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1 Proof

1.A Intermediaries’ trading profits

Market-maker i’s trading profit is given by:

Vi
(
pD1 , p

D
2 , p

S
1 , p

S
2

)
=



pDi QD + pSi QS − TCi(QD +QS)︸ ︷︷ ︸
≡vi(QD+QS)

if pDi QD < pD−iQD and pSi QS < pS−iQS ,

pDi QD − TCi(QD)︸ ︷︷ ︸
≡vi(QD)

if pDi QD < pD−iQD and pSi QS > pS−iQS ,

pSi QS − TCi(QS)︸ ︷︷ ︸
≡vi(QS)

if pDi QD > pD−iQD and pSi QS < pS−iQS ,

0 if pDi QD > pD−iQD and pSi QS > pS−iQS .

where we denote by TCi(Q)(= ri(Q)×Q) the inventory costs of absorbing the shock Q for
market-maker i (Q = QS, QD or QD +QS), by pDi the price set by market-maker i in venue
D, and by pSi the price posted by i in venue S, i = 1, 2. The price pmi is an ask price if
Qm > 0 and a bid price if Qm < 0, m = D,S.1

1.B Proof of Lemma 1

We consider two cases separately.
Case 1 (“Consolidation”). We first look for the necessary conditions to be simul-

taneously filled to guarantee the existence of an equilibrium in which a single market-maker
simultaneously absorbs the shock in the dominant venue and the shock in the satellite venue.
Market-maker i ∈ {1, 2} executes the global order flow in equilibrium if and only if she
simultaneously posts the best price in the dominant venue and the satellite venue. The
lowest ask price aDi prevailing in venue D, and the lowest ask price pSi (resp. highest bid
price) prevailing in venue S when QS > 0 (resp. when QS < 0) are such that:

i: trading QD +QS is profitable for market-maker i (i.e., vi(QD +QS) ≥ 0), and (i’) not
for market-maker −i (i.e., v−i(QD +QS) < 0);

ii: trading QD +QS is more profitable for market-maker i than trading only QD (i.e.,
vi(QD +QS) ≥ vi(QD)), or (ii’) only QS (i.e., vi(QD +QS) ≥ vi(QS));

iii: undercutting market-maker i is not profitable for market-maker −i neither in venue
D (i.e., v−i(QD) < 0), nor (iii’) in venue S (i.e., v−i(QS) < 0).

1Similar to Biais (1993), the utility function of intermediaries given in Equation (1) is linearized, under the
assumption QD < Iu − Id. Note that, in our transparent setting, the criticism on the linear approximation
used by Biais (1993) for opaque markets raised by de Frutos and Manzano (2002) does not apply. The
assumption QD < Iu − Id also guarantees that market-maker i has a probability of posting the best price in
venue m which is strictly greater than 0 and strictly lower than 1, for i = 1, 2 and m = D,S.
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Using the expression of market-makers’ trading profits V , this set of conditions rewrites as
follows:

i : aDi QD + pSi QS ≥ TCi(QD +QS),

i’ : aD−iQD + pS−iQS < TC−i(QD +QS);

ii : aDi QD + pSi QS − TCi(QD +QS) ≥ aDi QD − TCi(QD),

ii’ : aDi QD + pSi QS − TCi(QD +QS) ≥ aSi QS − TCi(QS);

iii : aDi QD < TC−i(QD),

iii’ : pSi QS < TC−i(QS).

• Conjecture 1: the best-quoting market-maker in all venues is market-maker 1. Under
Conjecture 1, conditions (ii) and (iii’) write aD1 QD + pS1QS − TC1(QD + QS) ≥ aD1 QD −
TC1(QD) and pS1QS < TC2(QS). Condition (ii) rewrites pS1QS ≥ TC1(QD+QS)−TC1(QD).
Combining with (iii’), we deduce that:

(IA.1) TC1(QD +QS) < TC1(QD) + TC2(QS).

Straightforward computations show further that if Eq. (IA.1) is verified, or equivalently
(I1− I2−QD)×QS > 0, then all conditions (i) to (iii’) simultaneously hold, and Conjecture
1 is verified.
• Conjecture 1a: the best-quoting market-maker in all venues is market-maker 2. In that
case, conditions (i) and (i’) rewrite aD2 QD + pS2QS ≥ TC2(QD + QS) and aD1 QD + pS1QS <
TC1(QD+QS). Given that market-maker 2 is the best-quoter, we obtain aD2 QD < aD1 QD and
pS2QS < pS1QS.2 However, recall that I1 > I2 or, equivalently, TC1(QD + QS) < TC2(QD +
QS). Therefore, condition (i) cannot hold in that case and Conjecture 1a is not verified.

Case 2 (“Specialization”). We now look for the necessary conditions to be simul-
taneously filled to guarantee the existence of an equilibrium in which each liquidity shock is
absorbed by a different market-maker.
There exists an equilibrium such that market-maker i posts the lowest ask price aDi in venue
D and the opponent −i posts the lowest ask (resp. highest bid) price pSi in venue S when
QS > 0 (resp. QS < 0) if and only if:

(I) trading QD is profitable for market-maker i (i.e., vi(QD) ≥ 0), and (I’) trading QS is
profitable for market-maker −i (i.e., v−i(QS) ≥ 0).

(II) market-maker i is better off trading QD rather than QS (i.e., vi(QD) > vi(QS)) and
(III’) market-maker −i is better off trading QS rather than QD (i.e.,
v−i(QS) > v−i(QD));

(III) market-maker i is better off trading QD only rather than QD +QS (i.e.,
vi(QD) > vi(QD +QS)) and (II’) market-maker −i is better off trading QS only
rather than QD +QS (i.e., v−i(QS) > v−i(QD +QS)) ;

2If QS > 0, aS2 < aS1 and thus aS2QS < aS1QS . If QS < 0, bS2 > bS1 and thus bS2QS < bS1QS . We thus can
write pS2QS < pS1QS for any sign of QS .
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These conditions may be rewritten as follows:

I : aDi QD − TCi(QD) ≥ 0,

I ’ : pS−iQS − TC−i(QS) ≥ 0,

II : aDi QD − TCi(QD) > pSi QS − TCi(QS),

II’ : pS−iQS − TC−i(QS) > aD−iQD − TC−i(QD),

III : aDi QD − TCi(QD) > aDi QD + pSi QS − TCi(QD +QS),

III’ : pS−iQS − TC−i(QS) > aD−iQD + pS−iQS − TC−i(QD +QS).

• Conjecture 2: market-maker 1 trades QD and market-maker 2 trades QS. Under Conjecture
2 and based on condition (III), we get TC1(QD +QS)− TC1(QD) > pS1QS. In case QS > 0,
we know that pS1 > pS2 and, using condition I’, we get TC1(QD +QS)− TC1(QD) > pS1QS >
pS2QS > TC2(QS). In case QS < 0, we get −pS2QS ≥ −pS1QS, or using I’ and III, we get
−TC2(QS) > −pS2QS ≥ −pS1QS > TC1(QD)− TC1(QD +QS). We thus obtain that:

(IA.2) TC1(QD +QS) > TC1(QD) + TC2(QS)

Straightforward computations show that if Eq. (IA.2) is verified then the set of conditions
I to III’ hold simultaneously and Conjecture 2 is verified.
• Conjecture 2a: market-maker 1 trades QS and market-maker 2 trades QD. Given that
I1 < I2, straightforward computations lead to the following inequality:

(IA.3) TC1(QD) + TC2(QS) < TC2(QD) + TC1(QS).

Under Conjecture 2a, we have aD1 QD > aD2 QD and pS2QS > pS1QS. Combining Conjecture 2a
with Inequality (IA.3), we obtain aD1 QD + pS2QS − TC1(QD)− TC2(QS) > aD2 QD + pS1QS −
TC2(QD) − TC1(QS), which contradicts conditions II and II’ combined. Conjecture 2a is
thus not verified. �

1.C Proof of Proposition 1

From Lemma 1, we know that we must consider two cases according to the sign of
TC1(QD +QS)− (TC1(QD) + TC2(QS)), or, equivalently, of (I1 − I2 −QD)×QS.

Case 1. Suppose that (I1 − I2 − QD) × QS > 0 (“Virtual consolidation”). In
that case, we know that market-maker 1 posts the best prices in all venues (Lemma 1). We
now have to consider two sub-cases according to the sign of QS.
Case 1.1. Suppose that QS > 0. Following Condition (IA.1), we must have I1−I2 > QD.
Market-maker 1 posts the lowest selling price both in venue D and S. The ask prices aD1 and
aS1 are the maximum prices that satisfy the set of conditions i to iii’ (Lemma 1). Combining
conditions (ii’) and (iii) and conditions (ii) and (iii’) and using reservation prices, we get:

ii’ and iii : r1(QD) + ρσ2QS ≤ aD1 < r2(QD),

ii and iii’ : r1(QS) + ρσ2QD ≤ aS1 < r2(QS).
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From the two first inequalities, natural candidates for the equilibrium are (aD1 )∗ = r2(QD)−ε
and (aS1 )∗ = r2(QS) − ε, as they are the maximum prices that satisfy conditions ii and iii,
ii’ and iii’. Straightforward computations show that they also satisfy conditions i and i’
described above (details are omitted for brevity).

Case 1.2. Suppose that QS < 0. In that case, we must have I1 − I2 < QD to satisfy
Condition (IA.1). Market-maker 1 thus posts the lowest selling price in venue D and the
highest bid price in venue S. The ask price aD1 and the bid price bS1 are such that they must
satisfy the set of conditions (ii) to (iii’) that we rewrite as follows:

ii’ and iii : r1(QD) + ρσ2(QS) ≤ aD1 < r2(QD),

ii and iii’ : r2(QS) < bS1 ≤ r1(QS) + ρσ2QD.

The natural candidates for the equilibrium are aD1 = r2(QD)− ε and bS1 = r2(QS) + ε. These
equilibrium prices must satisfy the following inequality aD1 QD + bS1QS < (aD2 QD + bS2QS 6
)TC2(QD +QS) (condition (i’)). It is however not the case, implying that this constraint is
binding and equilibrium prices must be such that:

(IA.4) (aD1 )∗ = r2(QD +QS)
(QD +QS)

QD

+ (bS1 )∗
(−QS)

QD

− ε.

