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This note includes the following. Section 1 presents a model of risk-based anomaly. Section 2
analyzes a mispricing-based anomaly. Section 3 contrasts risk- and mispricing-based anomalies.
The numerical algorithm and proofs are in Section 4.

1 A model of the discovery of a risk-based anomaly

Consider a two-period model, with time t = 0, 1, 2. Trading takes place at t = 0, 1, and consump-
tion occurs at t = 2. There is one risk-free asset, and its interest rate is normalized to 0. There
are two risky assets, asset 1 and asset 2, each of which is a claim to a single cash flow at t = 2.
There is a continuum of identical investors, with a population size of one. At t = 0, investors are
endowed with one unit of each asset and k dollars cash.

Asset i, for i = 1, 2, is a claim to a cash flow Di at time t = 2. Moreover, D1 and D2 are
independent from each other and have the same ex ante distribution at t = 0. Specifically, for
i = 1, 2, we have

Di = µi,1 × µi,2, (1)

where µi,1 and µi,2 are random variables that will be realized at time t = 1 and t = 2, respectively.
Moreover, µi,t , for i = 1, 2 and t = 1, 2, are independent across i and t, and have the same binary
distribution:

µi,t =

{
µ+ σ with probability p,

µ− σ with probability 1− p,
(2)

where µ > σ > 0, and 0 < p < 1.

For i = 1, 2, and t = 0, 1, 2, we use Pi,t to denote the price of asset i at time t, which will be
determined endogenously in equilibrium. At t = 2, asset prices are pinned down by the final cash
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flow: Pi,2 = Di. We denote the gross return of asset i at time t, for t = 1, 2, as

ri,t ≡
Pi,t
Pi,t−1

.

1.1 Hedging demand

Investors are endowed with a nontradable asset (e.g., labor income), which is a claim to a cash
flow ρD1 at t = 2, with ρ ≥ 0. That is, this endowment is perfectly correlated with the payoff
from asset 1. Denote investors’ wealth, excluding their nontradable endowment, at time t as Wt

for t = 0, 1, 2. If investors allocate a fraction θi,t of Wt to asset i at time t, for i = 1, 2 and t = 0, 1,
their wealth dynamic is given by

Wt+1 = Wt

 ∑
i∈{1,2}

θi,tri,t+1 +

1−
∑

i∈{1,2}

θi,t

 , (3)

with W0 = k + P1,0 + P2,0. Investors’ objective is to choose θi,t, for i = 1, 2, and t = 0, 1, to

max
θi,t

E0 [log (W2 + ρD1)] , (4)

subject to (3). In a reduced form, the above formulation captures the essence of risk-based
anomalies: Investors find asset 1 riskier because its return is correlated with their endowment.
As we will see later, due to this hedging demand, asset 1 has a lower price and a higher expected
return in equilibrium. We will label this return pattern as an “anomaly,” because when an
econometrician observes the return data alone, he would not be able to explain it by CAPM.

1.2 Arbitrageurs

Traditional risk-based explanations of anomalies abstract away from the discovery aspect. Let
us use the value premium as an example. By definition, the “discovery” of the value premium
in Basu (1983) should make at least some market participants aware of the return pattern for
the first time, unless one believes Basu was actually the last person to find out about the return
pattern. In traditional risk-based models of the value premium, however, all investors knew about
the value premium even before the discovery in Basu (1983). That is, this traditional approach
does not take into account the effect of discovery, which is exactly the focus of our paper. That
is, we analyze the fact that the discovery of the anomaly informs some agents about the return
pattern for the first time. For convenience, we call those agents “arbitrageurs,” to highlight that
their risk exposure is different from that of the previously described “investors.”

Specifically, there is a continuum of identical arbitrageurs, with a population size of one.
Their aggregate endowment at t = 0 is W a

0 ≥ 0 dollars in cash. Importantly, they do not have
the hedging demand that investors have, perhaps because arbitrageurs have a different labor
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income profile. To analyze the discovery effect across anomalies, we assume that arbitrageurs
have access to another investment opportunity, which presumably exploits existing anomalies
(say, e.g., currency carry trade). This opportunity is not available to the investors described
earlier, perhaps because those investors do not have the expertise to analyze and implement the
strategy. We call this existing anomaly “asset e,” and assume its gross return at t = 1, 2 is

re,t =

{
µe + σe, with probability pe,

µe − σe, with probability 1− pe,

where µe > σe > 0, and 0 < pe < 1. Moreover, re,t is assumed to be independent from µi,t. That
is, the fundamentals of assets 1 and 2 are independent from the existing anomaly—asset e.

For simplicity, we assume that the return of the existing anomaly re,t is exogenously given.
This simplification shuts down the effect of the discovery on the returns of existing anomalies.
This effect, however, is going to be small if the amount of the capital attracted by this new
anomaly is small relative to the aggregate arbitrage capital attracted by all existing anomalies.1

1.3 Discovery effect

To analyze the discovery effect, we compare the equilibria across the following two economies. In
the first (pre-discovery) economy, arbitrageurs are not aware of the anomaly (i.e., that assets 1
and 2 have the same fundamentals but different prices at t = 0). Hence, they invest in asset e, but
not in assets 1 or 2. In the second (post-discovery) economy, arbitrageurs become aware of the
anomaly and start exploiting it, as well as investing in the existing anomaly—asset e. To capture
this, we assume that arbitrageurs take a long-short strategy in the two assets so that they can
exploit the anomaly and stay “market neutral.”2 Specifically, we use θai,t to denote the fraction of
arbitrageurs’ wealth that is invested in asset i = 1, 2, at time t = 0, 1. A market-neutral strategy
is such that, for t = 0, 1,

θa1,t + θa2,t = 0. (5)

Let us use θae,t to denote the fraction of arbitrageurs’ wealth that is invested in asset e at time

1Of course, our simplification may miss some subtle dynamics. For example, one might conjecture that investors
may substitute between major anomalies, and generate negative correlation among them. Asness, Moskowitz, and
Pedersen (2013) document a negative correlation between value and momentum returns. These specific dynamics
are beyond the scope of this paper.

