Internet Appendix: Exporting Uncertainty: The Impact of Brexit on Corporate America

Murillo Campello, Gustavo S. Cortes,

Fabrício d'Almeida, and Gaurav Kankanhalli*

^{*}Campello, campello@cornell.edu, Cornell University S.C. Johnson Graduate School of Management and NBER; Cortes, gustavo.cortes@warrington.ufl.edu, University of Florida Warrington College of Business; d'Almeida, fdalmeid@purdue.edu, Purdue University Krannert School of Management; Kankanhalli, gkankanhalli@katz.pitt.edu, University of Pittsburgh Joseph M. Katz Graduate School of Business.

Appendix A Model Analysis and Results

A.1 Disinvestment Decisions

In solving a firm's disinvestment problem, we first consider its decision at t = 1. If the firm had disinvested any of its endowed projects at t = 0, then it earns 0 for those projects. Among projects that were not disinvested at t = 0 (i.e., remain alive a t = 1), the firm can choose to sell any of them at t = 1 and receive cash flows of $s_{i2} + x_{i2} - \delta$ w per project. Else, it can choose not to sell and receive x_{i2} per project. As in the case of the investment decision, the firm's disinvestment policy is guided by the cash flows at t = 2 generated by project \tilde{w} . These cash flows can be characterized as:

(A.1)
$$\pi_{i2}(\tilde{w}) = \begin{cases} 0 & \text{(Early Disinvestment),} \\ s_{i2} + x_{i2} - \delta \tilde{w} & \text{if } s_{i2} > \delta \tilde{w} \\ x_{i2} & \text{if } s_{i2} \le \delta \tilde{w} \end{cases} \text{ (Delayed Disinvestment),}$$

Next, we consider the firm's disinvestment decision at t = 0. The optimal level of disinvestment at t = 0 can be expressed in terms of w^* , the breakeven project. The firm will optimally disinvest (sell) all projects in the range $[0, w^*)$, and not disinvest (choose to retain) any projects in the range $[w^*, W]$, instead of waiting until t = 1 to decide whether or not to disinvest. The firm's cash flows from disinvesting project \tilde{w} at t = 0 is $s_{i1} + x_{i1} - \delta \tilde{w}$. Its expected cash flows from not disinvesting project \tilde{w} at t = 0, and choosing instead to wait till t = 1 to decide, is $x_{i1} + \mathbb{E}[\max(s_{i2} + x_{i2} - \delta \tilde{w}, x_{i2})]$. Simplifying these two expressions, the firm disinvests project \tilde{w} at t = 0 if:

(A.2)
$$s_{i1} - \delta \tilde{w} \ge x_{i2} + \mathbb{E}[\max(s_{i2} - \delta \tilde{w}, 0)].$$

The breakeven condition for determining the optimal disinvestment level w^* at t = 0 is:

(A.3)
$$s_{i1} - \delta w^* = x_{i2} + \mathbb{E}[\max(s_{i2} - \delta w^*, 0)].$$

In Lemma 3, we prove the existence of the optimal t = 0 investment level, w^* .

Lemma 3. The optimal disinvestment level w^* at t = 0 is given by equation (A.3) for sufficiently large W.

The breakeven condition in equation (A.3) implies that at t = 0 the firm sells all projects up to project w^* , as the benefits of doing so, s_{i1} , are expected to exceed the costs. Costs are made of two components: (1) the cost of selling the project, δw , and (2) the option value of waiting to choose whether to disinvest. The embedded optionality in the firm's disinvestment decision is key in generating a negative relation between uncertainty and disinvestment, as is the case with investment. As before, while the addition of a zero-mean spread does not change the left-hand side of equation (A.2), it increases the right-hand side of that inequality given the firm's option to forgo disinvestment in high income states. An increase in uncertainty in the distribution of s_{it} reduces the breakeven project level w^* , and correspondingly shrinks the set of projects the firm disinvests at t = 0, namely the interval $[0, w^*)$. We establish this result in Proposition 3.

Proposition 3. Increased uncertainty leads to less disinvestment at t = 0. For r' > r, namely when $G(\cdot, r')$ is obtained by a mean-preserving spread of $G(\cdot, r)$, $w^*(r') < w^*(r)$. That is, $\frac{dw^*}{dr} < 0$.