First, using the expression of (aD1 )∗ defined in Eq. (IA.4) in market-maker 1’s trading profit,
we obtain v1(QD + QS) = ρσ2(I1 − I2)(QD + QS). This expression does not depend on
equilibrium prices. Consequently, there exists a continuum of prices that may sustain the
equilibrium. Second, using (aD1 )∗ defined in Eq. (IA.4) in conditions (ii’) and (iii) combined,
we get that (bS1 )∗ must satisfy:

ii’ and iii : r2(QS)− ρσ2(I1 − I2)
QD

−QS

≤ (bS1 )∗ < r2(QS) + ρσ2QD.

We also know from conditions (ii) and (iii’) combined that (bS1 )∗ is such that:

ii and iii’ : r2(QS) < (bS1 )∗ ≤ r1(QS) + ρσ2QD.

Since I1 > I2, we however have r2(QS)− ρσ2(I1 − I2) QD
−QS

< r2(QS) and r1(QS) + ρσ2QD <

r2(QS) + ρσ2QD. The second inequality defined by (ii) and (iii’) combined is constraining
both the minimum and the maximum possible bid price in venue S. Within all equilibria
defined by (aD1 )∗ in Eq. (IA.4) and by (bS1 )∗ ∈ (r2(QS) + ε, r1(QS) + ρσ2QD + ε] we select
the only equilibrium such that prices are continuous at I1 − I2 = QD, that is, (aD1 )∗ =
r2(QD) + ρσ2(QS)− ε ≡ r̂2(QD)− ε, from which we deduce that (bS2 )∗ = r2(QS) + ε.

Case 2. Suppose that (I1− I2−QD)×QS < 0 (“Specialization”). From Lemma
1, we know that market-maker 1 posts the best price in venue D while market-maker 2 posts
the best price in venue S. We now have to consider two sub-cases according to the sign of
QS.
Case 2.1. Suppose that QS > 0. In that case, we must have I1 − I2 < QD to satisfy
Condition (IA.1). The ask price aD1 posted by market-maker 1 and the ask price aS2 posted

7



by market-maker 2 are such that they must satisfy the set of conditions I to III’, from which
we deduce that:

I and III’ : r1(QD) ≤ aD1 < aD2 < r2(QD) + ρσ2QS,

I’ and III : r2(QS) ≤ aS2 < aS1 < r1(QS) + ρσ2QD.

The candidates for the equilibrium are aD1 = r2(QD)+ρσ2QS−ε and aS2 = r1(QS)+ρσ2QD−ε.
These equilibrium prices must satisfy the following inequality aS2QS − aD1 QD(> aS2QS −
aD2 QD) > r2(QS)QS − r2(QD)QD (condition (II’)). It is however not the case, implying that
this constraint is binding and equilibrium prices must be such that:

(IA.5) (aD1 )∗ = r2(QD) + ((aS2 )∗ − r2(QS))
QS

QD

− ε.

First, if (aD1 )∗ defined in Eq. (IA.5), then condition II always holds (given that (I1−I2)(QD−
QS) > 0). Second, using (aD1 )∗ defined in Eq. (IA.5) in conditions I and III’ and I’ and III
combined, we get that (aS2 )∗ must satisfy the following inequalities:

I and III’ : r2(QS) + (r1(QD)− r2(QD))
QD

QS

≤ (aS2 )∗ < r2(QS) + ρσ2QD,

I’ and III : r2(QS) ≤ (aS2 )∗ < r1(QS) + ρσ2QD.

Straightforward computations show that conditions I’ and III combined is constraining the
set of possible prices (aS2 )∗. Third, we compute market-makers’ equilibrium profits and show
that, in that case, the trading profit of market-maker 2 writes: v2(QS) = ((aS2 )∗−r2(QS))QS.
Using the expression of (aD2 )∗ defined in Eq. (IA.5), we then obtain that the trading profit
of market-maker 1 writes:

v1(QD) =

(
r2(QD) + ((aS2 )∗ − r2(QS))

QS

QD

− r1(QD)

)
QD.

We observe that market-makers’ profits are both strictly increasing in (aS2 )∗. Con-
sequently, market-makers’ reaction functions are such that the best ask price in venue S is
the highest possible one. From conditions I and III’ combined, we deduce that (aS)∗ is such
that:

(IA.6) (aS2 )∗ = r1(QS) + ρσ2QD − ε, or (aS2 )∗ = r̂1(QS)− ε,

from which we deduce that:

(IA.7) (aD1 )∗ = r̂2(QD)− ρσ2QS × η − ε,

where η = (I1−I2)
QD

.
Consequently, there exists a unique equilibrium such that market-maker 1 posts (aD1 )∗

(defined in Eq. (IA.7)) and trades QD while market-maker 2 posts the best ask price equal
to (aS2 )∗ (defined in Eq. (IA.6)) and trades QS.
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Case 2.2. Suppose that QS < 0. In that case, we have I1 − I2 > QD (Condition (IA.1)).
Market-maker 1 posts the best ask price in D while market-maker 2 posts the best bid price
in S. The ask price aD1 in venue D and the bid price bS2 in venue S are respectively the
maximum and the minimum prices that satisfy the set of conditions I to III’. Combining
Condition (II) and (III) and Condition (II’) and (III’), we get:

II and III : r1(QD) ≤ aD1 < r2(QD) + ρσ2QS,

II’ and III’ : r1(QS) + ρσ2QD < bS2 ≤ r2(QS).

From the two first inequalities, aD1 = r2(QD)− ρσ2(−QS)− ε and bS2 = r1(QS) + ρσ2QD + ε
are natural candidates for the equilibrium. Straightforward computations show that they
also satisfy conditions I and I’.�

1.D Proof of Proposition 2

We decompose the proof into two results, depending on the sign of QS.
Notations. For ease of computation in the proof, we use the following notations qm = Qm

for a net-buying order flow and qm = −Qm for a net-selling order flow (m = S,D). Let us
also define vd = µ− ρσ2Id, vu = µ− ρσ2Iu, x = µ− ρσ2I1 and y = µ− ρσ2I2. The support
of the uniform distribution function of x and y simplifies to [vu, vd]. We also note d = ρσ2qD
and s = ρσ2qS. Finally, let am,+ (resp. am,−) be the best ask price of venue m when liquidity
demands have the same sign (resp. opposite sign) across venues.

Result 1 Suppose that shocks have the same sign (with probability γ). Then, the expected
ask prices quoted in the venues D and S are equal to:
(IA.8)

E
(
am,+

)
= µ− ρσ2 2Id + Iu

3
+
ρσ2qm

2
+ ρσ2q−m

(
qD

Iu − Id
− 1

3

(
qD

Iu − Id

)2
)
,m = S,D.

Proof. We first compute the expected ask that prevails in venue D. By definition,

E
(
aD,+

)
= E

(
min

(
aD1 , a

D
2

)
1QD>01QS>0

)
.

Given Proposition 1, the notations defined above, and the symmetry of our hypothe-
ses, the latter equation writes:

E
(
aD,+

)
=

2

(vd − vu)2

[∫ vd−d

vu

∫ vd

x+d

(y +
d

2
)dydx+

∫ vd

vu

∫ vd

x

(
y +

d

2
+ s

(
d− (y − x)

d

))
dydx

−
∫ vd−d

vu

∫ vd

x+d

(
y +

d

2
+ s

(
d− (y − x)

d

))
dydx

]
.(IA.9)

We now turn to the expected ask prevailing in venue S using a similar reasoning. The
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expression writes:

E
(
aS,+

)
= E

(
min

(
aS1 , a

S
2

)
1QD>01QS>0

)
=

2

(vd − vu)2

[∫ vd−d

vu

∫ vd

x+d

(y +
s

2
)dydx+

∫ vd

vu

∫ vd

x

(
x+

s

2
+ d
)
dydx

−
∫ vd−d

vu

∫ vd

x+d

(
x+

s

2
+ d
)
dydx

]
.(IA.10)

Computations based on Eq. (IA.9) and on Eq. (IA.10) yield the expressions given in Eq.
(IA.8) for m = D and m = S respectively. Q.E.D.

Result 2 Suppose that shocks have opposite signs (with probability 1− γ), then the
expected ask prices in venues D and S respectively write:

E
(
aD,−

)
= µ− ρσ2 2Id + Iu

3
+
ρσ2qD

2
− ρσ2qS,(IA.11)

E
(
aS,−

)
= µ− ρσ2 2Id + Iu

3
+
ρσ2qS

2
+ ρσ2

[
−qD +

(qD)2

(Iu − Id)
− (qD)3

3 (Iu − Id)2

]
.(IA.12)

Proof. We first compute the expected best ask prevailing in venue D (considering a sell
shock in venue S):

E
(
aD,−

)
= E

(
min

(
aD1 , a

D
2

)
1QD>01QS<0

)
,

which rewrites:

(IA.13) E
(
aD,−

)
=

2

(vd − vu)2 (

∫ vd−d

vu

∫ x+d

vu

(y +
d

2
− s)dydx

+

∫ vd

vu

∫ vd

x

(y +
d

2
− s)dydx−

∫ vd−d

vu

∫ vd

x+d

(y +
d

2
− s)dydx).

Eq. (IA.11) immediately follows.
Symmetrically, the expected best ask prevailing in market S (considering now a sell shock
in venue D) writes:

(IA.14) E(aS,−) =
2

(vd − vu)2

(∫ vd

vu−d

∫ x+d

vu

(x+
s

2
+ d)dydx+

∫ vd

vu

∫ x

vu

(y +
s

2
)dydx

−
∫ vd

vu−d

∫ x+d

vu

(y +
s

2
)dydx

)
.

Computations yield Eq. (IA.12). Q.E.D.
Let us define the half-spread as sm = am−µ and φm = qm

Iu−Id
. Proposition 2 is then obtained

from Results 1 and 2 considering the extensive form of the game represented in Figure IA.1.
�
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1.E Proof of Corollary 1

Remind that ac denotes the lowest ask price in a centralized market. From Ho and Stoll
(1983), we know that:

(IA.15) E (ac) = µ− ρσ2 2Id + Iu
3

+
ρσ2(qm + q−m)

2
.

Using Eq. (IA.8), (IA.11) and (IA.20) and the symmetry of the game, we deduce that the
difference in expected transactions costs between a fragmented and a centralized market is:

∆E(TTrC) = γ
(
E
(
aD,+

)
qD + E

(
aS,+

)
qS − E (ac) (qD + qS)

)
+ (1− γ)

(
E
(
aD,−

)
qD − E

(
b
S,−
)
qS − E (ac) (qD − qS)

)
.