2This assumption is made so that arbitrageurs focus on exploiting the anomaly. Alternatively, we can simply
assume that after the discovery, arbitrageurs become aware of the existence of assets 1 and 2. Under this alternative
assumption, however, arbitrageurs will not only take a long-short position in the two assets, but also start investing
in both assets. The latter will simply push up the prices of both assets. We are not interested in analyzing this
latter effect. Moreover, in the value premium example, for instance, it seems more natural to think that, after the
discovery of the value premium, hedge funds start buying value stocks and shorting growth stocks, rather than
hedge funds becoming aware of the existence of both value and growth stocks and starting to buy both of them.
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t = 0, 1. Then, arbitrageurs’ wealth dynamic is given by

W a
t+1 = W a

t

 ∑
i∈{1,2,e}

θai,tri,t+1 +

1−
∑

i∈{1,2,e}

θai,t

 , (6)

for t = 0, 1. Their objective is to choose θai,t for i = 1, 2, e, and t = 0, 1, to

max
θai,t

E0 [log (W a
2 )] , (7)

subject to (5) and (6).

In the pre-discovery economy, arbitrageurs are on the sidelines and have no impact on the
markets for assets 1 and 2.3 Hence, the equilibrium can be defined as follows. The pre-discovery
competitive equilibrium is defined as asset prices (Pi,t for i = 1, 2, and t = 0, 1) and investors’
portfolios (θi,t for t = 0, 1 and i = 1, 2), such that investors’ portfolios optimize (4), and markets
clear, i.e., for i = 1, 2 and t = 0, 1,

Wtθi,t = Pi,t. (8)

Similarly, the post-discovery competitive equilibrium is defined as asset prices (Pi,t for i = 1, 2,
and t = 0, 1) and portfolios of investors and arbitrageurs (θi,t for t = 0, 1 and i = 1, 2; and θai,t for
t = 0, 1, i = 1, 2, e), such that investors’ portfolios optimize (4), arbitrageurs’ portfolios optimize
(7), and markets clear, i.e., for i = 1, 2 and t = 0, 1,

Wtθi,t +W a
t θ

a
i,t = Pi,t. (9)

The implicit assumption is that arbitrageurs do not have any hedging demand in asset 1 or
2. Moreover, after the discovery, they know that the cause of the anomaly is investors’ hedging
demand. These are simplifying assumptions. What is necessary is that arbitrageurs have less
hedging demand in asset 1 than investors. Finally, even if arbitrageurs do not know the true
cause of the anomaly, they will still invest in it, and the main implications in this alternative
model remain similar to those in our current setup.4

1.4 Equilibrium

Proposition 1 (Pre-discovery) The pre-discovery equilibrium prices Pi,t and portfolio choices
θi,t can be characterized by equation (8) and

Et

[
ri,t+1 − 1

Wt+1 + ρP1,t+1

]
= 0, for i = 1, 2, t = 0, 1. (10)

Moreover, in this equilibrium, we have P1,0 < P2,0.

3This assumption perhaps resembles the preference of hedge funds, who attempt to deliver market-neutral
returns, and so have little interest in assets 1 and 2 before the discovery. Another reason is that hedge funds may
choose to self-impose restrictions on their investment opportunity set (He and Xiong (2013)).

4See Brennan and Xia (2001) for an analysis of this intuition in the portfolio choice context.
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The above proposition illustrates the anomaly: Although both assets have the same fundamentals
ex ante, they have different prices and hence different future expected returns. Due to their
endowment, investors find asset 1 riskier than asset 2, leading to a lower price for asset 1. We
label this as an anomaly because if econometricians had only the price data, they would find the
return pattern puzzling. This is similar to the anomalies we see in the literature. For example, the
value premium is a puzzle if one looks at the return data alone. Risk-based models try to explore
the idea that value stocks have a higher exposure to certain risk factors, which is similar to the
reduced-formulation of the hedging demand in our model. While traditional risk-based models
focus on the detailed analysis of the exact mechanism through which the hedging demand arises,
they assume away the discovery aspect since all investors know the return pattern all along. In
contrast, we are not interested in the details of the hedging demand, but focus on the analysis of
the consequences of the discovery.

The following proposition characterizes the post-discovery equilibrium.

Proposition 2 (Post-discovery) The post-discovery equilibrium prices Pi,t and portfolio choices
θi,t and θai,1 can be characterized by equations (5), (9), (10), and for t = 0, 1,

Et

[
r1,t+1 − r2,t+1

W a
t+1

]
= 0,

Et

[
re,t+1 − 1

W a
t+1

]
= 0.

Since arbitrageurs are not exposed to the endowment risk that investors have, they find the
anomaly an attractive investment opportunity, and buy asset 1 and short asset 2. For convenience,
we call the return from this long-short portfolio, r1,1 − r2,1, the “anomaly return.”

To analyze the discovery effect, we will compare the post-discovery equilibrium in Proposition
2 with the pre-discovery equilibrium in Proposition 1.5 In particular, following the algorithm in
Section 4.4, we solve both equilibria numerically. The baseline parameter values are summarized
in Table 1. In the following numerical analysis, we vary only one parameter at a time to examine
the effects of the discovery. We have also repeated our numerical analyses for other parameter
values, and none of the following qualitative results are specific to the chosen parameters.

5The equation system in Proposition 2 is highly nonlinear and we have not been able to establish the existence
and uniqueness of their solutions. However, we have always been able to solve the equation system numerically,
and the solution appears to be unique. One might be somewhat surprised that the simple two-period structure in
our model does not allow for a closed-form solution. In fact, the wealth effect in our model has similar complexity
as that in the continuous-time model in Xiong (2001), which also heavily relies on numerical analysis. As noted in
Gromb and Vayanos (2002), a two-period model of arbitrageurs and investors with a wealth effect is not as tractable
as its appearance suggests (page 381). In a recent study, Kondor and Vayanos (2019) gain more tractability by
simplifying investors’ decisions.

