
Online Appendix for

The impact of uncertainty on investment: Empirical

challenges and a new estimator

The online Appendix contains five sections. Section A provides details on how to con-

struct orthogonal moment conditions to treat measurement error in q. Section B gives the

assumptions and limiting results for our proposed estimators. Appendix C explains how to

construct nonparametric model specification test statistics. Appendix D describes how to

construct the 10 instrumental variables for the endogenous individual stock volatility vari-

able. Section E shows more robust results. Section F provides the mathematical proofs of

the theorems in Section B.

Appendix A. Treating measurement error

In this section, we provide details on how to construct orthogonal moment conditions to

treat measurement error in q. For ease in reading, we introduce our notation here. (i) iT

denotes a T × 1 vector of ones, 0n denotes an n× 1 vector of zeros, 0m×n is an m×n matrix

of zeros, IT is a T × T identity matrix, and JT = IT − T−1iT i
′
T ; (ii) ãi = JTai denotes the

demeaned data for any T × 1 vector ai; (iii) M , M1, M2,. . . are constants that can take

different values at different locations. Denoting a T × (3knT ) matrix Ei = [Ei,1, . . . ,Ei,T ]
′,

rewrite model (14) in matrix form as follows

yi ≈ µiiT + λ0 + α0xi,−1 + Eiϑ0 + εi, (A.1)

and premultiplying JT to both sides of model (A.1) gives

ỹi ≈ JTλ0 + α0x̃i,−1 + Ẽiϑ0 + ε̃i (A.2)

= FT λ̃0 + α0x̃i,−1 + Ẽiϑ0 + ε̃i (A.3)
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where ỹi = JTyi, Ẽi = JTEi and ε̃i = JTεi are all demeaned data. Because JT does not

have full rank, we redefine JTλ0 = FT λ̃0, where FT = [IT−1,−iT−1]
′, λ̃0 =

[
λ̃1, . . . , λ̃T−1

]′
,

and λ̃t = λt − T−1
∑T

s=1 λs.

In the following, we construct two blocks of orthogonal moment conditions, in the spirit of

Meijer, Spierdijk and Wansbeek (2017). The moments in Section A2 are sufficient to identify

our model, and we use them to produce the empirical results in this paper. In contrast, the

moments in Section A1 are empirically optional, and we include them in the econometric

theory for completeness.

A1. Intertemporal covariance matrix

These moment conditions are based on the intertemporal covariance matrix of ωi in

model (10), Σω = E (ωiω
′
i), by exploiting the cross-sectional independence across firms:

E (ε̃i ⊗ ỹi) ≈ E
[
(ω̃i − α0ẽi,−1)⊗

(
FT λ̃0 + α0x̃

∗
i,−1 + Ẽiϑ0 + ω̃i

)]
= E (ω̃i ⊗ ω̃i) = E [vec (JTωiω

′
iJT )] = (JT ⊗ JT )E [vec (ωiω

′
i)]

= (JT ⊗ JT ) vec (Σω) = (JT ⊗ JT )DTπω (A.4)

where πω =vech(Σω), and DT is the duplication matrix of dimension T 2 ×m0, with m0 =

T (T + 1) /2, such that vec (Σω) = DTπω.
1 Let [(JT ⊗ JT )DT ]⊥ be the orthogonal comple-

ment of (JT ⊗ JT )DT , i.e., the T
2 ×m0 matrix with full column rank satisfying

[(JT ⊗ JT )DT ]
′
⊥ [(JT ⊗ JT )DT ] = 0m0×m0 .

Pre-multiplying both sides of (A.4) by [(JT ⊗ JT )DT ]
′
⊥ gives

[(JT ⊗ JT )DT ]
′
⊥ E (ε̃i ⊗ ỹi) ≈ 0m0 .

which is equivalent to2

[(JT ⊗ JT )DT ]
′
⊥ E [(IT ⊗ ỹi) ε̃i] ≈ 0m0 . (A.5)

As a result, the (T ×m0) matrix d̃1,i = (IT ⊗ ỹi)
′ [(JT ⊗ JT )DT ]⊥ acts as valid instru-

1If A = (aij) is a 3×3 symmetric matrix, vec(A) = [a11, a12, a13, a21, a22, a23, a31, a32, a33]
′
and vech(A) =

[a11, a12, a13, a22, a23, a33]
′
.

2For any vectors a (m× 1) and b (n× 1), a⊗ b = (Im ⊗ b) a.
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ments that are orthogonal to ε̃i. Moreover, d̃1,i are relevant instruments if

E
(
d̃′
1,ix̃i,−1

)
̸= 0m0 (A.6)

which generally holds true as [(JT ⊗ JT )DT ]
′
⊥ E

(
x̃i,−1 ⊗

(
Ẽiϑ0

))
̸= 0m0 if ϑ0 ̸= 03k and

x̃i,−1 and Ẽi are correlated.

A2. Exogenous regressors

These orthogonal moment conditions are based on the strict exogeneity of time-fixed

effects and Ẽi in model (A.3), and include

E
[
(ỹi − q̃iθ0)⊗ Ẽi

]
≈ E

(
ε̃i ⊗ Ẽi

)
= 0T 2×(3knT ) (A.7)

E [(ỹi − q̃iθ0)⊗ FT ] ≈ E (ε̃i ⊗ FT ) = 0T 2×(T−1) (A.8)

where q̃i =
[
FT , x̃i,−1, Ẽi

]
contains all the regressors in model (A.3) and θ0 =

[
λ̃

′
0, α0,ϑ

′
0

]′
includes all the parameters to be estimated. These moment conditions are valid because

after the control function approach, the only endogenous variable in model (A.3) is x̃i,−1.

Consequently, denoting a T × [T 2 (T − 1 + 3knT )] matrix

d̃2,i =
[
IT ⊗ vec

(
Ẽi

)′
IT ⊗ vec (FT )

′
]

we obtain the following orthogonal moment conditions

E
(
d̃′
2,iε̃i

)
≈ 0T 2(T−1+3knT ). (A.9)

Moreover, d̃2,i are relevant instruments if E
(
d̃′
2,ix̃i,−1

)
̸= 0, which can be easily tested in the

data. We further select a smaller set of instruments based on the method developed in Bel-

loni, Chen, Chernozhukov and Hansen (2012) to mitigate the concern of many-instruments

bias in a finite sample.

Appendix B. Limiting results

For a sufficiently large n and a fixed T , we show three theorems in the following (with

proofs in the Online Appendix), ensuring that both the penalty estimator, θ̂, and the post-

penalty estimator, θ̃, converge to the true parameter values θ0. The estimators of the

Tobin’s q coefficient and the three unknown curves are consistent and have asymptotic

normal distributions. Theorem B.1 proves that if we knew which elements in θ0 were zero,
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then dropping the corresponding regressors and conducting traditional GMM estimation by

minimizing (18) in Li and Sun (2022) would produce a uniformly consistent estimator for

the nonzero elements in θ0. At the same time, the estimators of α0, f0(z), g0(s), and r0(v)

possess asymptotic normal distributions. Theorem B.2 demonstrates that for any given

tuning parameter ψ, there exists a penalty estimator θ̂(ψ) that minimizes the objective

function (19) in Li and Sun (2022). For sufficiently large n and with a probability approaching

1, this penalty estimator equals the traditional GMM estimator in Theorem B.1 as if we knew

which elements in θ0 were zero. That is, the penalty estimator is oracle efficient. Theorem

B.3 reveals that the post-penalty estimator θ̃ that solves (20) in Li and Sun (2022) is same

as θ̂ asymptotically with a probability approaching 1.

In Appendix A, we construct the following instruments to deal with the error-ridden q:

d̃i = [d̃1,i d̃2,i] =
[
(IT ⊗ ỹi)

′ [(JT ⊗ JT )DT ]⊥ IT ⊗ vec
(
Ẽi

)′
IT ⊗ vec (FT )

′
]
, (B.1)

which is a T ×miv matrix, with the number of instruments equal to

miv = m0 + T 2 (T − 1 + 3knT ) .