After straightforward computations the latter expression is equal to:

∆E(TTrC) = ρσ2qS (Iu − Id)
(
−(γ + 1)

3

)
Pγ(φD),(IA.16)

where Pγ(x) = x3 − 3x2 + 3
(γ+1)

x+ (γ−1)
(γ+1)

for x ∈ [0, 1], and φD = qD
Iu−Id

.
To investigate whether expected transaction costs are larger or smaller in a centralized
market, let us analyze the sign of the cubic polynomial Pγ. First, note that:

P ′γ (x) = 3x2 − 6x+
3

(1 + γ)
= 3

(
x−

(
1−

√
γ

1 + γ

))(
x−

(
1 +

√
γ

1 + γ

))
.

Given that x ∈ [0, 1], then x −
(

1 +
√

γ
1+γ

)
< 0, and the sign of P ′γ (x) only depends on

the sign of
(
x−

(
1−

√
γ

1+γ

))
. Pγ is increasing if x <

(
1−

√
γ

1+γ

)
and is decreasing if

x >
(

1−
√

γ
1+γ

)
. Thus, the local maximum is Pγ(1−

√
γ

1+γ
) =

γ(−1+2
√

γ
1+γ )

1+γ
.

• Consider the case where γ ≤ 1
3
. Straightforward computations show that Pγ(1−

√
γ

1+γ
) ≤ 0

(with Pγ(1 −
√

γ
1+γ

) = 0 if γ = 1
3
). We therefore deduce that Pγ ≤ 0, i.e., ∆E(TTrC) > 0

if γ ≤ 1
3
.

• Consider now the case where γ > 1
3
. We can show that Pγ > 0, or, equivalently,

∆E(TTrC) < 0 iff x ∈ [Φ1
γ,Φ

2
γ] where Pγ(Φ1

γ) = 0 = Pγ(Φ
2
γ). Note that if γ = 1, then

it is direct to show that P1 > 0 if x ∈ [0, (3−
√

3)
2

], or equivalently, ∆E(TTrC) < 0 iff
φD < (3−

√
3)

2
.�
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b

b
LD = 01� �D b

LS = 01� �S b (QD = 0; QS = 0)
b

�LS�S b (QD = 0; QS > 0)12
b (QD = 0; QS < 0)12

b
�LD�D b

LS = 01� �S b (QD < 0; QS = 0)12
b (QD > 0; QS = 0)12

b
�LS�S b

QD +QS < 012 b (QD < 0; QS < 0)

b (QD < 0; QS > 0)1� 


b
QD +QS > 012 b (QD > 0; QS > 0)j market-maker i posts (aDi ; aSi )


b (QD > 0; QS < 0)j market-maker i posts (aDi ; bSi )1� 

Figure IA.1: Tree of the quoting game across trading venues

Figure IA.1 represents the tree of the trading game. At date 1 (not represented on the Figure), market-
maker i is endowed with an inventory position denoted Ii. At date 2, venue m is hit by a liquidity shock,
denoted Lm, with probability ζm. Lm generates a liquidity demand Qm, which is positive (resp. negative)
with probability 1

2 (resp. 1
2 ). The probability that shocks simultaneously hit both venues is denoted ζ

(= ζD × ζS). The probability that shocks have the same sign is denoted γ. The paper analyzes price
formation across venues when the global order flow is net-buying, i.e., QD +QS > 0. Symmetric results
are obtained for a net-selling global order flow. At date 3, market-maker i posts simultaneously a price
in venue D and a price in venue S. We denote ami (resp. bmi ) the ask price (resp. bid price) that i posts
in venue m if Qm > 0 (resp. Qm < 0), m = D,S.
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1.F Proof of Proposition 3

By definition, Cov(sD, sS) = γCov(aD,+ − µ, aS,+ − µ) + (1 − γ)Cov(aD,− − µ, µ −
b
S,−

) = γCov(aD,+, aS,+)− (1−γ)Cov(aD,−, b
S,−

). We decompose the proof into two results,
depending on the sign of shocks across venues (similar or opposite).

Result 3 Suppose that shocks have the same sign (with probability γ). The covariance
between the ask price in venue D and the one in venue S is equal to:
(IA.17)
Cov(aD,+, aS,+)

(ρσ2)2(Iu − Id)2
=

1

18
−φD

(
−φD − φS

6
+

2(φS − φD)

9
φD +

15φS − φD
12

φ2
D +

2φS
3
φ3
D +

φS
9
φ4
D

)
,

where φm = qm
(Iu−Id)

, m = D,S.

Proof. By definition, E
(
aD,+aS,+

)
= E

(
min

(
aD1 , a

D
2

)
×min

(
aS1 , a

S
2

)
1QD>01QS>0

)
. Using

Proposition 1, and notations defined above, we get:

(IA.18) E
(
aD,+aS,+

)
=

2

(vd − vu)2

[∫ vd−d

vu

∫ vd−d

vu

(y +
s

2
)(y +

d

2
)dydx

+

∫ vd

vu

∫ vd

x

(x+
s

2
+ d)(y +

d

2
+ s

(
d− (y − x)

d

)
)dydx

−
∫ vd−d

vu

∫ vd

x+d

(x+
s

2
+ d)(y +

d

2
+ s

(
d− (y − x)

d

)
)

]
.

To compute Cov(aD,+, aS,+) = E(aD,+aS,+)− E(aD,+)E(aS,+), we use the expression above
and Result 1 for expressions of E

(
aD,+

)
and E

(
aS,+

)
. Computations yield Eq. (IA.17).

Q.E.D.

Result 4 Suppose that shocks have opposite signs (1− γ). The covariance between the best
price in venue D and the one in venue S writes:

(IA.19)
Cov

(
aD,−, b

S,−
)

(ρσ2)2(Iu − Id)2
=

1

36
+

(φD)2

36

(
3 (φD)2 − 8φD + 6

)
.

Proof. If a sell shock hits venue S, the expected best bid in venue S is such that E(b
S,−

) =
E(max(bS1 , b

S
2 )1QD>01QS<0), or:

(IA.20) E(b
S,−

) =
2

(vd − vu)2 (

∫ vd−d

vu

∫ vd

x+d

(x+
s

2
+ d)dydx+

∫ vd

vu

∫ vd

x

(y +
s

2
)dydx

−
∫ vd−d

vu

∫ vd

x+d

(y +
s

2
)dydx)

When a buy shock hits venue D, the expected best ask price of venue D is thus described

13



by Eq. (IA.11). Then E(aD,−b
S,−

) writes:

(IA.21) E(aD,−b
S,−

) =
2

(vd − vu)2 [

∫ vd−d

vu

∫ vd

x+d

(y +
d

2
− s)(x+

s

2
+ d)dydx

+

∫ vd

vu

∫ vd

x

(y +
d

2
− s)(y +

s

2
)dydx−

∫ vd−d

vu

∫ vd

x+d

(y +
d

2
− s)(y +

s

2
)dydx].

Using Equations (IA.11), (IA.20) and (IA.21), we can deduce the expression of Cov(aD,−, b
S,−

)
described in Eq. (IA.19). Q.E.D.
From Results 3 and 4 and considering the extensive form of the game represented in Figure
IA.1, we deduce that spreads co-vary jointly as follows:

(IA.22) cov(sD, sS) = λ
(
ρσ2(Iu − Id)

)2(
γ × gφD(φS) + aφD

)
where aφD and gφD such that: aφD = −1

36
− (φD)2(1

6
− 2

9
φD) and

(IA.23) gφD(x) =
3

36
− (φD)4

12
− xφD

(
(φD)4

9
− 2(φD)3

3
+

5(φD)2

4
− 8φD

9
+

1

6

)
.

It is straightforward to show that gφD is positive for any φD. We thus deduce that
the covariance cov(sD, sS) is an increasing function of γ.�
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2 Model Extensions

2.A Non-strategic quotes in a fragmented market

Our paper assume that market-makers behave strategically within and across trading

venues. Most of the literature analyzes, however, market fragmentation by assuming that

liquidity suppliers behave competitively, setting prices such that a zero-profit condition holds.

This appendix analyzes prices posted by competitive risk-averse market makers in our two-

market setting. It allows us to better understand the impact of assuming strategic multi-

venue market-makers. It also allows us to show that the “ultra-competitive effect” obtained in

the model resulting from the strategic behavior of risk-averse market-makers is not obtained

under the same conditions in a non-strategic inventory management model.

Proposition 2.A.1 Assume that I1 > I2 and QD +QS > 0, and that market-makers

behave competitively. Then they quote their true value for the asset, i.e., their own

reservation price, that is:

1. If (I1 − I2 −QD)QS > 0, then market-maker 1, with a longer position, posts the best

prices across venues, that is:

(IA.24) (pm1 )NS = r1(QD +QS) for m = D,S

2. If (I1 − I2 −QD)QS ≤ 0, the longer market-maker posts the best price in the dominant

market while the shorter market-maker posts the best price in the satellite market, that is:

(IA.25) ((aD1 )NS, (pS2 )NS) = (r1(QD), r2(QS))

where pmi is a selling price when Qm is a buy demand, and a bid price when Qm is a sell

demand (i = 1, 2, and m = D,S).

In a multi-venue environment, when intermediaries are competitive, best prices some-

times differ across venues for two reasons. First, when (I1− I2−QD)QS ≤ 0, which is equiv-
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alent to TC1(QD +QS) ≥ TC1(QD)+TC2(QS), market-maker 1 is capacity-constrained and

cannot absorb both shocks. She is thus constrained to absorb the most efficient shock (in

terms of risk sharing), which is the larger buy demand QD (see Lemma 1 in the baseline

model). She thus posts her true value for executing QD, while market-maker 2 executes the

shock in the satellite market at his reservation price for this liquidity demand QS. Second,

because market-makers’ reservation quotes reflect the price impact of trades of different size

(|QD| > |QS|), when market-makers are not strategic, they post prices that reflect their true

value for the magnitude of orders to execute, which sometimes differ (alternatively QD +QS

or QD for market-maker 1, or QS for market-maker 2).

Let us now analyze the impact in terms of total trading costs. We assume also that

market-makers behave non strategically in a centralized market, and thus post their true

value for the asset. Market-maker 1 executes the net order flow at her reservation price

r1(QD + QS)(< r2(QD + QS)). According to Lemma 1 in the baseline model, we have two

cases to consider:

• If (I1 − I2 −QD)QS ≤ 0, then total trading costs are the same. Fragmentation is thus

innocuous in this case.