5



1.5 Anomaly returns

Figure 1 illustrates the effects of discovery on the expected anomaly returns. The dashed line
represents the size of the anomaly (i.e., the expected anomaly return E0[r1,1 − r2,1]) before the
discovery. Since arbitrageurs have no influence on the markets for assets 1 and 2 before the
discovery, the dashed line is flat: The expected anomaly return is around 5.5% regardless of
arbitrageurs’ wealth.

After the discovery, arbitrageurs start exploiting the opportunity, reducing the expected
anomaly return. As shown by the solid line in Panel A, the post-discovery expected anomaly
return is lower than that in the pre-discovery case (i.e., the solid line is below the dashed line).
In the case W a

0 = 2, for example, the discovery reduces the expected anomaly return from 5.5%
to 5%.

The plot also shows that the effect of discovery is stronger when arbitrageurs have more
wealth. For example, in the case W a

0 = 5, the discovery reduces the expected anomaly return
from 5.5% to 4%. The discovery effect disappears when W a

0 = 0. One can think of this W a
0 = 0

case as representing the traditional modeling approach, where discovery does not change the set
of investors who are aware of the anomaly.

Panels B and C demonstrate the effects of arbitrageurs’ existing investment opportunity (i.e.,
asset e). If arbitrageurs’ existing strategy is more attractive (i.e., µe is higher, or σe is lower),
they will allocate less capital to exploit the new anomaly and so its expected return will drop less.
As shown in Panels B and C, after the discovery of an anomaly, its expected return is increasing
in µe and decreasing in σe.

1.6 Correlation among anomaly returns

By the construction of our model, before the discovery, the anomaly return r1,1−r2,1 is independent
of the return of the existing anomaly re,1. How does the discovery affect the correlation between
r1,1 − r2,1 and re,1?

Intuitively, after the discovery of an anomaly, arbitrageurs start exploiting it, as well as the
existing anomaly, asset e. This creates a correlation through the wealth effect. Suppose the return
from asset e is unexpectedly high one period. This increases the wealth of these arbitrageurs.
Everything else being equal, they will allocate more investment to the newly discovered anomaly.
This higher investment pushes up the price of asset 1 and pushes down the price of asset 2, leading
to a high anomaly return r1,1 − r2,1. Similarly, an unexpectedly low return from asset e leads
to a low anomaly return. That is, the wealth effect increases the correlation between the newly
discovered anomaly return and the return from the existing anomaly.

The above intuition is illustrated in Figure 2. Panel A plots the correlation coefficient between
r1,1 − r2,1 and re,1. Before the discovery, as illustrated by the dashed line, the correlation is 0. In
contrast, the post-discovery correlation, shown by the solid line, is positive. The only exception
is the case W a

0 = 0, where the correlation is zero, the same as in the pre-discovery case. Again,
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one can view this special case as the traditional approach that abstracts away from discovery.

This discovery effect (i.e., the change in the correlation across the pre- and post-discovery
cases) is initially increasing in the size of arbitrage capital W a

0 , and is not monotonic. This is
because arbitrageurs have two effects on the correlation. The first is the aforementioned wealth
effect, which increases the correlation. The second is that as arbitrage capital increases, the prices
of assets 1 and 2 are more driven by their fundamentals. This reduces the correlation between
r1,1 − r2,1 and re,1. When the size of arbitrage capital is sufficiently large, the second effect
dominates, and hence a further increase in arbitrage capital reduces the correlation.

The above intuition is further illustrated in Panels B and C. In particular, when arbitrageurs
have a larger position in asset e (due to a higher µe or a lower σe), their wealth becomes more
sensitive to its realized return re,1. This leads to a stronger wealth effect, i.e., the discovery has a
stronger effect in generating the correlation between r1,1− r2,1 and re,1. In Panel B, for example,
as the expected return from asset e increases (i.e., a higher µe), it leads to a higher correlation
between r1,1 − r2,1 and re,1. Similarly, in Panel C, as the volatility of asset e increases (i.e., a
higher σe), it leads to a weaker wealth effect and a lower correlation.

1.7 Correlation between assets 1 and 2

Our model shows that the discovery of an anomaly reduces the correlation coefficient between
the returns of assets 1 and 2. The intuition is as follows. After the discovery, arbitrageurs long
asset 1 and short asset 2 to exploit the anomaly. Now, suppose arbitrageurs’ wealth increases
due to, say, a high return from their investment in asset e. They will buy more of asset 1 and
sell more of asset 2. This increases asset 1’s return but decreases asset 2’s return. Similarly,
when arbitrageurs’ wealth decreases, they will unwind some of their positions in the long-short
portfolio. That is, they will sell asset 1 and buy asset 2, decreasing asset 1’s return but increasing
asset 2’s return. In both cases, arbitrageurs’ wealth shocks push the returns of the two assets in
opposite directions, which reduces the correlation between the returns of assets 1 and 2.

This intuition is illustrated in Figure 3. The dashed line in Panel A is for the pre-discovery
correlation between assets 1 and 2. Since arbitrageurs are on the sidelines before the discovery,
their wealth level W a

0 does not affect the correlation. Hence, the dashed line is flat. The post-
discovery case is represented by the solid line. It is below the dashed line, suggesting that the
discovery reduces the correlation between assets 1 and 2. It also shows that the larger the size of
arbitrage capital, the larger the reduction in the correlation.

The above intuition further suggests that the discovery effect is stronger when arbitrageurs’
wealth is more volatile. To illustrate this intuition, we plot the correlation between assets 1 and
2 against arbitrageurs’ wealth volatility, which is an endogenous variable. Specifically, we vary
arbitrageurs’ wealth volatility by changing µe from 1.1 to 1.46.6 The solid line in Panel B shows
that after the discovery, the correlation between assets 1 and 2 is decreasing in arbitrageurs’
wealth volatility. In contrast, this relation does not hold before the discovery, as shown by the

6Qualitatively similar results can be generated by varying σe instead.
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dashed line.