We then obtain the following orthogonal moment conditions (equivalent to (17) in Li and

Sun (2022)):

E
[
d̃′
i (ỹi − q̃iθ0)

]
≈ 0miv

. (B.2)

Decompose θ0 =
[
θ′1,0, 0

′
p−J

]′
, where θ′1,0 is the J × 1 vector containing all the non-zero

parameters, and J is the number of elements in J = supp(θ0). Divide the regressors

accordingly into two parts, q̃i = [q̃1,i, q̃2,i], where q̃1,i and q̃2,i are T × J and T × (p− J)

matrix, respectively. Our orthogonal moment conditions in (B.2) can be rewritten in this

partition by removing all the regressors with zero coefficients, as q̃iθ0 = q̃1,iθ1,0. Let θ̌1 be

the estimator of θ1,0, which solves the following optimization:

min
θ1∈Θ1

φ̄n (θ1)
′ Ωnφ̄n (θ1) , (B.3)

where Θ1 is a compact subset of RJ , and

φ̄n (θ1) =
1

n

n∑
i=1

˜̂
d
′

i

(
ỹi − ˜̂q1,iθ1

)
, (B.4)

where ˜̂q1,i equals q̃1,i with PknT (vi,t) replaced by PknT (v̂i,t) for all t. Let PJ be the J × p
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selection matrix that satisfies θ0 = P ′
Jθ1,0.

3 Consequently, θ̌ = P ′
J θ̌1 is an estimator for θ0,

when J is known. We list additional regularity conditions that support the limiting results

in the following two assumptions.

Assumption 3. (i) E ∥T−1WiW
′
i∥ ≤ M ; also, T−1E ((iT ,Wi)

′(iT ,Wi)), Σv, and

T−1E (WiΣvW
′
i) are all positive definite matrix; (ii) There exist two constants, ς0 and ς1,

satisfying

0 < ς0 ≤ λmin

(
E
(
q̃′
id̃i

)
ΩnE

(
d̃′
iq̃i

))
≤ λmax

(
E
(
q̃′
id̃i

)
ΩnE

(
d̃′
iq̃i

))
≤ ς1 <∞,

where λmin (·) and λmax (·) denote the smallest and largest eigenvalues of a matrix, respec-

tively; (iii) Ωn is a non-stochastic positive definite matrix with λmax (Ωn) ≤M <∞.

Assumption 4. As n→ ∞, the following conditions hold: (i) knT → ∞; (ii)
√
nk−ζ

nT → 0;

(iii) k2nT/n→ 0; and (iv) n−1knT
∥∥PknT

∥∥2
1
→ 0, where

∥∥PknT
∥∥
l
= max0≤j≤l supx∈R

∥∥∥∂jPknT (x)
∂xj

∥∥∥
for l ≥ 0, with ∥·∥ being the Euclidean norm.

Assumption 3(i) regulates the stochastic property of (wit, vit) in the time dimension to

ensure that π0 in model (6) in Li and Sun (2022) can be estimated at the root-n convergence

rate so that the estimated residuals v̂i,t have stochastic properties mimicking those of the

true error terms vi,t. Assumption 3 (ii) is standard in the literature on series approximation,

ensuring the existence of the proposed estimators with nonsingular variance and covariance

matrices. In Assumption 4, (i) and (iii) are standard conditions in series approximation, (ii)

is a technical condition, and (iv) is used to remove the asymptotic impact of the first-stage

estimation of π0 on the estimation of model (13) in Li and Sun (2022). For the smoothing

parameter, the existing literature commonly sets knT = ck(nT )
r, where ck > 0 and r > 0 are

constants. In this setup, Assumption 4 requires that (2ζ)−1 < r < 0.25 if the Hermite series

are adopted in the series approximation because
∥∥PknT

∥∥
1
= O

(
k
3/2
nT

)
.

Theorem B.1 Denoting an = k−ζ
nT +

√
J/n, under Assumptions 1-4, we have

(i)
∥∥θ̌1−θ1,0∥∥ = Op (an);

(ii)

sup
z∈Sz

∥∥f̌ (z)− f0 (z)
∥∥ = Op

(
ank

1/2
nT

)
,

sup
s∈Ss

∥ǧ (s)− g0 (s)∥ = Op

(
ank

1/2
nT

)
,

sup
v∈Sv

∥ř (v)− r0 (v)∥ = Op

(
ank

1/2
nT

)
,

where f̌ (z) = θ̌
′
zP⃗

knT
z , ǧ (s) = θ̌

′
sP⃗

knT
s , and ř (v) = θ̌

′
vP⃗

knT
v , with P⃗knT (·) equal to PknT (·)

3PJ is the J × p sub-matrix of the identity matrix Ip that satisfies θ1,0 = PJ θ0 and P ′
JPJ = IJ .
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after removing the terms with zero coefficients, and Sz, Ss, and Sv denote the support of zit,

sit, and vit, respectively; (iii) if
√
n/Jk−ζ

nT → 0, we have
√
n/σ̂2

α (α̌− α0)
d→ N (0, 1) and

√
nΞ̂−1

n

 f̌ (z)− f0 (z)

ǧ (s)− g0 (s)

ř (v)− r0 (v)

 d→ N (03, I3) ,

provided that σ̂2
α

p→ σ2
α > 0 and that Ξ̂−1

n is nonsingular, where σ̂2
α, σ

2
α, and Ξ̂n are denoted

in (F.13) and (F.14) in the Online Appendix.

When J is known, Theorem B.1(i) shows the uniform consistency of θ̌. Meanwhile, the

estimated coefficient α̌ is a root-n consistent estimator of α0. The pointwise convergence

rate of f̌ (z), ǧ (s), and ř (v) are of order Op

(√
J/n

)
because

∥∥∥Ξ̂n

∥∥∥ = Op (J).

Theorem B.2 Under Assumptions 1-4, there exists a local minimizer θ̂ (ψn) for (19) that

satisfies Pr
(
θ̂ (ψn) = θ̌

)
→ 1 asymptotically, provided that the tuning parameter ψn meets

the following conditions: (i) ψn → 0; (ii) ψn/an → ∞; and (iii) ψn ≤ minl∈J {θl,0} / (q0c)
for some c > 1 and q0 < 1/2.

Theorem B.2 implies that the penalty estimator θ̂ (ψn) performs as if we knew J , i.e.,

which parameters in θ0 do not equal zero. This property is known as the estimator being

oracle efficient. The next theorem shows that the post-MCP-penalty estimator θ̃ converges

to the true parameters, θ0, at the same convergence rate as the penalty estimator. This

implies that the post-MCP estimator is as good as the MCP-penalty estimator.

Theorem B.3 Under the assumptions in Theorems B.1 and B.2, we obtain∥∥∥θ̃ − θ0

∥∥∥ = Op

(
k−2ζ
nT + J/n

)
,

and that Theorem B.1 (ii) and (iii) hold for the post-MCP estimator, f̃ (z), g̃ (s) and r̃ (v).

Appendix C. Hypothesis tests

Based on the limiting results, we introduce asymptotically valid inference procedures

for two types of hypotheses broadly. First, we conduct standard Wald-type tests for the

significance of the levels of the estimates. That is, we test for whether each of the time

effects, {λ̃t}T−1
t=1 , and the Tobin’s q coefficient, α0, are zero, and whether the three unknown

functions f0(z) = 0, g0(s) = 0, and r0(v) = 0, respectively. The tests for f0(z) = 0 and

g0(s) = 0 shed light on whether cash flow and individual stock volatility contribute to
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investment in addition to q. The test for r0(v) = 0 instead indicates whether the variable

si,t is correlated with ui,t, as r0(vi,t) = E (ui,t|vi,t); put differently, it tests for whether the

individual stock volatility is a contemporaneous endogenous variable.

Second, we construct the following group of pointwise tests for whether the first-order

derivatives of the three unknown curves, f ′
0(z), g

′
0(s), and, r

′
0(v) are constant. We do so to

test for the existence of nonlinearities.

Hf
0 : f0 (z) = βf,0z, and H

f
1 : not Hf

0 ; (C.1)

Hg
0 : g0 (s) = βg,0s, and H

g
1 : not Hg

0 ; (C.2)

Hr
0 : r0 (v) = βv,0v, and H

r
1 : not Hr

0 . (C.3)

We impose an additional assumption that is stronger than Assumption 2 to asymptotically

remove the series approximation bias of the first-order derivatives.