• If (I1 − I2 −QD)QS ≤ 0, then the difference in total trading costs write:

(IA.26)

r1(QD)QD + r2(QS)QS − r1(QD +QS)× (QD +QS) = ρ× σ2(I1− I2−QD)×QS < 0.

Market fragmentation is good for total trading costs in this case.

Total trading costs are lower in a two-venue setting with competitive market-makers, than

in a centralized market. It is driven by a better risk sharing in the case market-maker 1 is

capacity-constrained. This outcome is opposite to that obtained in our two-venue strategic

duopoly model. Recall that when market-maker 1 is capacity-constrained, market-makers

price high, by posting their “stay-at-home” price which takes into account their monopolist

situation in their “home” venue. A better risk sharing leads to less competitive prices in our

baseline model (see Appendix 2.C for a more formal proof on risk sharing).
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In sum, the “intense competition” effect results from low divergence in inventories

when market-makers behave non-strategically, whereas this effect is obtained when diver-

gence in inventories is high if intermediaries behave strategically. Our main empirical result

contained in Table 7 in the main model corroborates strategic inventory management.
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2.B Endogenous fragmentation of the total order flow

This section extends the baseline model by assuming that a global liquidity demander

has access to all venues simultaneously (through, for example, a smart order router). Let us

assume that this liquidity demander must trade a given quantity denoted Q. He minimizes

his total trading cost by optimally splitting orders across venues. Note that this section only

extends the case in which shocks have exogenously the same sign in our baseline model. We

also assume that market-maker 1 is longer than market-maker 2 and that Q is a buy order

flow (Q > 0). Results for the case in which market-maker 2 is longer that market-maker 1

or for the case of a sell order are deduced by symmetry.

We consider that the global liquidity demander enjoys some private benefits denoted

δm to trade in venue m. We assume that δD > δS, consistently with the dominant venue

defined in the baseline model, and that δD − δS < ρσ2Q.3,4 The liquidity demander chooses

the proportion α of the order flow routed to venue D (and (1 − α) to venue S) so as to

minimize his total trading cost.5

Based on assumptions in the baseline model, we suppose that the liquidity demander

splits orders such that a larger demand is sent to the dominant market (αQ = QD ≥ QS =

(1−α)Q).6 We thus investigates whether there exists an equilibrium when the liquidity trader

optimally split orders across venues such that α ∈ [1
2
; 1). In this interval, total trading costs

write:

(IA.27) TTrC(α) = [((aD1 )∗(αQ)− δD − µ)α + ((aSi )∗((1− α)Q)− δS − µ)(1− α)]×Q.
3Numerous studies (see Froot and Dabora, 1999; Foerster and Karolyi, 1999; or Gagnon and Karolyi,

2010, among others) document the existence of a domestic bias, due to investment barriers, e.g., regulatory
barriers, taxes, or information constraints. In Europe, brokerage fees charged in 2013 to trade in a foreign
country or trading venue are 15 to 40% higher than those charged to trade in a national exchange, but the
situation was even worse back in 2007. Differences in private benefits might also capture differences in terms
of maker/taker spreads.

4When δD − δS ≥ ρσ2Q, the private benefits of trading in venue D are so large that it is never optimal
for investors to split the quantity to be traded across trading platforms.

5Because markets are transparent in our set up, we assume that liquidity demanders perfectly anticipate
what the best bid and ask prices will be.

6A complete proof of the existence and characterization of all the equilibria is available on request.
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where i = 1, 2 depending on the divergence in inventories (i = 1 if I1 − I2 > αQ, i = 2

otherwise, see Lemma 1 in the baseline model).

The following Proposition shows the existence and the characterization of an equilib-

rium α∗.

Proposition 2.B.1 If 2ρσ2(I1 − I2) > (δD − δS), there exists an interior equilibrium α∗,

such that it is optimal for the global liquidity demander to split orders across venues.

Proof. We want to show that there exists an interior equilibrium, that is, an α∗ ∈ [1
2
, 1)

that minimizes transaction costs TTrC(.) described by Eq. (IA.27).
• We first conjecture that there exists an equilibrium characterized by a high divergence in
intermediaries’ inventories, i.e., I1−I2−αQ > 0, or, 1

2
≤ α < I1−I2

Q
. The first order condition

(FOC) yields:

αH =
1

2
+
δD − δS
2ρσ2Q

.

The two conditions for an interior equilibrium α ∈ [1
2
, 1) to exist are thus: i. a condition

ensuring that our conjecture holds, i.e., αH < I1−I2
Q

, and ii. a condition ensuring that
the equilibrium is interior, i.e., αH < 1. The latter always holds under our assumption
δD − δS < ρσ2Q. Condition i. rewrites as follows:

(IA.28) I1 − I2 >
1

2

(
Q+

δD − δS
ρσ2

)
.

• We now conjecture that there exists an equilibrium characterized by a low divergence in
intermediaries’ inventories, i.e., α ≥ I1−I2

Q
. The FOC yields:

αL =
1

2
− δD − δS

2ρσ2Q
+

(I1 − I2)

Q
.

The three conditions for an interior equilibrium to exist are such that: (i) our conjecture
must hold, i.e., αL ≥ I1−I2

Q
; (ii) there exists an interior equilibrium, i.e., αL < 1; and (iii)

αL ≥ 1
2
. Condition (i) always holds under our assumption δD − δS < ρσ2Q. Condition

(ii) translates into I1 − I2 <
Q
2

+ δD−δS
2ρσ2 , which is the complement of the condition (IA.28)

above. Notice that if I1− I2 = Q
2

+ δD−δS
2ρσ2 , then there exists an equilibrium such that α∗ = 1.

Condition (iii) imposes 2ρσ2(I1 − I2) ≥ δD − δS.7�

The liquidity demander trades off the benefits of price competition in a two-venue

structure (related to the divergence of inventories, I1 − I2) to the private benefits of send-
7If 2ρσ2(I1 − I2) < δD − δS , there is no solution to the FOC in[ 12 , 1). There is a corner equilibrium:

α∗ = 1.
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ing the entire demand to the dominant market (δD − δS). We conclude that, even when

the demand splitting is endogenized, it is still the case that the market remains ex ante

fragmented.

2.C Risk-sharing efficiency in a fragmented market

This section investigates the effect of having the possibility of absorbing the preferred

shock (what we termed in the baseline model as the shock hitting their “home” venue) on

risk sharing among market-makers. It is worth noticing that, when intermediaries specialize

in their “home” venue, they obtain a better allocation of risk compared to the centralized

market, as shown in the following corollary.

Corollary 2.C.1 A fragmented market generates a more efficient outcome in risk sharing

among market-makers than a centralized market in the sense that market-makers bear lower

aggregate security risk.

Proof. In our set up (equal risk aversion and identical pre-trade inventory distribution),
we can measure intermediaries’ aggregate post-trade risk by the sum of the variance of their
post-trade wealths (Yin, 2005).

1. In a centralized market, the longer market-maker executes the net order flow. The
aggregate post-trade risk, denoted by (σ2

agg)
c, is thus equal to:

(IA.29) (σ2
agg)

c = V ar((I1 −QD −QS)ṽ) + V ar(I2 × ṽ).

2. In a fragmented market, post-trade allocations depend on the sign of
(I1 − I2 −QD )QS (See Lemma 1 in the baseline model).

• If (I1 − I2 −QD)QS > 0, the aggregate post-trade risk is equal to that in a
centralized market, since the longer market-maker consolidates the global order flow:

(σ2
agg)

cons = V ar((I1 −QD −QS)ṽ) + V ar(I2 × ṽ) = (σ2
agg)

c.

• If (I1 − I2 −QD)QS ≤ 0, each shock is absorbed by a different market-maker and
the aggregate post-trade risk is equal to:

(IA.30) (σ2
agg)

frag = V ar((I1 −QD)ṽ) + V ar((I2 −QS)ṽ).
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Then, subtracting Eq. (IA.30) from Eq. (IA.29) is equal to
(σ2

agg)
frag − (σ2

agg)
c = 2QS(I1 − I2 −QD) < 0, which is negative in the case considered

here.�

The intuition is as follows: in a centralized market, orders are crossed when they

are of opposite direction. This implies that, if QS < 0, market-makers only execute the

remaining order imbalance of QD +QS < QD. In a multiple-venue setting, orders cannot be

crossed, market-makers are however able to choose to execute only trades with a desirable

impact on their inventory position. In the case QS < 0, market-maker 1 chooses to execute

only QD when she is very long (I1−I1−QD > 0), while the shorter market-maker absorb the

shock in S, which results in a better risk sharing than in the centralized market. The better

allocation of risk does not however necessarily lead to more competitive prices as detailed in

Proposition 1 in the baseline model. This result is in the spirit of the one obtained in Biais

et al. (1998).
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2.D Introduction of a pre-stage inter-dealer market

This section analyzes whether our results are sensitive to the introduction of a pre-

stage inter-dealer market. We assume that, at stage 0, intermediaries are able to optimally

share inventory risks before setting quotes in the customer-dealer market. It could be the

case that they prefer sharing risks in an inter-dealer market to avoid multi-venue competition

in the customer-dealer market starting at stage 1.

In a conservative approach, we assume that intermediaries independently and non-

strategically maximize their expected profit in the inter-dealer market, then maximize their

expected profit in the customer-dealer market (the model is solved sequentially).8

Even in the presence of a pre-stage risk-sharing round, intermediaries may find more

profitable ex ante not to trade in the inter-dealer market as shown by the following Corollary:

Corollary 2.D.1 The set of parameters for which intermediaries choose not to trade in

the inter-dealer market is non-empty.

Proof. We consider two stages.

First stage: the inter-dealer market (ID). If market-maker 1 sells a quantity q at
price p to market-maker 2 in the inter-dealer market, the profits of market-maker 1 and 2
respectively write:(

vID1 =

[
p− µ− ρσ2

2
(q − 2I1)

]
q; vID2 =

[
µ− ρσ2

2
(q + 2I2)− p

]
q

)
.

We maximize market-makers’ profits with respect to q to find market-maker 1’s supply
function, and market-maker 2’s demand function. The crossing of the supply and demand
curves yields the following symmetric equilibrium in the inter-dealer market:(

q∗ID =
I1 − I2

2
; p∗ID = µ− ρσ2 I1 + I2

2

)
.

