
Internet Appendix for

“The Design of a Central Counterparty”

IA.1. Contract with binding resource constraint

We relax Assumption 3 to analyze the situation in which the resource constraint (4) may
bind. We assume that monitoring is costless (ψ = 0), which means it is optimal and (bilaterally)
incentive-compatible. This implies that we can set rs(d) = rf (d) for all d ∈ {1, ..., N − 1} without
loss of generality (see the discussion following Lemma 1).

We first define r̄N (d, x) as the maximum receiver transfer given a collateral amount x and a
state d ∈ {0, 1, ..N − 1}. Using budget constraint (6) and the resource constraints (4) and (5), we
have

(IA1) r̄N (d, x) ≡ 2x+
N − d

N
(1− x)2R.

Assumption 3 is equivalent to r̄N (N −1, 0) ≥ ĉ. We also note that r̄N (N −1, 0) ≥ ĉ implies that
r̄N (d, 0) ≥ ĉ for all d ∈ {0, 1, ..N−1} because r̄N (d, x) is decreasing with d. When Assumption 3 does
not hold, that is, when r̄N (N−1, 0) < ĉ, define x̂N (N−1) ∈

(
0, ĉ2

)
such that r̄(N−1, x̂N (N−1)) = ĉ.

This threshold exists because r̄N (d, x) is increasing with x and r̄N (d, 1) = 2 > ĉ by Assumption 1.
Observe next that Assumption 3 is only sufficient for resource constraint (4) to be slack at the

optimal contract of Proposition 3. In fact, in Cases 1 and 3, the resource constraint (4) holds even
without Assumption 3. In Case 2, constraint (4) still holds for d = N − 1, even when Assumption
3 fails if x̂N (N − 1) < xOM , with xOM being the optimal collateral requirement in equation (10).
Hence, our analysis will differ from that in the main text only if both Assumption 3 and this latter
condition are relaxed.

In what follows, we consider the case N = 3, which is the smallest value of N such that
the resource constraint may bind at the optimal contract. We thus impose r̄3(2, 0) < ĉ and
x̂3(2) ≥ xOM

|N=3, which can be written in a compact form as

R <
3

2
min

{
ĉ,

βq

1− (1− q)3

}
.(IA2)

We now derive the optimal contract for N = 3 when equation (IA2) holds. The possibility
that resource constraint (4) binds has two effects. First, as the maximum receiver transfer r̄3(2, x)
increases with x, collateral has an additional hedging value in the state of the world with two payers
defaults. By the pledgeability constraint, however, if transfers from payers are reduced due to a lack
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of resources, less collateral is needed for incentives. The result below shows how these two effects
interact.

Proposition IA1. Let N = 3, ψ = 0, and κ > k. Under Assumption (IA2), there exists a threshold

(IA3) k3(2) = k3 + (ν − 1)q(1− q)2(3−R) ∈ (k3, k̄),

such that the optimal contract is

1. the contract of Proposition 3, if k < k3 or k > k̄,

2. if k ∈ [k3, k3(2)], the optimal amount of collateral is given by x̃OM = x̂3(2) > xOM , and if
k ∈ [k3(2), k̄], it is given by

(IA4) x̃OM =

[
q3 + 3q2(1− q)

]
ĉ− qβ + 2q(1− q)2R

2 [1− (1− q)3]− 2q(1− q)2(3−R)− qβ
< xOM .

The proof is in Internet Appendix IA.2. Case 2 of Proposition IA1 shows the effect of the
resource constraint on the optimal contract. When Assumption 3 does not hold, a single payer
cannot cover the hedging needs of three receivers if no collateral is pledged. Hence, collateral has
a hedging value in the states where all three payers default and two out of three payers default.
By contrast, when Assumption 3 holds, this insurance value is only enjoyed in the worst default
state. This explains why investors optimally post more collateral than in the optimal contract of
Proposition 3 when collateral is relatively cheap.

When the collateral cost is higher, however, that is, when k ∈ [k3(2), k̄], investors post less
collateral than in the benchmark. If collateral is expensive, investors forego this hedging value
of collateral. The collateral requirement is then determined by the pledgeability constraint. Since
payers’ transfers are lower when the resource constraint binds, less collateral is needed.
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IA.2. Additional Proofs

IA.2.1. Proof of Proposition B1

The first step of the proof is identical to that of Proposition 3; that is, we can rewrite the limited
pledgeability constraint as equation (A19).