Assumption 5. There exists ϑ0 =
[
ϑ′

z,0,ϑ
′
s,0,ϑ

′
v,0

]′
such that

max
0≤l≤l0

sup
z∈Sz

∣∣∣f (l)
0 (z)− ϑ′

z,0d
lPknT (z)

∣∣∣ ≤M1k
−ζ
nT

max
0≤l≤l0

sup
s∈Ss

∣∣∣g(l)0 (z)− ϑ′
s,0d

lPknT (s)
∣∣∣ ≤M2k

−ζ
nT

max
0≤l≤l0

sup
v∈Sv

∣∣∣r(l)0 (v)− ϑ′
v,0d

lPknT (v)
∣∣∣ ≤M3k

−ζ
nT

for some ζ > 2 and a nonnegative integer l0 ≤ 1 as knT → ∞, where f
(l)
0 (·) and dlPknT (·)

denote the l-th order partial derivatives of f0(·) and PknT (·), respectively.
We use the test of (C.1) as an example to illustrate the basic ideas. Under Hf

0 , model

(14) in the paper becomes

yi,t ≈ µi + λt + α0xi,t−1 + βf,0zi,t−1 + ϑ
′
s,0P

k(si,t−1) + ϑ
′
v,0P

k(vi,t) + εi,t, (C.4)

in which we replace the nonparametric Hermite expansion ϑ′
z,0P

k(zi,t−1) with the linear

specification βf,0zi,t−1. The equivalent hypothesis is

H0 : f
′
0 (z) = βf,0 for all z, and H1 : not H0.

The post-penalty estimator for f ′
0 (z) is defined as

f̃ ′ (z) = dP⃗knT (z)′ ϑ̃z,1,
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where dP⃗knT (z) = ∂
∂z
P⃗knT (z). We introduce some other notations: Ĵ =supp

(
θ̂
)
, and Ĵ is

the dimension of Ĵ ; split ˜̂qi =
[˜̂qĴ ,1,i,

˜̂qĴ ,2,i

]
and θ̃=

[
θ̃
′
1, 0

′
p−Ĵ

]′
, where the parameters in

front of ˜̂qĴ ,2,i are all zeros and ˜̂qi θ̃ = ˜̂qĴ ,1,iθ̃1; σ̂
2
n (z) =

(
dP⃗knT (z)

)′
SzΣ̃nS

′
zdP⃗

knT (z); Σ̃n

equals Σ̂n with ˜̂q1,i replaced with ˜̂qĴ ,1,i;
4 Sz is part of IĴ such that ϑ̃z,1 = Szθ̃1; and ̂̃εi are

the residuals calculated under the alternative hypothesis H1.

Under the null hypothesisH0, when Assumptions 1-5 hold, following the proof of Theorem

B.1, we obtain √
n/σ̂2

n (z)
(
f̃ ′ (z)− βf,0

)
d→ N (0, 1) .

Calculating β̂f from model (C.4), we have√
n/σ̂2

n (z)
(
f̃ ′ (z)− β̂f

)
=
√
n/σ̂2

n (z)
(
f̃ ′ (z)− βf,0

)
+Op

(
σ̂−1
n (z)

)
,

because β̂f−βf,0 = Op

(
n−1/2

)
, and σ̂2

n (z) ≥ λmax

(
SzΣ̃nS

′
z

)∥∥∥dP⃗knT (z)
∥∥∥2 ≥M

∥∥∥dP⃗knT (z)
∥∥∥2

under Assumption 3. This is proved by Lemma F.3 in the Online Appendix. Hence, we have√
n/σ̂2

n (z)
(
f̃ ′ (z)− β̂f

)
d→ N (0, 1) .

On the other hand, under the alternative hypothesis H1,√
n/σ̂2

n (z)
(
f̃ ′ (z)− β̂f

)
=
√
n/σ̂2

n (z) (f
′
0 (z)− βf ) + op (1)

p→ ∞,

provided that there exists a constant βf such that β̂f − βf = Op

(
n−1/2

)
. Hence, we can

construct a t statistic for any given z point to test H0 and H1.

Our test statistic can also be extended to simultaneously consider a range of z values.

Let z∗i , where i = 1, . . . ,m, be m distinct points. Then, under H0, we have

√
nΥ̂−1

n


f̃ ′ (z∗1)− β̂f

...

f̃ ′ (z∗m)− β̂f

 d→ N (0, Im) , (C.5)

where

Υ̂n =


dP⃗knT (z∗1)

′

...

dP⃗knT (z∗m)
′

SzΣ̃nS
′
z

[
dP⃗knT (z∗1) . . . dP⃗

knT (z∗m)
]

4See Online Appendix (F.12).
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is an m×m non-singular matrix. We can construct a χ2 statistic as follows: under H0,

Tf,n = n

∥∥∥∥Υ̂−1/2
n

[
f̃ ′ (z∗1)− β̂f , . . . , f̃

′ (z∗m)− β̂f

]′∥∥∥∥ d→ χ2 (m) (C.6)

for a finite m < Ĵ . The latter condition ensures the non-singularity of Υ̂n.

Appendix D. Instruments for volatility

This section describes how to construct the 10 instrumental variables wi,t to address the

endogeneity in individual stock volatility. The work here largely follows Alfaro, Bloom and

Lin (2018) and consists of several steps. First, we collect each individual firm’s daily stock

returns from CRSP. For each firm-day combination in our sample, we regress the firm’s stock

returns in excess of the risk-free rate on the four asset-pricing factors in Carhart (1997) using

a rolling window of the previous 2,520 trading days, if data are available.5 The regression

residual is referred to as rrisk-adji,t , where i denotes the firm and t represents the day.

Second, for each year to in 2010-2017, we run the following pooled regression for all the

firms in a given industry-j using all the days in the recursive rolling window that starts from

the year 2010 until the year to.

rrisk-adji,t = αj,to + β
(1)
j,to

× r
(1)
t + β

(2)
j,to

× r
(2)
t ...+ β

(10)
j,to

× r
(10)
t + ϵi,t, (D.1)

where αj,to and β
(c)
j,to

are the industry-and-year specific intercept and coefficients; ϵi,t is the

error term; and rct for c ∈ {1, ..., 10} correspond to the 10 different sources of aggregate shocks

in Alfaro, Bloom and Lin (2018): (i) When c represents oil prices, rct is the daily growth rate

of the price of the crude oil futures contract CL1 COMB Comdty on Bloomberg; (ii) when

c represents U.S. 10-year Treasury, rct is the daily first difference of the 10-year Treasury

yield multiplied by negative 1;6 (iii) when c represents U.S. policy uncertainty, rct is the daily

growth rate of the policy uncertainty index in Baker, Bloom and Davis (2016); and (iv)-(x)

when c represents the exchange rates between the U.S. dollars and seven major currencies

around the world, rct is the daily growth rate of the corresponding exchange rate. The seven

major currencies are the Australian dollar, British pound, Canadian dollar, Euro, Japanese

yen, Swedish krona, and Swiss franc. The daily growth rate of a variable a is calculated as

[at − at−1]/[(at + at−1)/2], where t is a day. For each estimated coefficient βc
j,to , we obtain

its t-statistic tcj,to and replace the t-statistic with 0 if the absolute value of the t-statistic

is smaller than 1, indicating that the coefficient is insignificant.7 We generate a weighted

5At least 252 trading days of non-missing data are required in this estimation.
6This calculation uses the first-order approximation of duration.
7The usual criterion of statistical significance at the 10 percent level is 1.645. We instead use 1 because a

9



coefficient βc,weighted
j,to

= (|tcj,to |/
∑

c |tcj,to|) · β
c
j,to .

Third, the instruments for ∆si,to are constructed as wc
i,to = |βc,weighted

j,to
| · ∆σc

to , where

firm-i belongs to industry-j, and σc
to represents aggregate uncertainty measures calculated as

follows. (i) When c represents oil prices, σc
to is the annual average of daily (30-day) volatility

of the crude oil futures contract CL1 COMB Comdty (Bloomberg); (ii) when c represents the

U.S. 10-year Treasury rate, σc
to is the annual average of daily TYVIX; (iii) when c represents

U.S. policy uncertainty, σc
to is the annual average of daily policy uncertainty index in Baker,

Bloom and Davis (2016); and (iv)-(x) when c represents the exchange rates between U.S.

dollars and seven abovementioned currencies, σc
to is the annual average of daily (three-month)

volatility of each exchange rate (Bloomberg CMPN). The first-stage regression results are

reported in Table D.1.8

Note that the weighting schemes directly follow Alfaro, Bloom and Lin (2018) and aim

to reduce noise in the estimation of the industry exposure to different macro uncertainty

shocks. Without the weighting schemes, the coefficients in regression (D.1) would represent

the industry exposure in a way that a larger coefficient indicates higher exposure. However,

a large coefficient can be statistically insignificant if its standard error is proportionally large.

