac{G_{1}-G_{1 d}}{2 G_{1}}}<1$ and $U_{0 d}>U_{0 d}^{n d}$. Likewise, for the liquidity suppliers, $\sqrt{\frac{G_{G_{1 s}}}{G_{1}}} \cdot e^{\frac{G_{1}-G_{1 s}}{2 G_{1}}}$ is an increasing function of $\frac{G_{1 s}}{G_{1}}$ because $\frac{G_{1}}{G_{1 s}}>1$. Then $\sqrt{\frac{G_{1 s}}{G_{1}}} \cdot e^{\frac{G_{1}-G_{1 s}}{2 G_{1}}}<1$ and $U_{0 s}>U_{0 s}^{n d}$.

As we have seen above, while the path-dependence of the derivative payoff affects an individual investor's delta hedging at $t=1$, in aggregate, the net delta-hedging trade remains zero. As such, intuitively, the path-dependent derivative does not create additional trading gains nor does it affect the split of the "pie." One step back to $t=0$, therefore, the evaluation of the underlying asset is unaffected.

S2 Additional lemmas

Lemma S1

Lemma S1 (Decomposition of a call). Suppose the underlying price at $t=1$ is P_{1}. The $t=2$ payoff of an out-of-the-money call option with strike $K \geq P_{1}$ can be decomposed into

$$
\max \{0, D-K\}=\frac{1}{2}\left|D-P_{1}\right|+\frac{1}{2}\left(1-2 \mathbb{1}_{\left\{P_{1} \leq D \leq K\right\}}\right)\left(D-P_{1}\right)+\mathbb{1}_{\{D>K\}}\left(P_{1}-K\right) ;
$$

and that of an in-the-money call with $K \leq P_{1}$ can be decomposed into

$$
\max \{0, D-K\}=\frac{1}{2}\left|D-P_{1}\right|+\frac{1}{2}\left(1+2 \mathbb{1}_{\left\{K \leq D \leq P_{1}\right\}}\right)\left(D-P_{1}\right)+\mathbb{1}_{\{D>K\}}\left(P_{1}-K\right) .
$$

Proof. Consider the out-of-the-money call with $K \geq P_{1}$.

$$
\max \{0, D-K\}=\frac{1}{2}|D-K|+\frac{1}{2}(D-K)=\frac{1}{2}\left|V-\left(K-P_{1}\right)\right|+\frac{1}{2}\left(V-\left(K-P_{1}\right)\right)
$$

where $V:=D-P_{1}$ as a shorthand notation. Compare $\left|V-\left(K-P_{1}\right)\right|$ to $|V|$:

$$
\left|V-\left(K-P_{1}\right)\right|-|V|= \begin{cases}K-P_{1}, & \text { if } V<0 \\ -2 V+\left(K-P_{1}\right), & \text { if } 0 \leq V \leq K-P_{1} \\ -\left(K-P_{1}\right), & \text { if } V>K-P_{1}\end{cases}
$$

Therefore, $\left|V-\left(K-P_{1}\right)\right|=|V|+\mathbb{1}_{\{V<0\}}\left(K-P_{1}\right)+\mathbb{1}_{\left\{0 \leq V \leq K-P_{1}\right\}}\left(-2 V+K-P_{1}\right)-\mathbb{1}_{\left\{V>K-P_{1}\right\}}\left(K-P_{1}\right)$. Substituting into the call's payoff expression and simplifying gives the expression stated in the
lemma. The proof for the decomposition of the in-the-money call repeats the above steps and is omitted.

Lemma S2

Lemma S2 (Risk-neutral pricing). The equilibrium underlying price P_{1} and the derivative price Q_{1} must satisfy

$$
\begin{equation*}
P_{1}=\hat{\mathbb{E}}_{1 j}[D]=\int_{\mathbb{R}} D \hat{\phi}_{1 j}(D) \mathrm{d} D \text { and } Q_{1}=\hat{\mathbb{E}}_{1 j}[f(D)]=\int_{\mathbb{R}} f(D) \hat{\phi}_{1 j}(D) \mathrm{d} D \tag{S2}
\end{equation*}
$$

where $\hat{\phi}_{1 j}(D)$ is a type-j investor's risk-neutral density, defined as

$$
\begin{equation*}
\hat{\phi}_{1 j}(D):=\frac{h_{1 j}(D)}{\int_{\mathbb{R}} h_{1 j}(D) \mathrm{d} D}, \text { with } h_{1 j}(D):=e^{-\alpha \cdot\left(D X_{1 j}+f(D) Y_{1 j}\right)-\frac{G_{1 j}}{2} D^{2}+\left(G_{0} \bar{D}+\left(G_{1 j}-G_{0}\right) \eta\right) D} \tag{S3}
\end{equation*}
$$