Taken together, the results of Proposition 1 and 3 imply that by increasing the value of the option to wait, greater uncertainty leads to decreases in *both* investment and disinvestment.

A.2 The Effect of Input Irreversibility

We now address the role played by the degree of irreversibility of capital and labor, as captured by their associated fixed costs. We do so by way of two propositions.

Proposition 4. An increase in the degree of irreversibility of capital leads to less investment for higher levels of uncertainty in the first period; i.e., $\frac{dn^*}{d\kappa} < 0$.

Proposition 5. An increase in the degree of irreversibility of labor leads to less investment for higher levels of uncertainty in the first period; i.e., $\frac{dn^*}{d\lambda} < 0$.

Combining the last two propositions with Proposition 1, we have that for an increase in uncertainty in the MPS sense (i.e., r' > r) and for greater degree of input irreversibility ($\kappa' > \kappa$ and $\lambda' > \lambda$), the following conditions hold with respect to investment:

(A.4) $n^{*}(r,\kappa,\lambda) > n^{*}(r',\kappa,\lambda) > n^{*}(r',\kappa',\lambda),$ $n^{*}(r,\kappa,\lambda) > n^{*}(r',\kappa,\lambda) > n^{*}(r',\kappa,\lambda').$

The above conditions state that an increase in uncertainty reduces the set of projects the firm is willing to invest in at t = 0, electing to wait until uncertainty is partially resolved at t = 1 before deciding whether to invest. Notably, when the firm faces higher irreversible costs, it invests even less at t = 0. Differently put, an increase in uncertainty reduces investment in the first period, and the effect is modulated by the degree of irreversibility of capital or labor.

Appendix B Proofs

B.1 Proof of Lemma 1

Proof. Let us define

$$H(n^*) = v_{i1} + \mathbb{E}[v_{i2}] - (\kappa + \lambda)n^* - \mathbb{E}[\max(v_{i2} - (\kappa + \lambda)n^*, 0)].$$

To guarantee the existence of n^* as characterized by equation (6), it suffices to show that $H(n^*) = 0$ for some $n^* \in [0, N]$. Since $H(\cdot)$ is a sum of continuous functions, it is itself continuous. Since $v_{i1} > 0$ and $v_{i2} > 0$, it follows that:

$$H(0) = v_{i1} + \mathbb{E}[v_{i2}] - \mathbb{E}[\max(v_{i2}, 0)] = v_{i1} > 0.$$

Finally, for $N \rightarrow \infty$, we have that:

$$\lim_{N \to \infty} H(N) = \lim_{N \to \infty} (v_{i1} + \mathbb{E}[v_{i2}] - (\kappa + \lambda)N) + \lim_{N \to \infty} (\mathbb{E}[\max(v_{i2} - (\kappa + \lambda)N, 0)])$$
$$= -\infty + 0 = -\infty.$$

Thus, there must exist an $\overline{N} \in \mathbb{R}$ such that, for $N > \overline{N}$, $H(\overline{N}) < 0$. Putting these conditions together with the continuity of $H(\cdot)$ over [0, N], the Intermediate Value Theorem guarantees that there exists an $n^* \in [0, N]$ such that $H(n^*) = 0$.

B.2 Proof of Proposition 1

Proof. Let us define

$$H(n^{*}; r) = v_{i1} + \mathbb{E}[v_{i2}] - (\kappa + \lambda)n^{*} - \mathbb{E}[\max(v_{i2} - (\kappa + \lambda)n^{*}, 0); r] = 0$$

By the Implicit Function Theorem,

$$\frac{dn^*}{dr} = -\frac{\frac{\partial H}{\partial n^*}}{\frac{\partial H}{\partial r}}.$$

Considering first the derivative of *H* with respect to n^* , we have:

$$\frac{\partial H(n^*;r)}{\partial n^*} = -(\kappa + \lambda) - \frac{\partial}{\partial n^*} \mathbb{E}[\max(v_{i2} - (\kappa + \lambda)n^*, 0); r]$$
$$= -(\kappa + \lambda) - \mathbb{E}\left[\frac{\partial}{\partial n^*}\max(v_{i2} - (\kappa + \lambda)n^*, 0); r\right]$$
$$= -(\kappa + \lambda) - \mathbb{E}[\max(v_{i2} - (\kappa + \lambda), 0); r]$$
$$< 0.$$