At equilibrium in the inter-dealer market, market-makers’ profits write
(
vID1

)∗
=(

vID2

)∗
= ρσ2

8
(I1 − I2)2. Notice that market-makers find it optimal to perfectly share risk:

8In the case in which intermediaries strategically trade in the inter-dealer market after observing the real-
ization of the order flows in venue D and S, we find that they may find optimal to reinforce the divergence in
inventories in order to maximize their trading profit in the customer-dealer market. The inter-dealer market
is not a way to optimize risk-sharing, but to enhance divergence in inventories. Multi-venue competition in
the customer-dealer is thus emphasized in this case.
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after trading in the inter-dealer market, market-makers 1 and 2 end up with the same
inventory position, I ′1 = I ′2.
Second stage: the customer-dealer market (CD). Given market-makers’ inventory po-
sitions after their trades in the inter-dealer market, their equilibrium profits in the customer-
dealer market can be computed at the limit when I ′1 → I ′2 using the formula derived in the
proof of Proposition 1. We find:

(
v
CD|ID
1

)∗
=
(
v
CD|ID
2

)∗
= ρσ2qDqS.

Comparison. We finally compute market-makers’ expected profits in the presence of an
inter-dealer market, namely V CD+ID = E

((
v
CD|ID
i

)∗
+
(
vIDi
)∗), and compare them with

the expected profits they obtain in the absence of an inter-dealer market, namely
(
V CD

)∗
=

E
((
vCDi

)∗). Computations yield:

(IA.31) V CD+ID =
ρσ2

48
(Iu − Id)2 + γρσ2qDqS,

and

V CD =
ρσ2

6
(Iu − Id) (qD + (2γ − 1)qS)

+
ρσ2qS

(Iu − Id)2
×
[

(1− γ)(Iu − Id)3 −
(
3(1− γ)qD + 1

2
γqS
)

(Iu − Id)2

+
{

(1− γ)qD + 1
2
γqS
}
qD (3(Iu − Id)− qD)

]
.(IA.32)

To assess the impact of the existence of an inter-dealer market on intermediaries’ expected
profits, one needs to compare the expressions given in Eq. (IA.31) and (IA.32). Closed-
form solutions are difficult to interpret. However there exist parameters’ values such that
intermediaries would prefer not to share risk in an inter-dealer market, that is, V CD >
V CD+ID. Figure IA.2 shows that intermediaries are better off trading ex ante in an inter-
dealer market only when (i) the probability that shocks have the same sign, γ, is high, and
(ii) the size of the liquidity demand sent to the satellite venue, qS, is small.

As illustrated by Figure IA.2, there exist cases (white squared surface) in which inter-
mediaries find more profitable ex ante not to trade in the inter-dealer market (for different
values of γ and qS) and trade directly in the customer-dealer market.�
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CD + ID
CD

"Parameters: rho1; sigma²0.001; Iu12,000; Id0; phi_d512"

Figure IA.2: Impact of the inter-dealer market on dealers’ expected profits.
Figure IA.2 represents intermediaries’ expected profits with or without an initial trading
round in an inter-dealer market, as a function of γ (the probability that shocks have the
same sign) and φS , for φS ≤ φD and φD ≤ Iu − Id. The white squared surface plots the
expected trading profit in the customer-dealer market (CD) only, the grey squared surface
plots the total expected trading profit if intermediaries engage in an inter-dealer round before
trading in the customer-dealer market (CD+ID).

24



2.E No trade-through

This section explores whether a market order can execute at a price worse than the

best quoted price, termed as trade-through. Note that a trade-through can only occur if

orders sent to S and D have the same sign. The question is thus: do we observe different

prices across trading venues when orders QD and QS are of same direction and same size?

Corollary 2.E.1 There is no trade-through possible in our model.

Proof : We use Proposition 1 when QD and QS have the same sign, and consider that
QS = QD = Q.

• If (I1 − I2 −QD)QS > 0 and QD = QS = Q > 0, then it is straightforward to show
that (aD1 )∗ = (aS1 )∗ = r2(Q).

• When (I1 − I2 −QD)QS ≤ 0 and QD = QS = Q > 0, easy computations (below) show
that (aD1 )∗ = (aS2 )∗.

Observe that r̂2(Q)− ρσ2Q× η = r2(Q) + ρσ2Q− ρσ2(I1− I2) = r1(Q) + ρσ2Q = r̂1(Q). We
deduce that (aD1 )∗ = (aS2 )∗. �
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3 Relevance for limit order book environments

3.A Transaction costs, risk premia and rents

In this section, we analyze the effects of fragmentation on transaction costs and

the economic forces driving differences in transaction costs between a fragmented and a

centralized markets. To do so, we compare the level of total transaction costs (denoted

TTrC) incurred by liquidity traders in the two market structures, i.e., TTrC − TTrCc =

(aD1 )∗QD + (pSi )∗QS − (ac1)∗(QD +QS).

In our model, fragmentation enables market-makers to compete for only a part of the

total order flow, which is not possible in a centralized market in which order flow is batched.

This possibility has an impact on both the inventory risk exposure of market-makers and the

intensity of price competition. In order to better understand this dual impact, we decompose

total transaction costs into an aggregate risk premium component and an aggregate rent

component. Let 1i,S be a dummy that takes value 1 if market-maker i is the best quoting

market-maker in market S. Total transaction costs re-write:

TTrC =
(
r1

(
QD +QS11_S

)
− µ

)
(QD +QS11,S) + (r2 (QS)− µ)QS12,S︸ ︷︷ ︸

aggregate risk premium

(IA.33)

+
(
aD1 − r1 (QD +QS11,S)

)
QD +

(
pS1 − r1 (QD +QS)

)
QS11,S +

(
pS2 − r2 (QS)

)
QS12,S︸ ︷︷ ︸

aggregate rent

.

The difference in total transaction costs between a fragmented and a centralized market is

driven by changes in risk premium and in rent:

TTrC − TTrCc = ∆agg. risk premium + ∆agg. rent.

Figure IA.3 illustrates our decomposition and differences in total transaction costs between

the two market structures. The parameters’ space is split along two dimensions, namely (i)

whether competition is high ((I1−I2−QD)×QS > 0) or low ((I1−I2−QD)×QS < 0) and (ii)

whether QS is positive (on the top) or negative (on the bottom). The domain is divided into
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regions A1, A2, B, C and D, exactly corresponding to those in Figure 1.9 Total transaction

costs in a centralized market are in white (with the legend “Benchmark”). The risk premium

component is in dashed blue, while the rent component in plain blue. Total transaction costs

in a fragmented market are in green (when smaller) or orange (when larger).

[INSERT FIGURE IA.3]

In accordance with previous sections, we divide the analysis into the intense competition

case and the low competition case.

The intense competition case (regions B and C in Figure IA.3). In this case, remind

that inventory costs of market-maker 1 are small enough to let her absorb the total order

flow. Market-maker 1 consolidates the fragmented order flow as she would do in a centralized

market. The inventory risk exposure of both market-makers 1 and 2 is unchanged compared

to the centralized market (∆agg. risk premium = 0). Variation in the rent depends on the

intensity of price competition, as explained below:

• When QS > 0 (region B), competition is very high due to the threat exerted by the

possibility of the shorter market-maker to post aggressive quotes in only one venue

that forces the longer market-maker to respond by posting “ultra-competitive”

quotes, which are even more competitive than in a centralized market. The rent

extracted by market-makers is thus smaller in a fragmented market, leading to lower

total transaction costs:

TTrC − TTrCc = 0︸︷︷︸
∆agg. risk premium

−ρσ2QSQD︸ ︷︷ ︸
∆agg. rent<0

< 0.

It is worth noticing that the reduction in transaction costs in a fragmented market is

purely driven by competitive pressure, since the aggregate risk premium remains

unchanged.
9Note that the x-axis designates (I1−I2−QD) in Figure 1 while the x-axis designates ((I1−I2−QD)×QS)

in Figure IA.3. For the case in which QS < 0, regions C and D are reversed.
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• In case QS < 0, price competition in region C is less intense than in region B and

comparable to a centralized market. Consequently,

TTrC − TTrCc = 0︸︷︷︸
∆agg. risk premium

+ 0︸︷︷︸
∆agg. rents

= 0.

The low competition case (regions A1, A2, and D in Figure IA.3). In this case,

the cost of producing liquidity for market-maker 1 is too high to profitably absorb all shocks

across venues. The total order flow is thus split among the two market-makers. The possibil-

ity of executing only a part of the total order flow reduces inventory risk exposure in a frag-

mented market in comparison with a centralized market (i.e., ∆agg. risk premium < 0).10

A smaller risk premium in aggregate could result in more competitive prices in a fragmented

market. The lower ability of market-maker 1 to post aggressive quotes due to her capacity

constraint is however anticipated by her opponent, and has an impact on the intensity of

competition, determining the magnitude of rents.

• When QS > 0 (region A1 and A2), the rent component varies highly, depending on

the divergence of market-makers’ inventories which tunes the intensity of

competition. In region A2, competition is still intense and the rent extracted from

imperfect competition is not large enough to offset the benefits of a smaller risk

premium component. Total transaction costs are thus still smaller in a fragmented

market. In region A1, the competition pressure is low and market-makers extract

large rents (and in particular, larger than those in a centralized market), leading to

larger total transaction costs:

TTrC−TTrCc = −ρσ2QS(QD − I1 + I2)︸ ︷︷ ︸
∆agg. risk premium<0

+ ρσ2QS(2QD − 3(I1 − I2))︸ ︷︷ ︸
∆agg. rent≷0

 > 0 if I1 − I2 < QD/2

< 0 if I1 − I2 > QD/2

10Market-makers bear actually lower aggregate security risk in a fragmented market, which results in a
more efficient outcome in risk sharing among market-makers than a centralized market (see Corollary 2.C.1
of this Online Appendix).
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• When QS < 0 (region D), market-maker 1 (very long in this case) is not able to

compete for sell orders submitted to the satellite venue, that would further increase

inventory risk. This is anticipated by market-maker 2. Both market-makers behave

as local monopolists. The rent extracted from imperfect competition is

unambiguously higher in a fragmented market. Its magnitude more than offsets the

benefits of the improvement in risk sharing (lower aggregate risk premium), leading

to worse transaction costs :

TTrC − TTrCc = −ρσ2(−QS)(I1 − I2 −QD)︸ ︷︷ ︸
∆agg. risk premium<0

+ 2ρσ2(−QS)(I1 − I2 −QD)︸ ︷︷ ︸
∆agg. rent>0

> 0

29



QS Intense competition
(I1 − I2 −QD)×QS > 0
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Figure IA.3: Is market fragmentation good for transactions costs?
Figure IA.3 partitions the set of parameters into 5 different regions. The y-axis represents the shock
hitting S, denoted QS , which might be positive or negative. The x-axis represents I1 − I2 −QD varying
from −QD to Iu − Id − QD. The product (I1 − I2 − QD) × QS determines whether market-maker 1 is
capacity-constrained (see Lemma 1). Total transaction costs in a centralized market are in transparent
white (with the legend “Benchmark”). The risk premium component is in dashed blue, while the rent
component in plain blue. Total transaction costs in a fragmented market are in green (when smaller) or
orange (when larger). Regions A1, A2, B, C and D correspond to regions on Figure 1.
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3.B Model implications in a limit order book environment

In this section, we discuss the robustness of our empirical predictions to our modelling

choices. We test implications 1, 2 and 3 of our model using a limit order book environment,

but model imperfect competition in quote-driven markets. Order-driven markets might differ

along three dimensions: i. capacity to share inventory exposure risks, ii. time priority, iii.

timing. Besides, some modern financial markets are very fragmented (e.g., US cash equity

markets), and the entry of multi-venue market-makers could be endogenous to the number

of trading platforms.