The weighting schemes instead weight each coefficient by its t-statistics value, where a less

significant coefficient (indicated by a smaller t value) receives a smaller weight, and therefore,

can result in a better measure of the industry exposure. That said, for our empirical sample,

dropping the weighting schemes leads to similar estimation results, shown in Appendix E.

We further follow Alfaro, Bloom and Lin (2018) to construct 10 first-moment control

variables to make sure that our results are not driven by movements in oil prices, Treasury

yields, U.S. government policies, and exchange rates themselves but rather by the movements

in their volatility (see section section IV.C.3 in the main text). The 10 control variables are

constructed by βc,weighted
j,to

· rcto , where r
c
to is the first-moment aggregate shock in source c in

year to. When c represents oil prices, U.S. 10-year Treasury, or the seven exchange rates, rcto
is the annual average of the corresponding daily rct in equation (D.1). When c represents U.S.

policy uncertainty, rcto is the annual growth of the U.S. government expenditure as a share

of GDP. In addition, in a robustness check (see section IV.C.3), we use out-of-sample data

to construct wi,t to ensure that these instruments are exogenous. That is, we fit regression

(D.1) using the individual stock return data between 1998 and 2009 to obtain βc,weighted
j,to

.

However, we still use the aggregate data between 2009 and 2017 to calculate ∆σc
to because

t-value larger than 1 (or smaller than -1) means that this coefficient is significant in economic terms in the
sense that dropping the variable from the regression model can considerably influence the estimation results.

8We further add the cash-flow-to-capital ratio and time dummies to the first-stage regression, because
they are exogenous variables. The first-stage regression is estimated using pooled OLS; the constant term is
included in the estimation but omitted from the table.
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aggregate uncertainty shocks are assumed to be exogenous to individual firms’ investment

plans.

Table D.1: First-stage pooled regression

(1)

Volatility changes

W oil 2.644***

(0.206)

W 10-year Treasury 28.92

(37.17)

W policy uncertainty -26.48

(29.51)

W AUD 2.299

(2.906)

W CAD 2.000

(2.069)

W CHF 6.438***

(1.281)

W EUR 3.177

(2.233)

W GBP 4.954*

(2.640)

W JPY 4.339*

(2.553)

W SEK 7.791***

(2.155)

CF/K (z) 0.00427

(0.00496)

Year dummy 2010 -0.205***

(0.00663)

Year dummy 2011 0.0743***

(0.00631)

Year dummy 2012 -0.0484***

(0.00634)

Year dummy 2013 -0.00855

(0.00672)

Continued on the next page
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Table D.1 – continued from the previous page

(1)

Volatility changes

Year dummy 2014 0.0516***

(0.00622)

Year dummy 2015 0.0437***

(0.00742)

Year dummy 2016 0.0629***

(0.00672)

Number of firms 1,025

Number of obs 8,200

R-squared 0.353

F-test 248.2

*** p-val < 0.01; ** p-val < 0.05; * p-val < 0.1.

Appendix E. Robustness results

Figure E.1 shows the estimates of the first-order derivative, dĝ (s) /ds, of the investment-

uncertainty relation for the following robustness checks: panel (a) for k = 6 (footnote 20 in

Li and Sun (2022)); (b) for less strict sample selection, and (c) for stricter sample selection

(footnote 25 in Li and Sun (2022)); (d)-(l) for robustness outlined in section IV.C.3 in Li

and Sun (2022), (1)-(8).9 The results are similar to Figure 1 in Li and Sun (2022).

Figure E.2 shows results of more robustness checks: panel (a) for using linear specifica-

tions for f0 and r0;
10 (b) for dropping all the instruments related to time dummies when

treating mismeasured q; (c) for dropping all the instruments related to cash flow when treat-

ing mismeasured q; (d) for dropping all the instruments related to volatility when treating

mismeasured q; (e) for dropping all the instruments related to the control function when

treating mismeasured q;11 (f) for using granular instrumental variables (GIV) as in Gabaix

9Note that for panel (f) where control variables from Kim and Kung (2017) and Panousi and Papanikolaou
(2012) are included, we follow their work to treat those variables as exogenous variables in the estimation.

10See discussions in section II in Li and Sun (2022).
11For panels (b)-(e), see discussions in footnote 18 in Li and Sun (2022).
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Figure E.1: Investment-Uncertainty Relation: Robustness

(a) k = 6 (b) Less strict selection (c) Stricter selection

(d) Pre-sample W -s (e) Control for first moments (f) Include other controls

(g) Unbalanced short panel (h) Unbalanced long panel (i) EGARCH volatility

(j) Idiosyncratic volatility (k) Alternative cash flow (l) Include R&D
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and Koijen (2020);12 (g) for using W -variables without the weighting scheme.13 The results

are similar to Figure 1 in Li and Sun (2022).

Figure E.3 shows the comparison of investment-uncertainty relations between low- and

high-irreversibility subsamples, where irreversibility is measured by a firm-level scale inflex-

ibility index calculated from quarterly data in our sample period, following Gu, Hackbarth

and Johnson (2018). This comparison is similar to Figure 5 in Li and Sun (2022).

Table E.1 corresponds to the discussion in footnote 29 in Li and Sun (2022) in which

we compare three different estimates of the linear model (1). Column (1) includes the

results from our baseline estimator but without series approximation. Column (2) shows the

results from a modified Erickson, Jiang and Whited (2014) (EJW) estimator, in which we

combine their measurement error remedy with the control function approach in our method to

simultaneously account for mismeasurement in q and the regressor endogeneity of individual

volatility. Column (3) represents the estimates obtained from the original EJW method

and their empirical model (note that their model does not include individual volatility as a

regressor). The EJW estimates utilize up-to-4th order cumulants following the suggestion in

Erickson, Parham and Whited (2017). We observe that the estimates are close to each other

in columns (1) and (2), implying that the measurement error remedy in our estimator and

that in EJW perform equally well after the regressor endogeneity of uncertainty is treated.

Moreover, the coefficient of cash flow is significant in all the three columns. Thus, cash flow

is a crucial factor influencing investment. This result is different from those in Erickson and

Whited (2000) and Erickson, Jiang and Whited (2014). The comparison here shows that

the difference is likely due to different empirical samples rather than estimation methods.

Table E.2 reports the percentage of firms in an extended sample for which key variables

may contain unit roots. The extended sample includes 3,730 individual firms that have at

least 3 years of non-missing data between 1986-2017. For each firm, and for each key variable,

we conduct the Augmented Dickey-Fuller (ADF) test and the Phillips-Perron (PP) test for

unit roots. The null hypothesis of both tests is that the variable contains a unit root, and

the alternative is that the variable is stationary. For each variable, we report the percentage

of firms for which we cannot reject the null of unit roots under the usual 5 percent statistical

level. For example, the number for “y: I/K” under the ADF test is 68.31, indicating that for

68.31 percent of the 3,730 firms, the variable of investment-to-capital ratio is likely to contain

12We follow the idea of equations (5) and (6) in Gabaix and Koijen (2020) to construct a GIV as the
difference between size-weighted average stock volatility and equal-weighted average stock volatility for each
business sector (classified by two-digit SIC codes). We choose to let our instruments vary with both sectors
and time, rather than just time as in Gabaix and Koijen (2020), to increase estimation efficiency. Moreover,
given that both our main regression model and the first-stage regression model contain time dummies as
regressors, using GIVs which vary only with time as instruments is not feasible due to multicollinearity.