Next, considering the derivative of *H* with respect to *r*, we have:

$$\frac{\partial H(n^*;r)}{\partial r} = -\frac{\partial}{\partial r} \mathbb{E}[\max(v_{i2} - (\kappa + \lambda)n^*, 0); r].$$

Because $G(\cdot, r')$ is a MPS of $G(\cdot, r)$, for any convex function $J(\cdot)$,

$$\mathbb{E}[J(v_{i2});r'] = \int J(v_{i2})dG(v_{i2},r')$$
$$\geq \int J(v_{i2})dG(v_{i2},r)$$
$$= \mathbb{E}[J(v_{i2});r].$$

Since $\max(v_{i2} - (\kappa + \lambda)n^*, 0)$ is convex in v_{i2} , it follows that:

$$\mathbb{E}\left[\max(v_{i2}-(\kappa+\lambda)n^*,0);r'\right] \ge \mathbb{E}\left[\max(v_{i2}-(\kappa+\lambda)n^*,0);r\right] \forall r' > r.$$

This implies

$$\frac{\partial}{\partial r}\mathbb{E}[\max(v_{i2}-(\kappa+\lambda)n^*,0);r]\geq 0.$$

Thus,

$$\frac{\partial H(n^*;r)}{\partial r} = -\frac{\partial}{\partial r} \mathbb{E}[\max(v_{i2} - (\kappa + \lambda)n^*, 0); r] \le 0.$$

Putting these conditions together, we have:

$$\frac{d n^*}{d r} = -\frac{\frac{\partial H}{\partial n^*}}{\frac{\partial H}{\partial r}} < 0.$$

B.3 Proof of Proposition 2

Proof. Rearranging equation (10), we get:

$$m^{*} = \frac{1}{\alpha} \left(\overline{u_{i1}} - d_{1} - d_{2} + u_{i1} + \frac{\sqrt{\omega_{i}^{2}(r) + \sigma_{x}^{2}}}{1 - \Phi\left(\frac{d_{2} - \overline{u_{i1}}}{\sqrt{\omega_{i}^{2}(r) + \sigma_{x}^{2}}}\right)} \left[\phi\left(\frac{d_{2} - \overline{u_{i1}}}{\sqrt{\omega_{i}^{2}(r) + \sigma_{x}^{2}}}\right) \right] \right)^{\frac{1}{\alpha - 1}}$$

It can be shown that $\frac{dm^*}{dr} > 0$ as:

$$\phi\left(\frac{d_{2}-\overline{u_{i1}}}{\sqrt{\omega_{i}^{2}(r)+\sigma_{x}^{2}}}\right)\left[1-\frac{\left(\frac{d_{2}-\overline{u_{i1}}}{\sqrt{\omega_{i}^{2}(r)+\sigma_{x}^{2}}}\right)\phi\left(\frac{d_{2}-\overline{u_{i1}}}{\sqrt{\omega_{i}^{2}(r)+\sigma_{x}^{2}}}\right)}{1-\Phi\left(\frac{d_{2}-\overline{u_{i1}}}{\sqrt{\omega_{i}^{2}(r)+\sigma_{x}^{2}}}\right)}\right]-\phi'\left(\frac{d_{2}-\overline{u_{i1}}}{\sqrt{\omega_{i}^{2}(r)+\sigma_{x}^{2}}}\right)\left(\frac{d_{2}-\overline{u_{i1}}}{\sqrt{\omega_{i}^{2}(r)+\sigma_{x}^{2}}}\right)>0.$$

B.4 Proof of Proposition 4

Proof. Let us define

 $H(n^*;\kappa) = v_{i1} + \mathbb{E}[v_{i2}] - (\kappa + \lambda)n^* - \mathbb{E}[\max(v_{i2} - (\kappa + \lambda)n^*, 0)] = 0.$ By the Implicit Function Theorem, $dn^* = \frac{\partial H}{\partial n^*}$

$$\frac{d n^*}{d\kappa} = -\frac{\partial H/\partial n^*}{\partial H/\partial \kappa}.$$