1.8 The transition period

In our analysis so far, we have focused on the pre- and post-discovery equilibria and left out
the transition period between the two equilibria. We now briefly analyze the price behavior
during this transition period. To do that, we need to analyze the discovery “within the model,”
rather than comparing equilibria across “two models.” By definition, a discovery is a surprise to
arbitrageurs. Hence, one simple formulation is as follows. Let us consider the economy analyzed
before. At t = 0, arbitrageurs are not aware of the anomaly, and hence the equilibrium prices
and investors’ portfolio holdings are the same as those in Proposition 1. At t = 1, arbitrageurs
recognize the anomaly and start exploiting it. This is a surprise to investors. When they planned
their dynamic portfolio strategy at t = 0, they didn’t expect the arrival of arbitrageurs. Now
that arbitrageurs are taking long-short positions in assets 1 and 2, investors have to adjust their
portfolios accordingly. Hence, the new equilibrium prices at t = 1 are not what investors expected
at t = 0.

We solve this version of the model numerically, and the asset price behavior during the dis-
covery process is captured in Figure 4. It plots the expected anomaly return, conditional on the
discovery at t = 1, E[r1,1 − r2,1|Discovery], against arbitrageurs’ wealth at t = 1. It shows that,
the greater the arbitrageurs’ wealth, the higher the average anomaly return during the transition
period when it is discovered. This is because when the anomaly is discovered, arbitrageurs long
asset 1 and short asset 2, causing a higher anomaly return during the transition period. Afterward,
however, as shown earlier in Figure 1, the expected anomaly return is going to be lower.

The above formulation is of course stylized. The transition period is likely to be a process
rather than instantaneous. Moreover, instead of treating the discovery as a complete surprise, one
can assume that investors have a prior about the probability for a discovery in the next period
and follow the Bayes rule to update their belief. The intuition captured in Figure 4 is likely to
be robust in these two alternative formulations. We leave more elaborate formulations to future
studies.

2 Mispricing-based anomaly

To compare mispricing- and risk-based anomalies, we now analyze a model in which the anomaly
is caused by investors’ behavioral bias. Specifically, we modify the previous model by setting
ρ = 0; that is, there is no hedging demand. The fundamentals of the two assets are still given by
(1) and (2). However, investors are biased about asset 1 and believe that for t = 1, 2,

µ1,t =

{
µ+ σ with probability p− b,
µ− σ with probability p+ b,

(11)
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where 0 ≤ b < p. That is, investors underestimate asset 1’s expected cash flow, and b measures
the degree of the bias. In contrast, their belief about asset 2 is correct.

Investors’ objective is to choose θi,t, for i = 1, 2, and t = 0, 1, to

max
θi,t

E∗0 [log (W2)] , (12)

subject to (3), where E∗0 [·] indicates that the expectation is taken under the biased belief in (11).
Arbitrageurs have correct beliefs, and their objective is given by (7), as in the previous section.

This formulation is meant to capture the essence of mispricing-based interpretations of anoma-
lies in a reduced form. For instance, in the value premium example, Lakonishok, Shleifer, and
Vishny (1994) argue that investors are overly enthusiastic about glamorous growth stocks and
have a low demand for value stocks. Similarly, in our model, investors underestimate the payoff
from asset 1 and so have a low demand.

Similar to the case of the risk-based anomaly, in the pre-discovery case, arbitrageurs have no
influence on the markets for assets 1 and 2. The competitive equilibrium for this case is defined as
asset prices (Pi,t for i = 1, 2, and t = 0, 1) and investors’ portfolios (θi,t for t = 0, 1 and i = 1, 2),
such that investors’ portfolios optimize (12), and markets clear as in (8).

The post-discovery competitive equilibrium is defined as asset prices (Pi,t for i = 1, 2, and
t = 0, 1) and portfolios of investors and arbitrageurs (θi,t for t = 0, 1 and i = 1, 2; and θai,t for
t = 0, 1, i = 1, 2, e), such that investors’ portfolios optimize (12), arbitrageurs’ portfolios optimize
(7), and markets clear as in (9).

What is implicitly assumed here is that the discovery does not affect investors’ bias b. That
is, the bias is systematic and deeply rooted, and investors do not adjust their behavior after the
discovery of the anomaly. This assumption is made for simplicity. Alternatively, if the bias is
partially reduced after the discovery, the results remain qualitatively similar.

Proposition 3 The pre-discovery equilibrium prices Pi,t and portfolio choices θi,t can be charac-
terized by (8), and for i = 1, 2, t = 0, 1,

E∗t

[
ri,t+1 − 1

Wt+1

]
= 0. (13)

The post-discovery equilibrium prices Pi,t and portfolio choices (θi,t, and θai,1) can be characterized
by equations (5), (9), (13), and for t = 0, 1,

Et

[
r1,t+1 − r2,t+1

W a
t+1

]
= 0, (14)

Et

[
re,t+1 − 1

W a
t+1

]
= 0. (15)

Similar to the risk-based case in the previous section, investors have a lower demand for asset 1
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than for asset 2. The only difference is the motivation. In the risk-based case, the motivation is
to hedge, while in the mispricing-based case, the motivation is investors’ wrong belief. Can we
distinguish a risk-based anomaly from a mispricing-based one by examining asset prices? We will
examine this in the next section.

3 Comparing risk- and mispricing-based anomalies

3.1 Welfare

How does the discovery of an anomaly affect investor welfare? To address this question, we first
need to clarify our welfare measures. For the risk-based case, we simply use investors’ expected
utility at t = 0. For the mispricing-based case, we use “subjective welfare” to refer to investors’
subjective expected utility at t = 0, and use “objective welfare” to refer to investors’ utility
evaluated under the objective belief at t = 0.