13See discussions in Appendix D.
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Figure E.2: Investment-Uncertainty Relation: More Robustness

(a) Linear f0 and r0 (b) Drop T instruments (c) Drop z instruments

(d) Drop s instruments (e) Drop v instruments (f) GIV

(g) No weights in W -s
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Figure E.3: Low Versus High Irreversibility (Measured by Inflexibility)

(a) ĝ (s) (b) dĝ (s) /ds

Table E.1: Linear estimates

(1) (2) (3)
Our estimator Modified EJW EJW

Tobin’s q 0.01*** 0.01* 0.01*
(0.002) (0.004) (0.003)

Cash flow 0.03*** 0.05*** 0.05***
(0.008) (0.014) (0.013)

Individual volatility -0.08*** -0.08***
(0.012) (0.016)

Control function -0.03*** -0.03***
(0.009) (0.011)

Standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1
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Table E.2: Unit-root tests

y: I/K x: Tobin’s q z: cash flow s: volatility

ADF 68.31 77.51 74.08 76.6
PP 66.06 74.64 72.04 72.49

a unit root according to the ADF test. The test results reported here are obtained without

a time trend and under the optimal number of lags for each firm, equal to int{4(T/100)2/9},
where int takes the integer value, and T refers to each firm’s time-series length (see official

documents of Stata 16). The results are also robust to a uniform setting of lags between 1-3

and both with and without a time trend.14

Appendix F: Mathematical Proofs

In this section, En (·) denotes the average n−1
∑n

i=1 over index i and E (·) denotes the

population expectation. Additionally, (i) p̃l (vi,t) = pl (vi,t)−T−1
∑T

s=1 pl (vi,s) and p̃
′
l (vi,t) =

p′l (vi,t)−T−1
∑T

s=1 p
′
l (vi,s) ; (ii)

∥∥P knT
∥∥
l
= max0≤j≤l supx∈R

∥∥djP knT (x) /dxj
∥∥ for l = 0, 1, 2;

(iii) ∥A∥ = [tr (AA′)]1/2 and ∥A∥sp = λ
1/2
max (AA′) denote the Euclidean and spectral norm of

matrix A, respectively. In addition, to fit our mathematical equations with page margin, we

introduce the symbols ♠, ♣, ♦, ⋆, ▼, and ▽; they may have different meanings in different

places.

Lemma F.1 Under Assumptions 1-4 and denoting

δnT = (nT )−1/2
∥∥P knT

∥∥
1
,

we have ∥∥∥En

(˜̂q′
i
˜̂
di − q̃′

id̃i

)∥∥∥ = Op

(
δnTk

1/2
nT

)
(F.1)∥∥∥∥En

[(˜̂
di − d̃i

)′
∆̃i

]∥∥∥∥ = Op

(
δnTk

−ζ
nT

)
(F.2)∥∥∥∥En

[(˜̂
di − d̃i

)′
ε̃i

]∥∥∥∥ = Op

(
δnT/

√
n
)

(F.3)

where ∆̃i = JT∆i, ∆i = [∆i,1, . . . ,∆i,T ]
′and ∆i,t = f0 (zi,t−1) + g0 (si,t−1) + r0 (vi,t)−E ′

i,tϑ0.

14A uniform setting of lags means that we set the same number of lags to all firms, regardless of their
time-series length. We consider the maximum number of lags to be 3 because the maximum time-series
length is 32 years, and int{4(T/100)2/9} = 3.
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Proof of Lemma F.1: The matrix form of model (6) in the main text is given by

∆s = inTη0 +Wπ0 + v

where s = [s′1, . . . , s
′
n]

′, v = [v′
1, . . . ,v

′
n]

′, and W = [W1, . . . ,Wn]
′ is an (nT ) × dw ma-

trix. Applying the least squares estimation gives ∥π̂ − π0∥ = Op

(
(nT )−1/2

)
and η̂ − η0 =

Op

(
(nT )−1/2

)
under Assumptions 1(i) and 3(i).

First, we verify (F.1). It is readily seen that

=En

(˜̂q′
i
˜̂
di − q̃′

id̃i

)
(F.4)

= En

[(˜̂qi − q̃i

)′ (˜̂
di − d̃i

)]
+ En

[(˜̂qi − q̃i

)′
d̃i

]
+ En

[
q̃′
i

(˜̂
di − d̃i

)]
= En

{(
P knT
v̂,i − P knT

v,i

)′
JT

[
IT ⊗ vec

(
JT

(
P knT
v̂,i − P knT

v,i

))′]}
+ En

[(
P knT
v̂,i − P knT

v,i

)′
JT d̃i

]
+ En

{
q̃′
i

[
IT ⊗ vec

(
JT

(
P knT
v̂,i − P knT

v,i

))′]}
,

where for the first term, we have

∥∥∥∥En

{(
P knT
v̂,i − P knT

v,i

)′
JT

[
IT ⊗ vec

(
JT

(
P knT
v̂,i − P knT

v,i

))′]}∥∥∥∥
≤ En

(∥∥∥∥(P knT
v̂,i − P knT

v,i

)′
JT

[
IT ⊗ vec

(
JT

(
P knT
v̂,i − P knT

v,i

))′]∥∥∥∥)
= En

{
tr

[(
P knT
v̂,i − P knT

v,i

)′
JT

(
P knT
v̂,i − P knT

v,i

)]}
= En

(
knT∑
l=1

T∑
t=1

[p̃l (v̂i,t)− p̃l (vi,t)]
2

)
= Op

(
δ2nT
)

(F.5)

under Assumptions 1(i) and 2(ii) because v̂i,t − vi,t=η0 − η̂ +w′
i,t (π0 − π̂), and applying
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Taylor expansion yields

p̃l (v̂i,t)− p̃l (vi,t) = p′l (̊vi,t) (v̂i,t − vi,t)− T−1

T∑
s=1

p′l (̊vi,s) (v̂i,s − vi,s)

= p′l (̊vi,t)
[
η0 − η̂ +w′

i,t (π0 − π̂)
]

− T−1

T∑
s=1

p′l (̊vi,s)
(
η0 − η̂ +w′

i,s (π0 − π̂)
)

= p̃′l (̊vi,t) (η0 − η̂)− (π0 − π̂)′
[
wi,tp

′
l (̊vi,t)− T−1

T∑
s=1

wi,sp
′
l (̊vi,s)

]

where v̊i,t lies between v̂i,t and vi,t. Additionally, we have∥∥∥∥En

[(
P knT
v̂,i − P knT

v,i

)′
JT d̃i

]∥∥∥∥ ≤ En

∥∥∥∥(P knT
v̂,i − P knT

v,i

)′
JT d̃i

∥∥∥∥
≤ 2En

∣∣∣∣tr [(P knT
v̂,i − P knT

v,i

)′
JT

(
P knT
v̂,i − P knT

v,i

)] [
tr
(
Ẽ′

iẼi

)
+ tr (F ′

TFT )
]∣∣∣∣1/2

+ 2En

∣∣∣∣tr((P knT
v̂,i − P knT

v,i

)′
JT (IT ⊗ ỹi)

′ ♠ (IT ⊗ ỹi) JT

(
P knT
v̂,i − P knT

v,i

))∣∣∣∣1/2
= Op

(
δnTk

1/2
nT

)
+Op (δnT )

under Assumptions 1(i), 2(ii) and 3(i), where we obtain the last line using Hölder’s inequality,

(F.5), Lemma F.2(i), tr(AB) ≤tr(A)tr(B) for non-negative definite matrices A and B and

♠ = [(JT ⊗ JT )DT ]⊥ [(JT ⊗ JT )DT ]
′
⊥, tr[♠] = m0. Similarly, we obtain∥∥∥∥En

{
q̃′
i

[
IT ⊗ vec

(
JT

(
P knT
v̂,i − P knT

v,i

))′]}∥∥∥∥
≤ En

∥∥∥∥q̃′
i

[
IT ⊗ vec

(
JT

(
P knT
v̂,i − P knT

v,i

))′]∥∥∥∥
= En

∣∣∣∣tr [(P knT
v̂,i − P knT

v,i

)′
JT

(
P knT
v̂,i − P knT

v,i

)]
tr (q̃′

iq̃i)

∣∣∣∣1/2
= Op

(
δnTk

1/2
nT

)
.

Hence, under Assumptions 1-4, taking together the results above gives (i).
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Second, applying a similar proof method used above and by (F.5), we have∥∥∥∥En

[(˜̂
di − d̃i

)′
∆̃i

]∥∥∥∥ =
∥∥∥En

{[
IT ⊗ vec

(
JT

(
P knT
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))]
∆̃i

}∥∥∥
≤

√
TEn
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′
i∆̃itr

[(
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)′
JT

(
P knT
v̂,i − P knT

v,i

)])1/2

= Op

(
δnTk

−ζ
nT

)
,

where max1≤i≤n

∣∣∣∆̃′
i∆̃i

∣∣∣ ≤Mk−2ζ
nT under Assumption 2(i), and

E
∥∥∥∥En

[(˜̂
di − d̃i

)′
ε̃i

]∥∥∥∥2
= E

∥∥∥En

{[
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(
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))]
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}∥∥∥2
= n−1E
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(
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(
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))]
ε̃iε̃

′
i

[
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(
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(
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v̂,i − P knT

v,i
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≤ n−1E
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(
P knT
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= O
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δ2nT/n

)
.