We first show two results about CCP capital e. First, CCP capital may be used only if k < κ. If
this condition does not hold, we showed in Proposition 2 that collateral is preferred to CCP capital
in the frictionless benchmark. This conclusion still applies under limited pledgeability because x
(e) relaxes (tightens) constraint (A19). Second, if CCP capital is used, it must be that equation
(A19) binds. Otherwise, it is optimal to increase e and decrease x while keeping rf (N) = 2x + e
constant. With a small enough change, constraint (A19) still holds and the objective function
increases because k < κ must hold if CCP capital is used, as we just showed.

We now argue that we can consider two different cases for the analysis: Either rs = rf = ĉ
or constraint (A19) binds. This observation follows from Proposition 2, where we showed that
rs = rf = ĉ is optimal in the absence of constraint (A19). Additionally, the relative weight on these
two variables is the same in the objective function in equation (A14) and in constraint (A19).

Suppose first that rs = rf = ĉ. We now derive conditions such that rf (N) = 2x+ e = ĉ.
Optimality of rf (N) = ĉ
Case k ≤ (ν − 1)(1− q)N

Increasing x until rf (N) = 2x + e = ĉ is then optimal because condition (A16) shows that
investors’ utility increases with x and because increasing x relaxes constraint (A19). If, in addition
k < κ, CCP capital should not be used, as shown above. In this case, the contract is given by
rOM
s = rOM

f = ĉ, xOM = ĉ
2 , and e

OM = 0. This case is thus identical to Case 1 of Proposition 3.
If instead k > κ, CCP capital should be used and, as shown above, constraint (A19) should

bind. Hence, the contract is given by rOM
s = rOM

f = ĉ, with xOM and eOM such that rOM
f (N) =

2xOM + eOM = ĉ and equation (A19) binds. This corresponds to Case 2 of Proposition B1 when
k < k̃N .

Case k > (ν − 1)(1− q)N

Then, it is optimal to decrease x until constraint (A19) binds because U ′(x) < 0. Equation
(A15) shows that increasing e until rf (N) = 2x+ e = ĉ can still be optimal if κ ≤ (ν − 1)(1− q)N .
To determine the sufficient condition, we need to account for the effect of e on constraint (A19)
when computing the total derivative of the objective function with respect to e. Maintaining rs and
rf constant in equation (A19), we have

(IA1)
∂x

∂e |rf=rs=ĉ, (A19) binds
=

κ+ (1− q)N

2− qβ − 2(1− q)N
.

We thus obtain

U ′(e)|rf=rs=ĉ, (A19) binds =
∂U

∂e
+

∂U

∂x

∂x

∂e |rf=rs=ĉ, (A19) binds

(IA2)

=
1

2

[
(ν − 1)(1− q)N − κ

]
+
[
(ν − 1)(1− q)N − k]

κ+ (1− q)N

2− qβ − 2(1− q)N
.(IA3)

This term is positive if and only if k ≤ k̃N , with k̃N defined in equation (B1). If this inequality
holds, rf (N) = ĉ is optimal, and thus the OM contract is given by rOM

s = rOM
f = ĉ and xOM and
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eOM such that rOM
f (N) = 2xOM + eOM = ĉ and equation (A19) binds. Hence, we characterized all

cases in which rf (N) = ĉ is optimal.
Optimality of rs = rs = ĉ and rf (N) < ĉ
Suppose now that condition (B1) does not hold, while still assuming rs = rf = ĉ. Then the

analysis above shows that setting e = 0 is optimal. Since k > k̃N and thus k > (ν − 1)(1 − q)N ,
the collateral amount x is pinned down by saturating constraint (A19) with e = 0. The analysis is
then similar to that of Case 2 of Proposition 3, and thus the same contract obtains. The threshold
with the full-hedging region changes from kN to k̃N , but threshold k̄ over which rs = rs = ĉ is no
longer optimal remains the same.

Optimality of rs, rf < ĉ
For the same reasons, the analysis of the case k ≥ k̄ is similar to that of Case 3 of Proposition

3. This concludes the proof.

IA.2.2. Proof of Corollary 1 with optimal monitoring

We extend Corollary 1, taking into account the investor’s optimal monitoring choice analyzed
in Appendix A.A7. We show that the comparative statics with respect to N remains valid in this
case.