Risk sharing. Risk sharing may be more easily obtained in a consolidated limit order book

than in a centralized dealer market (see, for instance, Biais et al., 1998). One key prediction

of our model is the “ultra-competitive” effect. Crucially though, this result is not driven by

favorable effects on the risk premium (and better risk sharing) but by the strategic quoting

behavior of market-makers. As illustrated in region B of Figure IA.3, the risk premium is

invariant between a fragmented and a centralized market in the ultra-competitive case. Only

a smaller rent component due to more intense competition explains the smaller transaction

costs observed in a fragmented market. We thus deduce that the ultra-competitive effect,

independent of the impact of risk sharing, would also be a driving force of the impact of

fragmentation in imperfectly competitive limit order markets.11

Time priority. The timing of quote/limit order submission may be an important driver

of competition in fragmented limit order markets when price then time priority is enforced

within a venue but not across venues, as documented by Foucault and Menkveld (2008). In

our model, market-makers post quotes simultaneously. This assumption is however not cru-

cial in our context because market-makers compete in prices and undercut their competitor

by ε, a small positive number. Our results are robust to a sequential entry of market-makers
11Note that theoretical models of frictionless limit order books such as Biais et al. (1998) involve simulta-

neously efficient risk sharing and competitive pricing. In practice, frictions such as the choice of an allocation
rule may prevent perfect competition. Biais et al. (2010) for instance find evidence of imperfect competition
in Island limit order book before Nasdaq decimalization.
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and to the introduction of a time priority rule, as long as market-makers are able to post

quotes before the arrival of order flows.

Timing. In our model, market-makers first observe shocks, and then compete to absorb

one or both shocks. The chronology of events would be reversed in limit order markets in

which market-makers post limit orders before the arrival of a liquidity shock, which changes

market-makers’ information set. This difference may be crucial in the presence of asymmetric

information (see Glosten, 1994). In contrast, in the absence of asymmetric information on

the fundamental value of the asset as in our model, it is often equivalent to consider a setting

in which market-makers post a price schedule first, or a setting in which investors first submit

demand schedules to market-makers. This equivalence does not hold in fragmented markets,

because market-makers can only condition their price in one market upon the execution of

orders sent to this market, and not on orders sent to other markets. This prevents them

from setting prices equal to actual marginal costs.

Changing the assumption on the timing of the model so that market-makers would

post limit orders or quotes before observing the realization of order flows would require to

replace the actual cost of supplying liquidity in venue m by an expected cost of supplying

liquidity that would depend on the probability to observe a given realization of the order

flow in venue −m, conditional on the order flow observed in venue m. This would impact:

(i) the condition that drives the market-makers’ strategic decision to absorb the order flow

in part or in totality (that is, (I1− I2−QD)×QS positive or negative), and, potentially, (ii)

equilibrium prices that depend on “stay-at-home” prices. However, our “ultra-competitive”

effect obtained when divergence in inventories is large and the probability to observe same-

sign shocks (γ) is sufficiently high, would be preserved. Equilibrium prices in this case are

driven by competition. They are set such that the opponent cannot undercut in any venue,

and are independent of the cross-market cost linkage that would be affected by a different

timing.
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Endogenous entry of market-makers. The number of venues is fixed in our model, as

well as the number of market-makers. The question could arise whether having more venues

could lead to the entry of more market-makers, if entry decisions are made endogenous. An

increase in the number of market-makers would have two opposite effects in our model. On

the one hand, it would decrease the rent extracted each by market-makers. On the other

hand, it would possibly decrease the probability to be in the ultra-competitive case as ob-

serving a high inventory divergence could be less likely. This is due to our assumption that

the support of the distribution of inventories ([Id, Iu]) is equal for every market-maker. In a

more general model, this support could be heterogenous. Which effect dominates would ulti-

mately depend on the parameters of the model: the size of liquidity shocks, the distribution

of inventories, and the distribution of entry costs across market-makers.
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4 Robustness checks

4.A Quoting aggressiveness

This section shows why our measure of quoting aggressiveness, illustrated in Figure

IA.4, isolates inventory effects and controls for asymmetric information effects. The best

price of the market, say the best ask, at time t of the transaction, can be written as:

A∗t = E[ṽt|Ωt−1, buy-initiated trade at t] + γ − βzt,

where Ωt−1 is the information known right up to the trade, γ is the order-processing cost

per share, β reflects inventory costs and zt is the inventory of the trader quoting the best

ask before the trade at t. We can rewrite traders’ estimate of the asset payoff as:

E[ṽt|Ωt−1, buy-initiated trade at t] = E[ṽt|Ωt−1] + λ(qt − E(qt|Ωt−1)) + εt,

where qt is the trade at t, λ(qt − E(qt|Ωt−1)) is the trade innovation and λ measures the

degree of information asymmetry. The variable εt captures the effects of public information

other than information incorporated in trades. Suppose that order-processing costs per share

are symmetric among traders, and that traders make the same Bayesian update. The best

ask quote placed by intermediary i writes:

Ait = E[ṽt|Ωt−1] + λ(qt − E(qt|Ωt−1)) + εt + γ − βizit,

where βi represents inventory costs of i and zit the aggregate inventory of i before the trade

at t. It can be shown that changes in quoting aggressiveness over the interval [t, t+ τ ] write:

∆|A∗ − Ai|[t,t+τ ] = −βi(zit+τ − zit) + β(zt+τ − zt).
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Because the transaction at t has been executed by intermediary i, (zit+τ − zit) = qt and

(zt+τ − zt) = 0 (by hypothesis), changes in aggressiveness are function of inventory only:

∆|A∗ − Ai|[t,t+τ ] = −βiqt.

Quote aggressiveness

B∗

Bj

Figure IA.4: An example of quoting aggressiveness (Galapagos, 3rd January 2007)
Figure IA.4 plots the best bid and best ask quotes posted by an intermediary and the best bid and ask
prices of the (satellite) market (the “Best limits”) on January 3, 2007 between 10:00 am and 11:00 am for
the stock Galapagos. The figure illustrates our measure of quoting aggressiveness, which is the distance
between the best individual quote of intermediary j (denoted Qj) and the best market quotes at time t,
Q∗: |Q∗ −Qj |t. Here Q = B (Bid).
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4.B Variables description
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Table IA.1: Variables description
Table IA.1 defines the variables used in the paper.

Variable Definition

Intermediary Variables
DMM Dummy variable that takes the value 1 if the intermediary is an exchange-regulated market-maker
|∆I| Magnitude of the inventory change expressed in euros caused by a trade
TR_PRICE (Log) price of the trade
TR_TYPE Dummy variable that takes the value 1 if the intermediary has triggered the execution (active trade that “takes”

liquidity) and 0 if intermediary’s quote was hit (passive transaction that “makes” liquidity)
XM_INV_MSG Dummy variable that takes the value 1 if intermediary i submits at least 1 inventory-driven message in venue m during

the 60 seconds immediately following a trade she has absorbed in −m
PROP. XM_INV_MSG Ratio between cross-market inventory-driven messages over all cross-market messages submitted by intermediary i in

venue m during the 60 seconds immediately following a trade she has absorbed in −m
TOT_XM_INV_MSG Total number of cross-market messages submitted by an intermediary in venue m in the 60 seconds following a trade

in venue −m
DIST_Qi

t Quoting aggressiveness measured as the distance between the quote (limit order price) posted by intermediary i and
the best market quote at time t. This measure is standardized by the midpoint of the prevailing inside spread at t
(Q =A (Ask),B (Bid)).

∆DIST_Qi
t,t+20 Change in quoting aggressiveness by intermediary i on venue m during the 20 seconds following the trade execution

at time t on venue −m.
∆DIST_Q−i|t,[t+21,t+60] Change in quoting aggressiveness of competitors −i on venue m between t and the last 40 seconds of the 60-second

window following the trade of intermediary i at t in venue −m.
DIST_Qi,s,t Time-weighted quoting aggressiveness over each 20-min interval, based on the most aggressive side at time t.
RIi Divergence of intermediary i’s inventory built as the distance at any time t between the signed aggregated inventory of

i (in euros) to the median inventory across all peers excluding i. Inventories must be comparable and are standardized
using the methodology described in Hansch et al. (1998).

RI Divergence in intermediaries’ inventories defined as the average over all intermediaries of the distance between their
respective inventory to the median inventory. Inventories are standardized following the Hansch et al. (1998) method-
ology.

Stock Variables
VOLUMEt−300 Volume traded in the stock during the 300 seconds prior to the trade at t expressed in euros
|RETt−300| Absolute stock return calculated from midquote over the 300 seconds prior to the trade at t
SAME Dummy variable that takes the value 1 if order flows have the same direction across venues on a given 20-min interval

(TrIMB_D × TrIMB_S > 0) , and zero if order flows have opposite signs. Tr_IMB_m is defined as the number
of buyer initiated trades minus the number of seller-initiated trades during the last 20-min interval.

∆RBAS Changes in the bid-ask spread between 2 consecutive 20-min intervals
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4.C Analysis of cross-market messages after a trade in venue −m

In this section, we analyze inventory-driven messages submitted by an intermediary

in venue m in reaction to a change in inventory due to a trade in venue −m (m = D,S).