Proposition 4 The discovery of a risk-based anomaly increases investors’ welfare. The discovery
of a mispricing-based anomaly increases investors’ subjective welfare, but reduces their objective
welfare.

In the case of a risk-based anomaly, arbitrageurs essentially offer better risk sharing to investors.
Before the discovery, the endowment risk is shared only among investors (i.e., arbitrageurs are not
involved). After the discovery, this endowment risk is shared between investors and arbitrageurs:
Investors unload asset 1 to arbitrageurs to hedge against their endowment risk. Arbitrageurs’
trading makes the hedging cheaper. For the mispricing-based case, however, when arbitrageurs
start exploiting the anomaly, naive investors think they are better off, since they can offload
some of asset 1, which they are pessimistic about. That is, investors’ subjective expected utility
increases after the discovery. However, the discovery reduces naive investors’ objective welfare.
For instance, suppose the value premium was caused by investors’ overly optimistic perception
about growth stocks. The discovery of this anomaly attracts arbitrageurs to buy value and sell
growth stocks. Consequently, investors end up holding more over-priced growth stocks and fewer
under-priced value stocks, and they will suffer from worse performance in the future.

3.2 Distinguishing risk- and mispricing-based anomalies

We now compare the risk-based anomaly (Propositions 1 and 2) with the mispricing-based one
(Proposition 3). In particular, we set b = 0.055 and adopt all other parameters from Table 1. We
choose this value for b so that, before the discovery, the expected anomaly returns are the same
across the risk-based case and the mispricing-based case. We now compare the post-discovery
return dynamic across the two cases.

Panel A of Figure 5 shows that it is difficult to distinguish a risk-based anomaly from a
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Table 1: Parameter values

Parameter W a
0 k ρ µ σ p µe σe pe

Value 1 1 1 1.2 0.6 0.5 1.4 0.5 0.5

mispricing-based one by examining the post-discovery performance. The solid and dashed lines
represent the post-discovery expected anomaly return for the risk- and mispricing-based cases,
respectively. The pre-discovery expected anomaly return for both cases is flat at around 5.5%
(we omitted this flat line). The plot shows that the discovery of an anomaly reduces its expected
return regardless of whether the anomaly is caused by risk or mispricing. Moreover, both lines
are downward sloping, implying that the more arbitrage capital (W a

0 ), the stronger the effect.
Panel B shows that, for both the risk- and mispricing-based cases, the discovery of an anomaly
increases the correlation between its return and the existing anomaly return. Even the non-
monotonic pattern is similar across the two cases. Finally, Panel C shows that the discovery of
the anomaly reduces the correlation between assets 1 and 2 for both risk- and mispricing-based
cases. Moreover, this correlation is decreasing in arbitrageurs’ wealth level W a

0 in both cases.

3.3 One possible solution

The above results highlight the difficulty in distinguishing between risk- and mispricing-based
anomalies by examining asset prices.7 What is the solution then? We argue that it is more
promising to analyze investors’ portfolios. The idea is that investors’ holdings might offer direct
evidence on why they overweight one asset and underweight another.

In a risk-based anomaly, investors recognize the fact that asset 1’s expected return is higher
than asset 2’s, and so they have a higher total exposure to asset 1 than to asset 2, once we include
the exposure implied by their nontradable endowment. That is, in this case, although investors
underweight asset 1 in the stock market, their total exposure to asset 1 is actually higher than
to asset 2. In a mispricing-based anomaly, however, investors have a lower exposure to asset 1,
because they mistakenly believe that it has a lower future payoff and underweight it.

Therefore, investors’ portfolio holdings can help separate risk- and mispricing-based anomalies.
For example, Fama and French (1993, 1996) interpret the value premium as value stocks exposing
investors to risks associated with economy-wide financial distress. To evaluate this risk-based
explanation, one can examine whether the investors who underweight value stocks are those who
are more exposed to risk of financial distress (e.g., their labor income or other assets are more
exposed to financial distress).8

7This is parallel to the result in Brav and Heaton (2002), which emphasizes the difficulty in distinguishing a
biased belief from a rational belief with structural uncertainty.

8This idea can be applied more broadly to the measurement of many other hard-to-measure variables. For
example, Choi, Jin, and Yan (2014) try to measure the degree of information asymmetry at an individual stock
level by tracking the activities of all investors in the stock market in China. The detailed transaction data of the
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To be fair, while examining portfolio holdings is a direct approach, it is very demanding on
the dataset. It requires detailed information on investors’ positions, including their nontradable
assets. Nevertheless, this test may not be completely infeasible. For example, Betermier, Calvet,
and Sodini (2017) have recently analyzed the characteristics of investors of value and growth
stocks, and potentially shedding light on why investors hold value or growth stocks.
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4 Proofs and Numerical Procedure

4.1 Proof of Propositions 1 and 2

Due to the logarithmic preference, the maximization problem (4) is equivalent to maximizing the

log wealth growth for each period. Hence, investors’ first-order conditions are given by

Et

[
ri,t+1 − 1

Wt+1 + ρP1,t+1

]
= 0,

for i = 1, 2, t = 0, 1. Similarly, the arbitrageurs’ optimization problem (7) can also be decomposed

into a period-by-period optimization problem, and the first-order conditions are given by

Et

[
r1,t+1 − r2,t+1

W a
t+1

]
= 0,

Et

[
ra,t+1 − 1

W a
t+1

]
= 0.

Combining the above first-order conditions with the market-clearing conditions, we can charac-

terize the equilibria in Propositions 1 and 2.

We now prove P1,0 < P2,0 by contradiction. Suppose P1,0 ≥ P2,0. Note that investors’ optimal

portfolio in equilibrium is to hold one unit of both assets. Suppose an investor sells ε unit of asset

1 and buys ε unit of asset 2. Define his expected utility as

U(ε) ≡ E0[log(k + (1 + ρ− ε)D1 + (1 + ε)D2)].