Considering first the numerator, we know from Proposition 1 that:

$$\frac{\partial H}{\partial n^*} < 0.$$

Next, considering the denominator,

$$\frac{\partial H}{\partial \kappa} = -n^* - \frac{\partial}{\partial \kappa} \mathbb{E}[\max(v_{i2} - (\kappa + \lambda)n^*, 0)]$$
$$= -n^* - \mathbb{E}\left[\frac{\partial}{\partial \kappa}\max(v_{i2} - (\kappa + \lambda)n^*, 0)\right]$$
$$= -n^* - \mathbb{E}[\max(v_{i2} - n^*, 0)]$$
$$< 0.$$

Putting these together, we have:

$$\frac{dn^*}{d\kappa} = -\frac{\frac{\partial H}{\partial n^*}}{\frac{\partial H}{\partial \kappa}} < 0.$$

B.5 Proof of Proposition 5

Proof. Symmetric to the case of capital.

Appendix C Additional Results and Robustness Tests

Figure C.1. Corporate Investment Trends around Brexit-related Events. This figure displays coefficients of investment regressions for the timeline of the main events related to Brexit. The shaded area marks the beginning of Brexit-related events, with the announcement of the date of the UK–EU referendum (2016:Q1).

Table C.2. Summary Statistics: Matched Sample

This table reports mean values for the main variables used in our empirical analyses in the matched sample. Each treated firm is matched to 3 control firms (with replacement) which are its nearest neighbors in terms of treatment propensity. The propensity score is a function of lagged STOCK_RETURNS, 1-quarter-ahead CONSENSUS_EARN-INGS_FORECAST, TOBIN_Q, CASH_FLOW, SALES_GROWTH, and SIZE. Panel A shows summary statistics for the sample of treated and matched control firms as defined by β_i^{UK} (top tercile of β_i^{UK}). Panel B shows summary statistics for the sample of treated and matched control firms as defined by mentions of Brexit-related words in their 2015 10-K filings. The table also reports the differences in means and the *p*-value associated with a test statistic for the differences.

Firm-Level Variables	Treated	Control	Difference	<i>p</i> -value
	D	14 26 1	· D 14	
	Pan	el A: Marke	et-Based Appr	oach
INVESTMENT	0.020	0.012	0.008	0.251
EMPLOYMENT_GROWTH (Annual)	0.083	0.061	0.022	0.424
R&D	0.030	0.016	0.014	0.385
DIVESTITURES (×100)	0.129	0.088	0.041	0.404
CASH	0.175	0.164	0.011	0.410
NON_CASH_WORKING_CAPITAL	0.058	0.086	-0.028	0.272
TOBIN_Q	1.948	1.928	0.020	0.383
CASH_FLOW	0.016	0.032	-0.016	0.610
SIZE (Log Assets)	6.677	7.205	-0.528	0.528
SALES_GROWTH	0.195	0.105	0.090	0.203
CONSENSUS_EARNINGS_FORECAST	0.023	0.025	-0.002	0.594
STOCK_RETURNS	0.021	0.038	-0.017	0.618
	Domal D.	Terreta al Ca	anah Daaad A	
	Panel B:	Textual-Se	earch-Based A	pproacn
INVESTMENT	0.013	0.014	0.000	0.269
EMPLOYMENT_GROWTH (Annual)	0.084	0.078	0.006	0.429
R&D	0.030	0.022	0.008	0.749
DIVESTITURES (×100)	0.062	0.056	0.006	0.210
CASH	0.232	0.194	0.038	0.339
NON_CASH_WORKING_CAPITAL	0.041	0.057	-0.016	0.522
TOBIN_Q	2.199	2.037	0.162	0.166
CASH_FLOW	0.018	0.021	-0.003	0.836
SIZE (Log Assets)	7.059	6.581	0.478	0.293
SALES_GROWTH	0.162	0.167	-0.005	0.605
CONSENSUS_EARNINGS_FORECAST	0.055	0.023	0.032	0.137
STOCK_RETURNS	0.028	0.030	-0.002	0.758

Table C.1. Sample Selection

This table reports the filters applied to the original dataset obtained from COMPUSTAT, and the number of observations obtained at each step in order to generate the baseline sample described in Section IV.B.