The upper bound of the essential CCP region is again given by k̄. For k > k̄, monitoring
is optimal, as shown in Appendix A.A7, and the optimal contract without monitoring can be
implemented bilaterally. For k lower than but close to k̄, monitoring and loss mutualization are
optimal, which means that the upper bound is k̄. This observation also implies that there exists a
lower bound kmN < k̄ of the essential CCP region.

By Proposition 3 and A1, we have kmN ≥ kN because the region with full hedging in which a
CCP is not essential is larger without monitoring. Define k̂m as the threshold such that investors are
indifferent between the complete loss mutualization contract with monitoring and the full hedging
contract without monitoring. This threshold solves

0 = Uk=k̂m − UZm
|k=k̂m

(IA4)

= qR+
[
ν − 1− k̂m

] ĉ
2
− (k̂m − kN )

(
ĉ

2
− xOM

)
− ψ −

{
qR+

[
ν − 1− k̂m

] ĉ
2

}
(IA5)

= βq

(
1− ĉ

2

)
k̂m − kN

2
[
1− (1− q)N

]
− βq

− ψ.(IA6)

Two cases are then possible. Either k̂m ≤ kZmN , which implies kmN = k̂m, or k̂m > kZmN and kmN = kZmN .
We thus have

(IA7) kmN = min{k̂m, kZmN},

with k̂m defined implicitly by equation (IA6) and kZmN = (ν − 1)(1− αq)N .
The second argument of the min in equation (IA7) strictly decreases with N by definition. We

are thus left to show that k̂m strictly decreases with N as well. For this, define g : (y, k) 7→ k+y(ν−1)
2+2y−βq

and apply the Implicit Function Theorem to equation (IA6). We obtain

(IA8)
∂k

∂N
= −

∂g
∂y

∂ȳ
∂N

∂g
∂k

,
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with y = −(1− q)N . As ∂g
∂k > 0 and ∂ȳ

∂N > 0, the derivative is negative if and only if

(IA9) 0 <
∂g

∂y
⇔ 0 <

(ν − 1)(2− βq)− 2k

[2 + 2y − βq]2
=

2(k̄ − k)

[2 + 2y − βq]2
.

The last inequality holds because by Proposition 4, k̂m lies below k̄. This concludes the proof.

IA.2.3. Proof of Proposition IA1

As explained above, the resource constraint in state d = 2 may only bind in Case 2 of Proposition
3. Hence, the optimal contract is the same as in Proposition 3 for k ̸∈ [k3, k̄].

For the case k ∈ (k3, k̄), we need to determine the collateral amount xIC such that constraint
(LP) binds. By construction, under condition (IA2), this level satisfies xIC < x̂3(2). Building on the
argument in Proposition 3, it is optimal to set the receiver transfer to its maximum value when the
pledgeability constraint (LP) is slack. Hence, we can determine xIC by saturating equation (LP)
and setting r(0) = r(1) = ĉ, r(2) = r̄3(2, x), and r(3) = 2x. Using budget constraint (6), we obtain

(IA10) E[ro(d)] =
[
q3 + 3(1− q)q2

]
ĉ+ 3q(1− q)2r̄3(2, x) + (1− q)32x = x(2− qβ) + qβ.

Solving for x in equation (IA10), we find xIC as given by equation (IA4). The inequality xIC < xOM

obtains because the proof of Proposition 3 shows that xIC solves the same equation as xOM ,
substituting r̄3(2, x) for ĉ > r̄3(2, x).

The optimal amount of collateral x̃OM when k ∈ [k3, k̄] is given either by xIC or x̂3(2) because
the marginal value of collateral is piecewise constant, and it jumps only at these points. Totally
differentiating equation (3) with respect to x, we obtain

(IA11) U ′(x) =

{
(ν − 1)

[
(1− q)3 + q(1− q)2(3−R)

]
− k if x ∈ [xIC , x̂2(3)] and

k2 − k if x ∈ [x̂2(3),
ĉ
2 ].

To obtain the derivative ∂E[ro(d)]
∂x for the first expression, we use the middle term of equation (IA10).

By definition of k3(2), this first term is equal to k3(2)−k. Hence, as stated in the result, x̃OM = x̂2(3)
is optimal when k ∈ [k3, k3(2)], while x̃

OM = xIC is optimal when k ∈ [k3(2), k̄]
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