It is easy to see that dU
dε |ε=0 > 0. That is, he can strictly improve his portfolio by selling ε unit of

asset 1 and buying ε unit of asset 2. This leads to a contradiction.

4.2 Proof of Proposition 3

The first-order condition to the maximization problem (12) is given by (13). The first-order

conditions for arbitrageurs are still given by (14) and (15). These optimality and market-clearing

conditions lead to the results in the proposition.
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4.3 Proof of Proposition 4

In both the risk-based and mispricing-based cases, investors have the option not to trade. The

participation constraint implies that the investors’ expected utility cannot be lower than that in

the pre-discovery case. Moreover, investors’ concave utility function and convex budget constraint

imply that the investors’ optimization problem has a unique solution. It is easy to see that in

the case of W a
0 > 0, the portfolio characterized in Proposition 2 is strictly different from the

non-participation portfolio. Hence, discovery strictly increases investor welfare. Similarly, in the

mispricing-based case, discovery strictly increases investors’ subjective welfare.

To analyze naive investors’ objective welfare, we note that naive investors’ portfolio in the

economy in Section 2 can be decomposed into one unit in assets 1 and 2, and a position xt

(for t = 0, 1) in the long-short strategy (long asset 1 and short asset 2). It is easy to show

that naive investors’ objective welfare E[log(W2)] is concave in x0 and x1. In the pre-discovery

case, x0 = x1 = 0. In the post-discovery case, however, xt is “further away” from the optimum

point for maximizing E[log(W2)]. For example, an naive investor’s choice is x0 < 0 although

∂E[log(W2)]/∂x0|x0=0 > 0. Therefore, an naive investor’s objective welfare is lower in the post-

discovery case.

4.4 Numerical procedure

We follow the procedure described below to solve the model:

1. Take initial guesses for the total wealth for investors and arbitrageurs at t = 1: W1 and W a
1

for the eight states at date 1.

2. For each of the eight states, take W1 and W a
1 as given, solve for the portfolios (θi,1 for

i = 1, 2, and θai,1 for i = 1, 2, e) and prices P1,1 and P2,1.

3. Take the prices P1,1 and P2,1 for the eight states in step two as given, solve for the t = 0

portfolios (θi,0 for i = 1, 2, and θai,0 for i = 1, 2, e) and prices P1,0 and P2,0.

4. Based on the portfolios in step three (θi,0 for i = 1, 2, and θai,0 for i = 1, 2, e) and the prices
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in steps two and three (P1,0, P2,0, and P1,1, P2,1 for all eight states at t = 1), calculate the

investors’ and arbitrageurs’ updated wealth, W1 and W a
1 , in the eight cases at t = 1.

5. Repeat steps two to three until the wealth, portfolios, and prices converge, i.e., for each

variable, the difference between two iterations is no greater than 0.00005.
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Figure 1: Anomaly Return
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Panels A–C plot the expected anomaly return, E[r1,1 − r2,1], on arbitrageurs’ initial wealth W a
0 ,

asset e’s expected return µe and volatility σe, respectively. The parameter values are given by
Table 1.
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Figure 2: Correlation Among Anomaly Returns
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Panels A–C plot the correlation coefficient between the anomaly return and asset e’s return,
Corr(r1,1 − r2,1, re,1), on arbitrageurs’ initial wealth W a

0 , asset e’s expected return µe, and its
volatility σe, respectively. The parameter values are given by Table 1.
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Figure 3: Correlation Between Assets 1 and 2
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Panels A and B plot the correlation coefficient between assets 1 and 2, Corr(r1,1, r2,1), on ar-
bitrageurs’ initial wealth W a

0 , and their wealth volatility σa, respectively. Arbitrageurs’ wealth
volatility σa is an endogenous variable. We generate its variation by varying µe from 1.1 to 1.46.
All other parameter values are given by Table 1.
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Figure 4: Anomaly Return During the Discovery Process
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This figure plots the conditional average anomaly return, E[r1,1 − r2,1|Discovery], from t = 0 to
t = 1, when the anomaly is unexpectedly discovered, against arbitrageurs’ wealth at t = 1, W a

1 .
All parameter values are given by Table 1.
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Figure 5: Comparison: Asset Prices
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Panels A–C plot the expected anomaly return, E[r1,1− r2,1], its correlation with asset e’s return,
Corr(r1,1−r2,1, re,1), and the correlation between assets 1 and 2, Corr(r1,1, r2,1), on arbitrageurs’
initial wealth W a

0 , respectively. The solid line is for the risk-based case, and the dashed line the
mispricing-based case. Parameter values: b = 0.055, and other parameter values are given by
Table 1.
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Online Appendix for: 

Anomaly Discovery and Arbitrage Trading 

Table O1. Detailed Information of Anomalies 
This table provides the name, authors, and publication information of the 99 anomalies used in our paper. 
Journal title abbreviations: FAJ=Financial Analysts Journal; JAE= Journal of Accounting and Economics; 
JAR=Journal of Accounting Review; JBFA=Journal of Business, Finance & Accounting; JF=Journal of 
Finance; JEF=Journal of Empirical Finance; JFE=Journal of Financial Economics; JFM=Journal of 
Financial Markets; JFQA=Journal of Financial and Quantitative Analysis; JPE=Journal of Political 
Economy; RAS=Review of Accounting Studies; TAR=The Accounting Review; WP=Working Paper. 
 