Our model implies the following:

Implication 4.C.1 (Cross-venue message activity) Multi-venue market-makers update

existing limit orders or submit new orders in venue m after a trade in venue −m, in a

direction that is associated with the inventory change induced by the trade. The intensity of

the cross-market message activity is related to the magnitude of the inventory change.

Formulating our hypothesis in the context of the limit-order-book environment of

Euronext, we test whether, for instance, after buying (i.e., executing a sell order) in venue

−m, a multi-venue market-maker is more likely to cancel an existing buy order in venue m,

or modify it for a less aggressive price (negative revision), or post a new sell limit order m

or modify an existing sell order for a more aggressive price (positive revision).

We construct two measures of cross-market messages activity. The first measure

(XM_INV_MSG) is a dummy variable that takes the value one if intermediary i sends

at least one inventory-driven message in venue m during the 60 seconds following a trade

in −m. The second measure (PROP. XM_INV_MSG) is the proportion of cross-market

inventory-driven messages submitted by intermediary i, namely, the number of inventory-

driven messages submitted by i in venue m during the 60 seconds following a trade in −m,

standardised by the total number of messages submitted by i in m during these 60 seconds.

We run the following regression model:

(IA.34) Y i
s,[t,t+60] = α+ β1DMM i

s + β2|∆I is,t|+ β3DMM i
s × |∆I is,t|+ λd + µs + γW i

s,t + εis,t,

where the dependent variable Y is one of our two measures of cross-market messages activity

described above (XM_INV_MSG and PROP. XM_INV_MSG). Given the nature of the

dependent variables, we use a logistic regression model for the first measure and a censored

tobit model for the second measure. The explanatory variables are a dummy variable,

38



DMM i
s that takes the value 1 if i is registered as a DMM at least on one venue on which

stock s is traded, the (log) absolute change in inventory of i in euros due to a trade at time

t in stock s (|∆I is,t|), and the interaction between both. λd is a day fixed-effect, µs is a stock

fixed-effect, andW i
s,t is a vector of control variables which includes the (log) transaction price

(TR_PRICE), and the type of trade triggering (passive vs. active triggering), TR_TYPE.

We also include the lagged trading volume over the past 300 seconds (VOLUMEt−300) and

the return volatility during the 300 seconds prior to the transaction (|RETt−300|), which

control for market conditions in stock s at time t of the transaction (Hasbrouck and Saar,

2009). Our variable of interest is the coefficient β3 which captures the impact of an inventory

change on cross-market messages activity for a given category of intermediaries (DMMs vs.

non-DMMs).

Table IA.2 reports two specifications according to the measure of cross-message ac-

tivity used. Results of the estimated logit model are reported in columns 1 and 3. Columns

2 and 4 present the estimation results for the tobit model. The most important result from

Table IA.2 is that, following a transaction in venue −m, DMMs submit significantly more

inventory-driven messages in venue m, the larger the change in inventory. Across all speci-

fications, we observe a systematic and statistically significant coefficient on the interaction

variable between the group of DMMs and the (absolute) magnitude of inventory change, with

the expected sign. A one-standard deviation increase in the change of DMMs’ inventory in-

creases the likelihood of a cross-venue inventory-driven message by 4.8% in satellite venues,

and by 5.6% in dominant venues. Using the estimates of the tobit regression, a one-standard

deviation increase in the change of DMMs’ inventory increases the proportion of cross-venue

inventory-driven message by 6.95% in dominant venues and by 5.55% in satellite venues.

These results support implication 4.C.1 presented in this section.12

12Results are unchanged if we consider a 20-second window instead of a 60-second window; the first
inventory-driven message takes place, on average, around 4 seconds after a trade in the other venue.

39



Table IA.2: Cross-market messages activity after trading in the other venue
This table presents the determinants of inventory-driven messages submitted by a multi-venue intermediary
in a venue after trading in another venue. Columns 1 and 3 report Logit regression results for using a dummy
variable, XM_INV_MSG, that takes 1 if the trader posts at least one inventory-driven message in venue
−m in the 60 seconds following a trade in venue m. Column 2 and 4 report Tobit regression results for
using the variable PROP_XM_INV_MSG, which is the proportion of inventory-driven messages over all
messages posted by the trader in venue m in the 60 seconds following a trade in venue −m. We include
the following determinants (trader/transaction/stock): DMM is an indicator variable taking the value one
if the trader is a Designated Market-Maker for the stock and zero otherwise; DMM × |∆I| is the DMM
indicator interacted with the (log) change in inventory due to the transaction expressed in euros. |∆I| is the
(log) change in inventory due to the transaction expressed in euros. TR_PRICE is the (log) price of the
transaction. TR_TYPE is related to the type of trade: 1 being used if intermediary i actively takes liquidity
from the limit order book; 0 for a transaction passively triggered, i.e., making liquidity. VOLUMEt−300 is
the lagged dollar volume traded in the stock during the 300 seconds prior to the transaction. |RET|t−300
is the absolute 300-seconds stock return prior to the transaction. TOT_XM_MSG is the total number of
messages submitted by i to m after a trade in −m (m = D,S). This variable is used in columns 2 and 4 to
control for a possible denominator effect in the dependant variable. Stock fixed-effects and day-fixed effects
are included. Standard errors are double-clustered by trader and stock. The symbols ***, **, * denote
significance levels of 1%, 5% and 10%, respectively, for the two-tailed hypothesis test that the coefficient
equals zero.

IN S AFTER TRADING IN D IN D AFTER TRADING IN S

XM_INV_MSG PROP_XM_INV_MSG XM_INV_MSG PROP_XM_INV_MSG
Determinants 1 2 3 4

DMM× |∆I| 0.254 *** 4.556 *** 0.172 ** 4.756 **
(3.67) (2.69) (2.09) (2.53)

|∆I| -0.027 -0.965 0.01 0.08
(-1.27) (-1.50) (0.56) (0.16)

DMM -0.674 2.907 -1.064 -37.944 *
(-0.83) (0.13) (-1.49) (-1.82)

TR_PRICE 0.055 1.162 0.914 21.913
(0.05) (0.04) (0.92) (0.77)

TR_TYPE 0.105 3.711 0.016 2.356
(1.37) (1.62) (0.14) (0.74)

VOLUMEt−300 0.016 *** 0.007 0.025 *** -0.402 **
(3.50) (0.05) (3.41) (-2.05)

|RET|t−300 0.21 * -0.311 0.064 -3.665
(1.93) (-0.12) (0.55) (-1.17)

TOT_XM_MSG 4.556 *** 1.448 ***
(2.69) (3.55)

Intercept -0.89 -22.575 -3.752 -92.193
(-0.25) (-0.25) (-1.23) (-1.04)

Stock/Day FE Yes Yes Yes Yes
N 506,508 506,508 338,082 338,082
Pseudo-R-squared 0.23 0.08 0.05 0.02
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4.D Cross-market quoting aggressiveness after making or taking

liquidity

In this section, we split the sample by category (DMM or non-DMM) and by type of

transaction (actively or passively triggered). An intermediary takes liquidity from the limit

order book when she triggers an execution (TR_TYPE = 1), while she makes liquidity when

her best quote is passively hit by an incoming aggressive order (TR_TYPE = 0). Table IA.3

reports coefficient estimates from a panel regression of changes in quoting aggressiveness on

changes in inventory.

Table IA.3 shows that changes in quoting aggressiveness for DMMs are positive and

significant when they provide liquidity in D, consistent with quotes updates due to non-

constant cross-inventory cost (coefficients of columns 1 and 3 of Panel A are significantly

positive with t-stat of 2.25 and 2.69). In contrast, columns 2 and 4 show that DMMs do

not update significantly their quotes in S immediately after they take liquidity from D

(ruling out any alternative explanation based on arbitrage strategies). On the opposite side,

DMMs seem to be more aggressive after they make liquidity (expected negative sign) but

the coefficients are not statistically significant. In contrast, non-DMMs significantly decrease

their aggressiveness on the same side of the transaction (significant negative coefficient in

columns 6 and 8 of Panel A) and significantly increase their aggressiveness on the opposite

side (significant negative sign in columns 6 and 8 of Panel B) when they take liquidity

from the market (TR_TYPE = 1), which is consistent with arbitrage strategies rather

than market-making strategies. These results show therefore that the quoting aggressiveness

changes are supportive of market-making and inventory-related strategies for DMMs, while

they are consistent with arbitrage strategies for non-DMMs.
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Table IA.3: Cross-market quotes updates by intermediaries’ category and by transaction type
This table documents the determinants of cross-market quote updates in S after a trade in D by category of intermediaries (DMM vs non-DMM) and
by type of transaction (TR_TYPE). Panel A reports how much intermediaries revise quotes in S after a transaction in D on the same side of the trade.
Panel B refers to cross-market quote updates in S after a trade that was executed in D on the opposite side. The dependent variable ∆DIST_Qi

t,t+20

(Q = A,B) is a measure of changes in quoting aggressiveness defined in Table IA.1. The main independent variable |∆I| is the magnitude of the
change in euro inventory due to the transaction, expressed in log. All control variables (TR_PRICE, VOLUMEt−300, and |RET|t−300) are detailed
in the caption of Table IA.2. Estimates are from panel regressions with stock and day fixed effects. T-statistics are calculated using clustered (by
stock-intermediary) standard errors. The symbols ***, **, * denote significance levels of 1%, 5% and 10%, respectively, for the two-tailed hypothesis
test that the coefficient equals zero.