Proof. The risk-neutral pricing formulas follow the first-order conditions

$$
\frac{\partial U_{1 j}}{\partial X_{1 j}}=\mathbb{E}_{1 j}\left[\alpha \cdot\left(D-P_{1}\right) e^{-\alpha W_{2 j}}\right]=0 \text { and } \frac{\partial U_{1 j}}{\partial Y_{1 j}}=\mathbb{E}_{1 j}\left[\alpha \cdot\left(f(D)-Q_{1}\right) e^{-\alpha W_{2 j}}\right]=0
$$

which imply
$P_{1}=\frac{\mathbb{E}_{1 j}\left[D e^{-\alpha W_{2 j}}\right]}{\mathbb{E}\left[e^{-\alpha W_{2 j}}\right]}=\frac{\int_{\mathbb{R}} D e^{-\alpha W_{2 j}} \phi_{1 j}(D) \mathrm{d} D}{\int_{\mathbb{R}} e^{-\alpha W_{2 j}} \phi_{1 j}(D) \mathrm{d} D}$ and $Q_{1}=\frac{\mathbb{E}_{1 j}\left[f(D) e^{-\alpha W_{2 j}}\right]}{\mathbb{E}\left[e^{-\alpha W_{2 j}}\right]}=\frac{\int_{\mathbb{R}} f(D) e^{-\alpha W_{2 j}} \phi_{1 j}(D) \mathrm{d} D}{\int_{\mathbb{R}} e^{-\alpha W_{2 j}} \phi_{1 j}(D) \mathrm{d} D}$ where $\phi_{1 j}(D)$ is the type- j investor's posterior density (conditional on the prices) of D. Letting $\hat{\phi}_{1 j}(D):=\frac{e^{-\alpha W_{2 j}} \phi_{1 j}(D)}{\int_{\mathbb{R}} e^{-\alpha W_{2 j}} \phi_{1 j}(D) \mathrm{d} D}$, one obtains the risk-neutral pricing formula given in the lemma. It remains to simplify the expression of $\hat{\phi}_{1 j}(D)$. To do so, recall $W_{2 j}=W_{1}+\left(D-P_{1}\right) X_{1 j}+(f(D)-$ $\left.Q_{1}\right) Y_{1 j}+(D-\bar{D}) z_{j}$, where $W_{1}=W_{0}+\left(P_{1}-P_{0}\right) X_{0}$ and z_{j} is a type- j investor's endowment shock $\left(z_{d}=z\right.$ and $z_{s}=0$). In addition, by Lemma $1, \phi_{1 d}(D)$ is the normal density with mean $\frac{G_{0}}{G_{1 d}} \bar{D}+\frac{G_{1 d}-G_{0}}{G_{1 d}} s$ and variance $G_{1 d}^{-1}$; and $\phi_{1 s}(D)$ is the normal density with mean $\frac{G_{0}}{G_{1 s}} \bar{D}+\frac{G_{1 s}-G_{0}}{G_{1 s}} \eta$ (with $\eta:=s-\frac{\alpha}{\tau_{\varepsilon}} z$) and variance $G_{1 s}^{-1}$. The simplified expression of $\hat{\phi}_{1 j}(D)$ with $h_{1 j}(D)$ follows by plugging these expressions into $\hat{\phi}_{1 j}(D)$ and offsetting common terms in the numerator and the denominator.

[^0]: * Faculty of Business and Economics, The University of Hong Kong; huangsy@hku.hk; K.K. Leung Building, The University of Hong Kong, Pokfulam Road, Hong Kong.
 † INSEAD; b@yueshen.me; 1 Ayer Rajah Avenue, Singapore 138676.
 ${ }^{\ddagger}$ Daniels College of Business, University of Denver; cheng.zhang161@du.edu; 2101 S University Blvd, Denver, CO 80210, USA.