This completes the proof of this lemma.

Lemma F.2 Under Assumptions 1-4, we have∥∥∥En

(
d̃′
iq̃i

)
− E

(
d̃′
iq̃i

)∥∥∥ = Op

(
knT/

√
n
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(
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)
− E

(
d̃′
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.
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Proof of Lemma F.2: First, we consider

E
∥∥∥En

(
d̃′
iq̃i

)
− E
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d̃′
iq̃i

)∥∥∥2
= n−1E
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where ♠ = [(JT ⊗ JT )DT ]⊥ [(JT ⊗ JT )DT ]
′
⊥. Second, we obtain

E
∥∥∥En
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)
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under Assumptions 1-2. This completes the proof of this lemma.

Lemma F.3 Under Assumptions 1-4, we have
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(F.6)

An = En

(˜̂q′
1,i
˜̂
di

)
ΩnEn
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)
, A = E
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. (F.7)
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Proof of Lemma F.3: For any comparable matrices A, B, C, and D, we have AΩnC
′−

BΩnD
′ = (A−B) Ωn (C −D)′ +(A−B) ΩnD

′ +BΩn (C −D)′, so that

∥AΩnC
′ −BΩnD

′∥sp ≤ ∥A−B∥sp ∥Ωn∥sp ∥C −D∥sp + ∥A−B∥sp ∥Ωn∥sp ∥D∥sp
+ ∥B∥sp ∥Ωn∥sp ∥C −D∥sp . (F.8)

Hence, by Lemmas F.1 and F.2 and under Assumption 3, we have
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sp

= Op

(
knT/

√
n+ δnTJ

1/2
)
,

and

∥An − A∥sp

≤
∥∥∥En

(˜̂q′
1,i
˜̂
di

)
− E

(
q̃′
1,id̃i

)∥∥∥
sp
∥Ωn∥sp

∥∥∥∥En

(˜̂
d
′

i∆̃i

)
− E

(
d̃′
i∆̃i

)∥∥∥∥
sp

+
∥∥∥En

(˜̂q′
1,i
˜̂
di

)
− E

(
q̃′
1,id̃i

)∥∥∥
sp
∥Ωn∥sp

∥∥∥E(d̃′
i∆̃i

)∥∥∥
sp

+
∥∥∥E(q̃′

1,id̃i

)
Ω1/2

n

∥∥∥
sp

∥∥Ω1/2
n

∥∥
sp

∥∥∥∥En

(˜̂
d
′

i∆̃i

)
− E

(
d̃′
i∆̃i

)∥∥∥∥
sp

= Op

(
k−ζ
nT

(
knT/

√
n+ δnTJ

1/2
))

.

Next, we have

∥∥Λ−1
n − Λ−1

∥∥
sp

=
∥∥Λ−1

n (Λn − Λ)Λ−1
∥∥
sp

≤
∥∥Λ−1

n

∥∥
sp
∥Λn − Λ∥sp

∥∥Λ−1
∥∥
sp

= Op

(
knT/

√
n+ δnTJ

1/2
)

under Assumption 3(ii), where ∥Λ−1
n ∥sp = ∥Λ−1∥sp + O

(
∥Λn − Λ∥sp

)
. This completes the

proof of this lemma.
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Proof of Theorem B.1: We first verify (i). Applying simple algebra yields

θ̌1=Λ−1
n En

(˜̂q′
1,i
˜̂
di

)
ΩnEn

(˜̂
d
′

iỹi

)
= θ1,0 + Λ−1

n En

(˜̂q′
1,i
˜̂
di

)
Ωn

[
En

(˜̂
d
′

i∆̃i

)
+ En

(˜̂
d
′

iε̃i

)]
= θ1,0 + Λ−1

n An + Λ−1
n En

(˜̂q′
1,i
˜̂
di

)
ΩnEn

(˜̂
d
′

iε̃i

)
= θ1,0 + Λ−1A+

(
Λ−1

n An − Λ−1A
)
+ Λ−1

n En

(˜̂q′
1,i
˜̂
di

)
ΩnEn

(˜̂
d
′

iε̃i

)
,

where ∥b∥ = ∥b∥sp for any vector b, and by Lemmas F.1-F.3 we obtain

∥∥Λ−1
n An − Λ−1A

∥∥
≤
∥∥(Λ−1

n − Λ−1
)
(An − A)

∥∥+ ∥∥(Λ−1
n − Λ−1

)
A
∥∥+ ∥∥Λ−1 (An − A)

∥∥
= Op

(
δnTk

1/2−ζ
nT

)
,

and ∥∥∥∥Λ−1
n En

(˜̂q′
1,i
˜̂
di

)
ΩnEn

(˜̂
d
′

iε̃i

)∥∥∥∥
≤
∥∥∥∥(Λ−1

n − Λ−1
)
En

(˜̂q′
1,i
˜̂
di

)
ΩnEn

(˜̂
d
′

iε̃i

)∥∥∥∥+ ∥∥∥∥Λ−1En

(˜̂q′
1,i
˜̂
di

)
ΩnEn

(˜̂
d
′

iε̃i

)∥∥∥∥
≤
(∥∥Λ−1

n − Λ−1
∥∥
sp
+
∥∥Λ−1

∥∥
sp

)∥∥∥∥En

(˜̂q′
1,i
˜̂
di

)
ΩnEn

(˜̂
d
′

iε̃i

)∥∥∥∥
sp

= Op (1)

(∥∥∥∥(En

(˜̂q′
1,i
˜̂
di

)
− E

(
q̃′
1,id̃i

))
ΩnEn

(˜̂
d
′

iε̃i

)∥∥∥∥
sp

+ ∥♦∥sp

)
= Op

((
δnT +

√
J
)
/
√
n
)

(F.9)

where ♦ = E
(
q̃′
1,id̃i

)
ΩnEn

(˜̂
d
′

iε̃i

)
, because E

(∥∥∥E(q̃′
1,id̃i

)
ΩnEn

(
d̃′
iε̃i

)∥∥∥2) = n−1E [ε̃′iε̃itr (♣)]

= O (J/n);15 ♣ = E
(
q̃′
1,id̃i

)
Ωnd̃

′
id̃iΩnE

(
q̃′
1,id̃i

)
. Hence, under Assumption 4, we have∥∥θ̌1 − θ1,0∥∥ = Op

(
k−ζ
nT +

√
J/n

)
because the bias term, Λ−1A, is of order O

(
k−ζ
nT

)
under

15This is from Assumption 3.
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Assumptions 2(i) and 3. Next, since f̌ (z)− f0 (z)

ǧ (s)− g0 (s)

ř (v)− r0 (v)

 =

 f̌ (z)− ϑ′
z,1,0P⃗

knT (z)

ǧ (s)− ϑ′
s,1,0P⃗

knT (s)

ř (v)− ϑ′
v,1,0P⃗

knT (v)

+

 ϑ′
z,1,0P⃗

knT (z)− f0 (z)

ϑ′
s,1,0P⃗

knT (s)− g0 (s)

ϑ′
v,1,0P⃗

knT (v)− r0 (v)



=

 P⃗ knT (z)′ 0 0

0 P⃗ knT (s)′ 0

0 0 P⃗ knT (v)′


 ϑ̌z,1 − ϑz,1,0

ϑ̌s,1 − ϑs,1,0

ϑ̌v,1 − ϑv,1,0

+Op

(
k−ζ
nT

)

under Assumption 2(i); then, under Assumption 2(ii), we obtain result (ii) of this theorem,

where the subscript “1” has the same meaning as that in θ̌1 and θ1,0.