No. Anomaly Name Author(s) Date, Journal 
1 Beta Fama & MacBeth 1973, JPE 
2 Beta squared Fama & MacBeth 1973, JPE 
3 Earnings-to-price Basu 1977, JF 
4 O-score Ohlson 1980, JAR 
5 Dividends-to-price Litzenberger & 

Ramaswamy 
1982, JF 

6 Unexpected quarterly earnings Rendelman, Jones & 
Latane 

1982, JFE 

7 Change in forecasted annual EPS Hawkins, Chamberlin 
& Daniel 

1984, FAJ 

8 36-month reversal De Bondt & Thaler 1985, JF 
9 Forecasted growth in 5-year EPS Bauman & Dowen 1988, FAJ 
10 Leverage Bhandari 1988, JF 
11 % change in current ratio Ou & Penman 1989, JAE 
12 % change in quick ratio Ou & Penman 1989, JAE 
13 % change in sales-to-inventory Ou & Penman 1989, JAE 
14 Cash flow-to-debt Ou & Penman 1989, JAE 
15 Current ratio Ou & Penman 1989, JAE 
16 Quick ratio Ou & Penman 1989, JAE 
17 Sales-to-cash Ou & Penman 1989, JAE 
18 Sales-to-inventory Ou & Penman 1989, JAE 
19 Sales-to-receivables Ou & Penman 1989, JAE 
20 Amihud illiquidity Amihud & Mendelson 1989, JF 
21 Bid-ask spread Amihud & Mendelson 1989, JF 
22 12-month momentum Jegadeesh 1990, JF 
23 1-month reversal Jegadeesh 1990, JF 
24 6-month momentum Jegadeesh & Titman 1990, JF 
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25 Net stock issue Ritter 1991, JF 
26 % change in depreciation-to-gross 

PP&E 
Holthausen & Larcker 1992, JAE 

27 Depreciation-to-gross PP&E Holthausen & Larcker 1992, JAE 
28 Book-to-market Fama & French 1992, JF 
29 Size (market cap) Fama & French 1992, JF 
30 Annual sales growth Lakonishok, Shleifer 

& Vishny 
1994, JF 

31 Industry-adjusted change in 
employees 

Asness, Porter & 
Stevens 

1994, WP 

32 New equity issue Loughran, Ritter & 
Ritter 

1995, JF 

33 Sales-to-price Barbee, Mukherji & 
Raines 

1996, FAJ 

34 Working capital accruals Sloan 1996, TAR 
35 Share turnover Datar, Naik & 

Radcliffe 
1998, JFM 

36 % change in CAPEX - industry % 
change in CAPEX 

Abarbanell & Bushee 1998, TAR 

37 % change in gross margin - % 
change in sales 

Abarbanell & Bushee 1998, TAR 

38 % change in sales - % change in 
accounts receivable 

Abarbanell & Bushee 1998, TAR 

39 % change in sales - % change in 
inventory 

Abarbanell & Bushee 1998, TAR 

40 % change in sales - % change in 
SG&A 

Abarbanell & Bushee 1998, TAR 

41 # of consecutive earnings increases Barth, Elliott & Finn 1999, JAR 
42 Industry momentum Moskowitz & 

Grinblatt 
1999, JF 

43 Financial statements score Piotroski 2000, JAR 
44 Industry-adjusted book-to-market Asness, Porter & 

Stevens 
2000, WP 

45 Industry-adjusted cash flow-to-
price ratio 

Asness, Porter & 
Stevens 

2000, WP 

46 Industry-adjusted firm size Asness, Porter & 
Stevens 

2000, WP 

47 Abnormal volume Gervais, Kaniel & 
Mingelgrin 

2001, JF 

48 Dollar trading volume in month t-2 Chordia, 
Subrahmanyam & 
Anshuman 

2001, JFE 

49 Volatility of dollar trading volume Chordia, 
Subrahmanyam & 
Anshuman 

2001, JFE 

50 Volatility of share turnover Chordia, 
Subrahmanyam & 
Anshuman 

2001, JFE 
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51 # of analysts covering stock Elgers, Lo & Pfeiffer 2001, TAR 
52 Scaled analyst forecast of one year 

ahead earnings 
Elgers, Lo & Pfeiffer 2001, TAR 

53 Dispersion in forecasted eps Diether, Malloy & 
Scherbina 

2002, JF 

54 Changes in inventory Thomas & Zhang 2002, RAS 
55 Idiosyncratic return volatility Ali, Hwang & 

Trombley 
2003, JFE 

56 Growth in long-term net operating 
assets 

Fairfield, Whisenant 
& Yohn 

2003, TAR 

57 Net operating assets Hirshleifer et al.  2004, JAE 
58 RD_increase Eberhart, Maxwell & 

Siddique 
2004, JF 

59 Investment to assets Titman, Wei & Xie 2004, JFQA 
60 Cash flow-to-price Desai, Rajgopal & 

Venkatachalam 
2004, TAR 

61 Earnings volatility Francis, LaFond, 
Olsson & Schipper 

2004, TAR 

62 Taxable income to book income Lev & Nissim 2004, TAR 
63 Change in common shareholder 

equity 
Richardson, Sloan, 
Soliman & Tuna 

2005, JAE 

64 Change in long-term debt Richardson, Sloan, 
Soliman & Tuna 

2005, JAE 

65 # of years since first Compustat 
coverage 

Jiang, Lee & Zhang 2005, RAS 

66 Financial statements score Mohanram 2005, RAS 
67 Price delay Hou & Moskowitz 2005, RFS 
68 R&D-to-market cap Guo, Lev & Shi 2006, JBFA 
69 R&D-to-sales Guo, Lev & Shi 2006, JBFA 
70 % change over two years in 

CAPEX 
Anderson & Garcia-
Feijoo 

2006, JF 

71 Composite equity issue Daniel & Titman 2006, JF 
72 Industry sales concentration Hou & Robinson 2006, JF 
73 Return volatility Ang, Hodrick, Xing & 

Zhang 
2006, JF 

74 Return on assets Fama & French 2006, JFE 
75 Zero-trading days Liu 2006, JFE 
76 Abnormal volume in earnings 

announcement month 
Lerman, Livnat & 
Mendenhall 

2007, WP 

77 Change in # analysts Scherbina 2007, WP 
78 Return on invested capital Brown & Rowe 2007, WP 
79 Asset growth Cooper, Gulen & 