PANEL A: SAME SIDE DMM non-DMM

∆DIST_Bi
t,t+20 ∆DIST_Ai

t,t+20 ∆DIST_Bi
t,t+20 ∆DIST_Ai

t,t+20

TR_TYPE=0 TR_TYPE=1 TR_TYPE=0 TR_TYPE=1 TR_TYPE=0 TR_TYPE=1 TR_TYPE=0 TR_TYPE=1

Determinants 1 2 3 4 5 6 7 8

|∆I| 0.200** 0.023 0.171** 0.045 -0.008 0.048** 0.012 0.055**
(2.25) (0.76) (2.69) (0.81) (-0.57) (2.32) (0.49) (2.53)

Intercept 1.259 4.16** 5.928 3.148 -1.024 2.527 -3.867* 0.964
(0.35) (2.13) (1.47) (1.02) (-0.42) (0.77) (-1.80) (0.32)

Control Variables Yes Yes Yes Yes Yes Yes Yes Yes
Stock/Day FE Yes Yes Yes Yes Yes Yes Yes Yes
N 7,843 8,844 7,963 9,041 28,426 15,405 28,368 16,067
Adj. R2 0.04 0.01 0.03 0.01 0.03 0.01 0.03 0.01

PANEL B: OPPOSITE SIDE DMM non-DMM

∆DIST_Bi
t,t+20 ∆DIST_Ai

t,t+20 ∆DIST_Bi
t,t+20 ∆DIST_Ai

t,t+20

TR_TYPE=0 TR_TYPE=1 TR_TYPE=0 TR_TYPE=1 TR_TYPE=0 TR_TYPE=1 TR_TYPE=0 TR_TYPE=1

Determinants 1 2 3 4 5 6 7 8

|∆I| -0.028 0.001 -0.005 0.013 -0.024 -0.068*** 0.008 -0.112**
(-0.52) (0.01) (-0.19) (0.13) (-2.65) (2.32) (0.29) (-2.94)

Intercept -0.345 5.578 3.669 5.155 -5.492* 2.527 -3.872* -5.222
(-0.10) (1.36) (1.44) (1.45) (-1.78) (0.77) (-1.55) (-1.13)

Control Variables Yes Yes Yes Yes Yes Yes Yes Yes
Stock/Day FE Yes Yes Yes Yes Yes Yes Yes Yes
N 8,580 8,844 8,491 8,371 13,952 15,405 30,884 13,087
Adj. R2 0.03 0.01 0.04 0.01 0.03 0.01 0.01 0.01
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4.E Cross-venue aggressiveness and divergence in intermediaries’

inventory

This section complements the analysis of Section III.D by focusing on how changes

in relative inventory affect quoting aggressiveness. We use a setting similar to that of Table

4. The generating event is a transaction executed by Designated Market-Makers (DMMs) in

the dominant venue. We focus on DMMs as it is the only group of multi-venue intermediaries

with a quoting behavior consistent with our multi-venue competition model (see Tables 4

and IA.3). We denote RIi the inventory divergence of intermediary i, also referred to as

“relative inventory” in the literature. We run the following regression:

(IA.35) ∆DIST_Qi
s,[t,t+20] = α + β1∆RI it + λd + µs + γW i

s,t + εis,t,

where the variable of interest is ∆RI, the change in relative inventory. RI i is the distance

between the signed aggregated inventory of i (in euros) relative to the median inventory

across all peers excluding i. Note that RI requires to standardize inventories to be able to

compare them. We adopt the methodology proposed by Hansch et al. (1998). It follows that

RI i = std(I i)− std(IM). RI i is calculated using a panel “trader x stock x second”. We then

take the difference between t− 1 and t+ 1 (t being the time of the transaction expressed in

second) to calculate ∆RI i.

Note that the interpretation of the results must be made with care because we need

to take into account the signed changes in relative inventory. Table IA.4 summarizes the

potential changes in cross-quoting aggressiveness along with the associated changes in relative

inventory. For instance, after the execution of an incoming buy order triggering a sell for the

DMM, the change in relative inventory might imply that i is too short relative to its peers

to stay on the same side (∆RI i < 0), and she updates her quotes to move from the best ask

in all venues (∆DIST_Ai
t,t+20 > 0) to, potentially, be closer to the opposite side, i.e., to the

best bid (∆DIST_Bit,t+20 < 0). We thus expect β1 < 0 after a sell for the DMM, as reported

in Table IA.4. The expected sign is the reverse after the execution of an incoming sell order
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triggering a buy for the DMM.

Table IA.4: Quoting aggressiveness and associated inventory changes

Table IA.4 summarizes the expected sign between the changes in quote aggressiveness (on
the ask and bid side) and the associated changes in relative inventory immediately following
a buy or sell transaction for the intermediary.

AFTER BUYING AFTER SELLING
Expected sign ∆RIi > 0 ∆RIi < 0

SAME SIDE (Bid) + (Ask) -
Less aggressive: ∆DIST_Qi

t,t+20 ≥ 0

OPPOSITE SIDE (Ask) - (Bid) +
More aggressive: ∆DIST_Qi

t,t+20 ≤ 0

Table IA.5 reports results. Panel A presents results following a buy for the inter-

mediary, while Panel B reports results following a sell. Results show that, after buying, a

higher inventory divergence is associated with a less aggressive quoting behavior of DMMs

on the bid side and more aggressive on the sell side. Opposite results hold after selling, i.e.

when inventory divergence is lower. Only results on the bid side after buying are statistically

significant.
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Table IA.5: Quoting aggressiveness and relative inventory changes

Table IA.5 documents the determinants of cross-market quote updates in S after a trade
in D by a DMM. Panel A reports how much DMMs revise quotes in S after buying in D.
Panel B refers to cross-market quote updates in S after selling in D. The dependent variable
∆DIST_Qi

t,t+20 (Q = A,B) is a measure of changes in quoting aggressiveness defined in the
caption of Table 4. The main independent variable ∆RI i is the change in relative inventory
due to the transaction. All control variables (TR_PRICE, VOLUMEt−300, and |RET|t−300)
are detailed in the caption of Table IA.2. Estimates are from panel regressions with stock and
day fixed effects. T-statistics are calculated using clustered (by stock-intermediary) standard
errors. The symbols ***, **, * denote significance levels of 1%, 5% and 10%, respectively,
for the two-tailed hypothesis test that the coefficient equals zero.

PANEL A: AFTER BUYING ∆DIST_Qi
t,t+20

SAME SIDE OPPOSITE SIDE
Determinants 1 2

∆RIi 1.858** -1.341
(2.12) (-1.17)

Intercept 3.554 -0.089
(0.32) (-0.01)

Control Variables Yes Yes
Stock/Day FE Yes Yes
N 7,990 8,725
Adj. R2 0.03 0.05

PANEL B: AFTER SELLING ∆DIST_Qi
t,t+20

SAME SIDE OPPOSITE SIDE
Determinants 1 2

∆RIi -0.888 1.887
(-1.03) (0.93)

Intercept 6.709 -14.18
(1.56) (-1.57)

Control Variables Yes Yes
Stock/Day FE Yes Yes
N 7,525 6,944
Adj. R2 0.04 0.05
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4.F Inventory measures and cross-market aggressiveness

In this section, we pool inventory measures together in the same regression model

and we run the following regression:

(IA.36) ∆DIST_Qi
s,[t,t+20] = α + β1|∆Iis,t|+ β2∆RI is,t + β3 std(Invis,t−1) + γW i

s,t + εis,t

where the variable |∆Ii| is the magnitude of the change in intermediary i’s inventory, RI i is

the change in the relative inventory RI i (RI i is the distance of i’s inventory to the median

inventory across all peers excluding i), and std(Invit−1) is the level of i’s aggregate and

standardized inventory (in euros) the second before the transaction. W is a vector of control

variables described in the caption of Table IA.2.

Table IA.6 reports the results. The results show that a larger change both in inventory

or in the relative inventory is associated with a less aggressive quoting behavior of DMMS

on the same side of the trade. Across all specifications, both the magnitude of the change

in inventory and the change in relative inventory have the expected signs. Both inventory

measures are correlated (around 20%) as they depend both on the trade size executed in t.

The magnitude of the change in inventory is however the only measure for which we observe

a statistically significant coefficient across all specifications (t-statistics vary from 1.80 to

2.31). The weaker relationship of the variable ∆RI i could be due to the standardization,

making it potentially noisier than the magnitude of the change in inventory.
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Table IA.6: Quoting aggressiveness, inventory, and relative inventory

Table IA.6 documents the relationship between measures of inventory and cross-market
quote updates in S after a trade in D by a DMM. Panel A reports how much DMMs revise
quotes in S after buying in D. Panel B refers to DMM’s cross-market quote updates in S
after selling in D. The dependent variable ∆DIST_Qi

s,[t,t+20] is a measure of changes in
quoting aggressiveness defined in the caption of Table 4 (Q = A,B). The main independent
variables are ∆RI i which is the change in relative inventory due to the transaction, |∆Ii|
which is the magnitude of the change in inventory (expressed in euros), and std(I it−1) which
is the level of the (lagged) standardized inventory the second prior to the transaction.
All control variables (TR_PRICE, VOLUMEt−300, and |RET|t−300) are detailed in the
caption of Table IA.2. Estimates are from panel regressions with stock and day fixed
effects. T-statistics are calculated using clustered (by stock-intermediary) standard errors.
The symbols ***, **, * denote significance levels of 1%, 5% and 10%, respectively, for the
two-tailed hypothesis test that the coefficient equals zero.

PANEL A: AFTER BUYING SAME SIDE
∆DIST_Bi

s,[t,t+20]

Determinants Expected sign 1 2 3

∆RIi + 1.858 ** 1.442 * 1.381
(2.12) (1.72) (1.64)

|∆Ii| + 0.203 * 0.207 *
(1.80) (1.84)

std(Iit−1) + 0.289
(1.59)

Intercept 3.554 1.234 2.923
(0.32) (0.12) (0.27)

Control Variables Yes Yes Yes
Stock/Day FE Yes Yes Yes
N 7,990 7,990 7,990
Adj. R2 0.03 0.03 0.03

PANEL B: AFTER SELLING SAME SIDE
∆DIST_Ai

s,[t,t+20]

Determinants Expected sign 1 2 3

∆RIi - -0.89 -0.71 -0.71
(-1.03) (-0.84) (-0.83)

|∆Ii| + 0.166 ** 0.166 **
(2.31) (2.30)

std(Iit−1) + -0.01
(-0.12)

Intercept 6.709 4.634 4.483
(1.56) (1.06) (0.87)

Control Variables Yes Yes Yes
Stock/Day FE Yes Yes Yes
N 7,525 7,525 7,523
Adj. R2 0.04 0.04 0.0447



4.G Timeline of tests

Timeline
(seconds)

t t+ 20′′ t+ 60′′

Trade causes shift
in i’s inventory

• •
∆Iit

- Dummy for XM Inv.
Msg
- Prop. of XM Inv.
Msg

First test
(Table IA.2)

• •
∆Iit ∆DIST_Qi

t,[t+1,t+20]

Second tests
(Tables 4-IA.3)

• •
∆DIST_Qi

t,[t+1,t+20] ∆DIST_Q−it,[t+21,t+60]

Third test
(Table 5)

Arrow represents direction of causality tested

Figure IA.5: Timeline of tests related to implications 1a, 1b and 4.C.1
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