Under Assumption 4 and by the proof above, we have
α̌− α0

ϑ̌z,1 − ϑz,1,0

ϑ̌s,1 − ϑs,1,0

ϑ̌v,1 − ϑv,1,0

≈
[
E
(
q̃′
1,id̃i

)
ΩnE

(
d̃′
iq̃1,i

)]−1

E
(
q̃′
1,id̃i

)
ΩnEn

(
d̃′
iε̃i

)
, (F.10)

where for any p1 ×miv selection matrix S with finite p1, applying the multivariate central

limit theorem yields

n−1/2S
n∑

i=1

d̃′
iε̃i

d→ N
(
0p1 , SE

(
d̃′
iε̃iε̃

′
id̃i

)
S
)
. (F.11)

Denoting a J × J matrix

Σ̂n = Λ−1
n En

(˜̂q′
1,i
˜̂
di

)
ΩnEn

(˜̂
d
′

i
̂̃εî̃ε′i˜̂di

)
ΩnEn

(˜̂
d
′

i
˜̂q′
1,i

)
Λ−1

n (F.12)

and applying the delta method yields√
n/σ̂2

α (α̌− α0)
d→ N (0, 1)

where we have

σ̂2
α = e′1,JΣ̂ne1,J

p→ σ2
α, (F.13)

and σ2
α equals σ̂2

α with En, ˜̂q1,i,
˜̂
di and ̂̃εi replaced by E, q̃1,i, d̃i and ε̃i, respectively, and

e1,J is the first column of IJ . In addition, we have
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√
nΞ̂−1

n

 f̌ (z)− f0 (z)

ǧ (s)− g0 (s)

ř (v)− r0 (v)

 d→ N (03, I3)

where, letting S0 equal the last J − 1 rows of the identity matrix IJ , we define

Ξ̂n =

 P⃗ knT (z)′ 0 0

0 P⃗ knT (s)′ 0

0 0 P⃗ knT (v)′

S0Σ̂nS
′
0

 P⃗ knT (z) 0 0

0 P⃗ knT (s) 0

0 0 P⃗ knT (v)

 .

(F.14)

This completes the proof of this theorem.

Proof of Theorem B.2: By Theorem B.1, we have
∥∥θ̌1 − θ1,0∥∥ = Op (an), where an → 0

as n → ∞. It follows that
∥∥θ̌ − θ0

∥∥ =
∥∥P ′

J
(
θ̌1 − θ1,0

)∥∥ = Op (an), where θ̌ = P ′
J θ̌1. Since

Qn

(
θ̌;ψ

)
≤ Qn (θ0;ψ), for any ϖ ∈ Rp, we have

Qn (θ0 +ϖan;ψ)−Qn

(
θ̌;ψ

)
≥ Qn (θ0 +ϖan;ψ)−Qn (θ0;ψ)

= Ḡn (θ0 +ϖan)
′ ΩnḠn (θ0 +ϖan)− Ḡn (θ0)

′ ΩnḠn (θ0)

+

p∑
l=1

[pc (|θl,0 +ϖlan| , ψ)− pc (|θl,0| , ψ)]

= −2anḠn

(
θ̄
)′
ΩnEn

(˜̂
d
′

i
˜̂qi

)
ϖ

+

p∑
l=1

[
anϖlp

′
c (|θl,0| , ψ) +

a2nϖ
2
l

2
p′′c (|θl,0 + υlϖlan| , ψ)

]
(F.15)

where θ̄ = aθ0 + (1− a) (θ0 +ϖan) for some a ∈ (0, 1), υl ∈ (0, 1) for l = 1, . . . , p, and

∂Ḡn (θ) /∂θ
′ = −En

(˜̂
d
′

i
˜̂qi

)
. First, we have

Ḡn

(
θ̄
)
= En

[˜̂
d
′

i

(
ỹi − ˜̂qiθ̄

)]
= En

[˜̂
d
′

i

(
q̃iθ0 − ˜̂qiθ̄

)]
+ En

(˜̂
d
′

i∆̃i

)
+ En

(˜̂
d
′

iε̃i

)
= En

[˜̂
d
′

iJT

(
P knT
v − P knT

v̂

)]
ϑv,0 + an (1− a)En

(˜̂
d
′

i
˜̂qi

)
ϖ

+ En

(˜̂
d
′

i∆̃i

)
+ En

(˜̂
d
′

iε̃i

)
.
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It follows that Ḡn

(
θ̄
)′
ΩnEn

(˜̂
d
′

i
˜̂qi

)
ϖ = A1 + an (1− a)A2 +A3 +A4, where the definition

of A1 to A4 will be clarified in the context below.

(i) We have

∥A1∥ =

∣∣∣∣ϑ′
v,0En

[˜̂
d
′

iJT

(
P knT
v − P knT

v̂

)]′
ΩnEn

(˜̂
d
′

i
˜̂qi

)
ϖ

∣∣∣∣
≤
∥∥∥∥En

[˜̂
d
′

iJT

(
P knT
v − P knT

v̂

)]
ϑv,0 ×

∥∥∥∥ ∥Ωn∥sp

∥∥∥∥En

(˜̂
d
′

i
˜̂qi

)
ϖ

∥∥∥∥
= ∥ϖ∥Op

(
δ2nT
)

because we have∥∥∥∥En

[˜̂
d
′

iJT

(
P knT
v − P knT

v̂

)]
ϑv,0

∥∥∥∥
=

∥∥∥∥En

[
IT ⊗ vec

(
JT

(
P knT
v̂,i − P knT

v,i

))′
JT

(
P knT
v − P knT

v̂

)]
ϑv,0

∥∥∥∥
≤ En

∥∥∥∥[IT ⊗ vec
(
JT

(
P knT
v̂,i − P knT

v,i

))′
JT

(
P knT
v − P knT

v̂

)]
ϑv,0

∥∥∥∥
= En

(
tr [⋆]ϑ′

v,0

(
P knT
v − P knT

v̂

)′
JT

(
P knT
v − P knT

v̂

)
ϑv,0

)1/2

≤ ∥ϑv,0∥En (tr [⋆]) = Op

(
δ2nT
)

by (F.5), where ⋆ =
(
P knT
v̂,i − P knT

v,i

)′
JT

(
P knT
v̂,i − P knT

v,i

)
, and

∥∥∥∥En

(˜̂
d
′

i
˜̂qi

)
ϖ

∥∥∥∥
≤
∥∥∥∥En

(˜̂
d
′

i
˜̂qi − E

(
d̃′
iq̃i

))
ϖ

∥∥∥∥+ ∥∥∥E(d̃′
iq̃i

)
ϖ
∥∥∥

≤ ∥ϖ∥

(∥∥∥∥En

(˜̂
d
′

i
˜̂qi − E

(
d̃′
iq̃i

))∥∥∥∥
sp

+
∥∥∥E(d̃′

iq̃i

)∥∥∥
sp

)(
1 +Op

(
knT/

√
n
))

by Lemma F.2.

(ii) We haveA2 = ϖ′En

(˜̂
d
′

i
˜̂qi

)′

ΩnEn

(˜̂
d
′

i
˜̂qi

)
ϖ = ϖ′Λϖ+ϖ′ (Λn − Λ)ϖ. Asϖ′ (Λn − Λ)ϖ

≤ ∥ϖ∥ ∥Λn − Λ∥sp = ∥ϖ∥Op

(
knT/

√
n+ δnTJ

1/2
)
by Lemma F.3, we obtain A2 = ϖ′Λϖ +

∥ϖ∥Op

(
knT/

√
n+ δnTJ

1/2
)
.
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(iii) Under Assumption 2(i) and by Lemma F.3, we have

|A3| =
∣∣∣∣ϖ′En

(˜̂
d
′

i∆̃i

)
ΩnEn

(˜̂
d
′

i
˜̂qi

)
ϖ

∣∣∣∣ = ∥ϖ∥Op

(
k−ζ
nT

(
knT/

√
n+ δnTJ

1/2 + 1
))

.

Following the proof of (F.9) we obtain∣∣∣∣En

(˜̂
d
′

iε̃i

)′

ΩnEn

(˜̂
d
′

i
˜̂qi

)
ϖ

∣∣∣∣ = ∥ϖ∥Op

((
δnT +

√
J
)
/
√
n
)
.