Schill 
2008, JF 

80 Financial distress Campbell, et al. 2008, JF 
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81 Industry-adjusted change in asset 
turnover 

Soliman 2008, TAR 

82 Industry-adjusted change in profit 
margin 

Soliman 2008, TAR 

83 3-day return around earnings 
announcement 

Brandt, Kishore, 
Santa-Clara & 
Venkatachalam 

2008, WP 

84 Revenue surprise Kama 2009, JBFA 
85 Cash flow volatility Huang 2009, JEF 
86 Debt capacity-to-firm tangibility Hahn & Lee 2009, JF 
87 Cash productivity Chandrashekar & Rao 2009, WP 
88 Employee growth rate Bazdresch, Belo & 

Lin 
2009, WP 

89 Real estate holdings Tuzel 2010, RFS 
90 Absolute accruals Bandyopadhyay, 

Huang & Wirjanto 
2010, WP 

91 Accrual volatility Bandyopadhyay, 
Huang & Wirjanto 

2010, WP 

92 Change in tax expense Thomas & Zhang 2011, JAR 
93 Maximum daily return in prior 

month 
Bali, Cakici & 
Whitelaw 

2011, JFE 

94 Percent accruals Hafzalla, Lundholm & 
Van Winkle 

2011, TAR 

95 Cash holdings Palazzo 2012, JFE 
96 Organizational capital Eisfeldt & 

Papanikolaou 
2013, JF 

97 Asset turnover Novy-Marx 2013, JFE 
98 Gross profitability Novy-Marx 2013, JFE 
99 Secured debt-to-total debt Valta 2015, JFQA 
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Table O2. Simulated p-values 
This table is based on Panel A of Table 2 in the paper. The only modification is the replacement of the t-
values in the original table by the simulated p-values. We randomly assign a pseudo discovery year for each 
anomaly from the distribution of anomaly publication years in our sample. We then rerun the regressions 
in Panel A of Table 2 and keep the coefficient estimate of Discoveryi,t. This procedure is repeated 10,000 
times to obtain a simulated distribution of the coefficient estimates. The simulated p-values, reported in 
brackets, are calculated as the portion of the simulated coefficient estimates that are smaller (i.e., more 
negative) than their corresponding coefficient estimates in Table 2. *, **, and *** indicate that the 
coefficients are statistically significant at the 10%, 5%, and 1% level, respectively. 
 
 Dep.Var.= Xi,t   (1) (2) (3) (4) (5) (6) 

  Equal-weighted anomaly portfolios Value-weighted anomaly portfolios 

  NoCite 
Weight 

RawCite 
Weight 

Cite PerYear 
Weight 

NoCite 
Weight 

RawCite 
Weight 

Cite PerYear 
Weight     

Discoveryi,t -0.04** -0.06** -0.05*** -0.05** -0.1** -0.08*** 
 {0.046} {0.018} {0.000} {0.048} {0.027} {0.000} 

        
Anomaly FEs Yes Yes Yes Yes Yes Yes 
Observations 80,309 80,309 80,309 80,309 80,309 80,309 

R2   0.37 0.71 0.64 0.40 0.77 0.65 
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Table O3. Discovery and Correlation (Excluding Small Stocks) 
This table reports the results from the regressions in Panel A of Table 2, based on the sample after excluding 
stocks that are smaller than the 20th NYSE size percentile. 
 
 Dep.Var.= Xi,t   (1) (2) (3) (4) (5) (6) 

  Equal-weighted anomaly portfolios Value-weighted anomaly portfolios 

  NoCite 
Weight 

RawCite 
Weight 

Cite PerYear 
Weight 

NoCite 
Weight 

RawCite 
Weight 

Cite PerYear 
Weight     

Discoveryi,t -0.02*** -0.06*** -0.05*** -0.03*** -0.1*** -0.08*** 
 (-3.86) (-6.53) (-4.86) (-2.99) (-4.33) (-4.07) 

        
Anomaly FEs Yes Yes Yes Yes Yes Yes 
Observations 79,925 79,925 79,925 79,925 79,925 79,925 

R2   0.44 0.71 0.68 0.43 0.75 0.70 
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Table O4. Discovery, Wealth Volatility, and Correlation (Excluding Small Stocks) 
This table reports the results from the regressions in Table 3, based on the sample after excluding stocks that are smaller than the 20th NYSE size 
percentile. 
 

 Dep.Var.= Xi,t   (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

  Equal-weighted anomaly portfolios   Value-weighted anomaly portfolios 

  No Cite 
Weight 

NoCite 
Weight 

RawCite 
Weight 

RawCite 
Weight 

CitePerYear 
Weight 

CitePerYear 
Weight 

NoCite 
Weight 

NoCite 
Weight 

RawCite 
Weight 

RawCite  
Weight 

CitePerYear  
Weight 

CitePerYear 
Weight     

Wealth_Volt 0.006*** 0.02*** 0.02*** 0.05*** 0.05** 0.1*** 0.007** 0.02*** 0.01*** 0.04*** 0.05** 0.1*** 

  (3.03) (3.55) (3.01) (4.41) (3.10) (3.15) (2.47) (4.01) (2.70) (3.85) (2.76) (3.10) 

              
Discoveryi,t  -0.02***  -0.04***  -0.1**  -0.03***  -0.04***  -0.1** 
 × Wealth_Volt  (-2.69)  (-3.56)  (-2.47)  (-3.11)  (-3.21)  (-2.48) 

              
Discoveryi,t  0.003  -0.06***  -0.05***  0.001  -0.07***  -0.06*** 

   (0.45)  (-4.28)  (-3.60)  (0.17)  (-6.16)  (-4.30) 
Anomaly FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 37,409 37,409 37,409 37,409 37,409 37,409 37,409 37,409 37,409 37,409 37,409 37,409 
R2   0.57 0.57 0.73 0.73 0.72 0.73 0.50 0.50 0.72 0.74 0.72 0.73 

 
 