Taking (i)-(iii) together gives

Ḡn

(
θ̄
)′
ΩnEn

(˜̂
d
′

i
˜̂qi

)
ϖ −ϖ′Λϖ

= Op

(
δ2nT + knT/

√
n+ δnTJ

1/2 + k−ζ
nT +

√
J/n

)
∥ϖ∥ (F.16)

so that Ḡn

(
θ̄
)′
ΩnEn

(˜̂
d
′

i
˜̂qi

)
ϖ = ϖ′Λϖ + op (1) is positive in probability approaching one

for any finite ∥ϖ∥.
Second, the MCP penalty and its first-order derivative are defined as

pc (t, ψ) =

{
ψ |t| − t2cψ/2 if |t| ≤ cψ

cψ2/2 otherwise
(F.17)

p′c (t, ψ) =

{
(ψ − |t| /c) sign (t) if |t| ≤ cψ

0 otherwise

for c > 1 and p′′c (t, ψ) = −c−1I (|t| ≤ cψ), where sign (t) = −1, 0, 1 for negative, 0 and

positive t, respectively. Hence, setting (c, ψ) satisfying cψ < q0minl∈Jn {θl,0} for some q0 ≤ 1,

we have
∑p

l=1 anϖlp
′
c (|θl,0| , ψ) = 0 and

p∑
l=1

ϖ2
l p

′′
c (|θl,0 + υlϖlan| , ψ)

=
∑
l∈Jn

ϖ2
l p

′′
c (|θl,0 + υlϖlan| , ψ) +

∑
l /∈Jn

ϖ2
l p

′′
c (|υlϖlan| , ψ) = −c−1

∑
l /∈Jn

ϖ2
l

where p′′c (|υlϖlan| , ψ) = −c−1 for l /∈ Jn if maxl /∈Jn |υlϖlan| < an ∥ϖ∥ < cψ, and for l ∈ Jn ,

p′′c (|θl,0 + υlϖlan| , ψ) = 0, because maxl∈Jn |θl,0 + υlϖlan| >
(
q−1
0 − 1

)
cψ > cψ for q0 < 1/2.
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Combining this result with (F.15) and (F.16) gives

Qn (θ0 +ϖan;ψ)−Qn

(
θ̌;ψ

)
= 2anϖ

′Λϖ − a2n
2c

∑
l /∈Jn

ϖ2
l

+ Op

(
δ2nT + knT/

√
n+ δnTJ

1/2 + k−ζ
nT +

√
J/n

)
an ∥ϖ∥ .

Hence, Qn (θ0 +ϖan;ψ) ≥ Qn

(
θ̌;ψ

)
holds in probability approaching one if the tuning

parameter, ψ, falls into the interval (an ∥ϖ∥ /c,minl∈Jn {θl,0} / (cq0)] for some c > 1, q0 < 1/2

and sufficiently large ∥ϖ∥. Thus, there exists a local minimizer, θ̂ (ψ), of Qn (θ;ψ) in the

ball {θ0 + an ∥ϖ∥ : ∥ϖ∥ ≤M}, and combining this result with Theorem B.1 yields

Pr
(
θ̌ = θ̂ (ψ)

)
→ 1 as n→ ∞.

This completes the proof of this Theorem.

Proof of Theorem B.3: Let Ĵ =supp
(
θ̂
)

and Ĵ = dim
(
Ĵ
)

and split ˜̂qi =[˜̂qĴ ,1,i,
˜̂qĴ ,2,i

]
and θ̃=

[
θ̃
′
1, 0

′
p−Ĵ

]′
, where the parameters in front of ˜̂qĴ ,2,i are all zeros and˜̂qi θ̃ = ˜̂qĴ ,1,iθ̃1. Additionally, we denote a parameter vector θĴ ,0 =

[
θĴ ,1,0, 0p−Ĵ

]
for a

chosen Ĵ where θĴ ,0 is the parameter vector to which θ̂ converge. By definition of θ̃,

Ḡn

(
θ̃
)′
ΩnḠn

(
θ̃
)
≤ Ḡn

(
θ̂
)′
ΩnḠn

(
θ̂
)
and Ḡn

(
θ̃
)′
ΩnḠn

(
θ̃
)
≤ Ḡn

(
θĴ ,0

)′
ΩnḠn

(
θĴ ,0

)
,

which implies that

Ḡn

(
θ̃
)′
ΩnḠn

(
θ̃
)
− Ḡn (θ0)

′ ΩnḠn (θ0) ≤ min (Pn, Sn)

where Pn = Ḡn

(
θ̂
)′
ΩnḠn

(
θ̂
)
− Ḡn (θ0)

′ ΩnḠn (θ0) and

Sn = Ḡn

(
θĴ ,0

)′
ΩnḠn

(
θĴ ,0

)
− Ḡn (θ0)

′ ΩnḠn (θ0) .

For any vector ω ∈ Rp, applying simple algebra gives

Ḡn (θ0 + ω)′ ΩnḠn (θ0 + ω)− Ḡn (θ0)
′ ΩnḠn (θ0)

= ω′Λnω − 2ω′En

(˜̂
d
′

i
˜̂qi

)′

ΩnḠn (θ0) (F.18)

where we denote Λn = En

(˜̂
d
′

i
˜̂qi

)′

ΩnEn

(˜̂
d
′

i
˜̂qi

)
since Ḡn (θ0 + ω) = Ḡn (θ0)−En

(˜̂
d
′

i
˜̂qi

)
ω.
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Additionally, we have

Ḡn (θ0)
′ΩnḠn (θ0) = Op

(
k−2ζ
nT + δ2nTknT + J/n

)
(F.19)

by Lemma F.1, which implies that∣∣∣∣ω′En

(˜̂
d
′

i
˜̂qi

)′

ΩnḠn (θ0)

∣∣∣∣ ≤ ∥∥∥∥ω′En

(˜̂
d
′

i
˜̂qi

)′

Ω1/2
n

∥∥∥∥∥∥Ω1/2
n Ḡn (θ0)

∥∥
= (ω′Λnω)

1/2
Op

(
k−ζ
nT + δnTk

1/2
nT +

√
J/n

)
.

Then, we have∣∣∣∣Ḡn

(
θ̃
)′
ΩnḠn

(
θ̃
)
− Ḡn (θ0)

′ΩnḠn (θ0)−
(
θ̃ − θ0

)′
Λn

(
θ̃ − θ0

)∣∣∣∣
≤
[(
θ̃ − θ0

)′
Λn

(
θ̃ − θ0

)]1/2
Op

(
k−ζ
nT + δnTk

1/2
nT +

√
J/n

)
.

Hence, we obtain[(
θ̃ − θ0

)′
Λn

(
θ̃ − θ0

)]1/2
= Op

(
k−ζ
nT + δnTk

1/2
nT +

√
J/n

)
+
√

min (Pn,+, Sn,+) (F.20)

where Pn,+ = max (Pn, 0) and Sn,+ = max (Sn, 0). By (F.18), we have

Pn =
(
θ̂ − θ0

)′
Λn

(
θ̂ − θ0

)
− 2

(
θ̂ − θ0

)′
En

(˜̂
d
′

i
˜̂qi

)′

ΩnḠn (θ0)

Sn =
(
θĴ ,0−θ0

)′
Λn

(
θĴ ,0−θ0

)
− 2

(
θĴ ,0−θ0

)′
En

(˜̂
d
′

i
˜̂qi

)′

ΩnḠn (θ0) .

By Theorem B.1, we have

Pn,+ ≤ ▼+ ▼1/2Op

(
k−ζ
nT + δnT0k

1/2
nT +

√
J/n

)
= Op

(
k−2ζ
nT +

J

n

)
+Op

[(
k−ζ
nT +

√
J

n

)(
k−ζ
nT + δnTk

1/2
nT +

√
J/n

)]
,

where ▼ =
(
θ̂ − θ0

)′
Λn

(
θ̂ − θ0

)
. In addition, denoting the complement set of J and

Ĵ by J c = {l ∈ (1, . . . , p) : θl,0 = 0} and Ĵ c =
{
l ∈ (1, . . . , p) : θĴ ,l,0 = 0

}
, respectively, we

have 0 ≤ m = dim
(
J c ∩ Ĵ c

)
≤ p− J , where m = 0 if J∩Ĵ = ∅ and m = p− J if J = Ĵ .
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It is readily seen that θĴ ,0 = θ0 so that Sn = 0 if J ⊆Ĵ . If J ⊆Ĵ fails to hold, we have

Sn,+ ≤ ▽+ ▽1/2Op

(
k−ζ
nT + δnTk

1/2
nT

)
= Op (p−m) +Op

(√
p−m

(
k−ζ
nT + δnTk

1/2
nT +

√
J/n

))
,

where ▽ =
(
θĴ ,0−θ0

)′
Λn

(
θĴ ,0−θ0

)
. Therefore, (F.20) is bounded by

(
θ̃ − θ0

)′
Λn

(
θ̃ − θ0

)
= Op

(
k−2ζ
nT +

J

n

)
.

By Lemma F.3, we have ∥Λn − Λ∥sp = Op

(
knT/

√
n+ δnTJ

1/2
)
, where Λ = E

(
d̃′
iq̃i

)′
ΩnE

(
d̃′
iq̃i

)
is a finite non-singular matrix under Assumption 3. Hence,

∥∥∥θ̃ − θ0

∥∥∥ = Op

(
k−ζ
nT +

√
J/n

)
.

This completes the proof of this theorem.
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