Filter	Firm–Quarters
Raw COMPUSTAT between 2010:Q1 and 2016:Q4	262,412
Drop non-US firm–quarters (retain data reported in USD, with US headquarters, duplicates excluded)	160,254
Drop firm–quarters with negative fundamentals (ASSETS and SALES)	158,312
Drop financials and utilities	112,939
Drop if ASSETS or MARKET_CAPITALIZATION less than \$10 million	93,011
Drop if missing key variables (INVESTMENT, ASSETS, CASH_FLOW, TOBIN_Q, SALES_GROWTH)	75,013
Drop if non-consecutive quarters, or less than 12 quarters of non-missing data	56,081
Drop if missing Hoberg and Phillips (2016) industry classification	49,107
Drop if missing β_i^{UK}	43,025
Drop if missing CRSP and I/B/E/S controls	41,630

This table reports output from equation (14) in a matched sample. The dependent variables are INVESTMENT, EMPLOYMENT_GROWTH, R&D and DIVESTI-
URES. Each treated firm is matched to 3 control firms (with replacement) which are its nearest neighbors in terms of treatment propensity. The propensity score
s a function of lagged STOCK_RETURNS, 1-quarter-ahead CONSENSUS_EARNINGS_FORECASTS, TOBIN_Q, CASH_FLOW, SALES_GROWTH, SIZE. In the first
pecification, the treatment group is composed by the top tercile of β_i^{UK} , while the control group is composed by matched firms in the bottom tercile of β_i^{UK} .
The second specification is a textual-search-based measure of UK-exposure that sums up the number of Brexit-related words in firms' 2015 10-K forms. The
reatment group is made of firms with more than five entries, whereas the control group are matched firms with zero entries. The time dimension of the DID
stimator is set so as to compare the two quarters following the announcement of the Brexit referendum victory (2016:Q3–Q4) versus the two quarters preceding
he announcement of the referendum vote date (2015:Q3–Q4). T-statistics are computed using robust standard-errors (in parentheses) double-clustered at the
ìrm and calendar quarter levels.

Table C.3. The Impact of the Brexit Vote on Investment, Employment, R&D Expenditures and Divestitures: Propensity-Score Matching

	INVES1	IMENT	EMPLOYME	NT_GROWTH	R8	CD C1	DIVEST	ITURES
	Treatment is Ton	Treatment is > 5	Treatment is Ton	Treatment is > 5	Treatment is Ton	Treatment is > 5	Treatment is Ton	Treatment is > 5
	Tercile of	Brexit	Tercile of	Brexit	Tercile of	Brexit	Tercile of	Brexit
	β_i^{UK}	Entries in	eta_i^{UK}	Entries in	eta_i^{UK}	Entries in	β_i^{UK}	Entries in
		10-Ks		10-Ks		10-Ks		10-Ks
	1	2	ŝ	4	3	9	2	8
$POST \times HIGH_{\beta_i}^{UK}$	-0.151^{***}		-3.156^{***}		0.401^{***}		-0.040^{***}	
	(0.025)		(1.129)		(0.065)		(0.012)	
POST × HIGH_10-K_ENTRIES		-0.097***		-3.379^{**}		0.183^{***}		-0.022^{***}
		(0.012)		(1.283)		(0.066)		(0.008)
Controls								
Firm	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Fixed Effects								
Firm	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Industry × Time	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	12,715	20,919	2,469	2,480	3,842	8,895	12,053	19,500
R-squared	0.75	0.73	0.49	0.45	0.88	0.87	0.34	0.29
	Statistical	significance lev	rels: *** <i>p</i> -value	9<0.01, ** <i>p</i> -value	<0.05, * <i>p</i> -valu	e<0.10.		

Table C.4. Parallel Trends: Market-Based Approach

This table reports the average INVESTMENT (Panel A), EMPLOYMENT_GROWTH (Panel B), R&D (Panel C), and DI-VESTITURES (Panel D) for firms in the treated and control groups going back different periods prior to Brexit. The treatment group is composed by the top tercile of β_i^{UK} , while the control group is composed by firms in the bottom tercile of β_i^{UK} . The table also reports the differences in means and the *p*-value associated with a test statistic for the differences.

Periods prior to Brexit	Treated	Control	Difference	<i>p</i> -value
	Dan	ol A (Quart	orly Froquonou	· INT/ESTMENT
	F d11	er A (Quart	eny riequency). IIN VESTIVIEIN I
One	1.165	1.027	0.138	0.156
Two	1.184	0.942	0.242	0.153
Three	1.362	1.135	0.227	0.281
Four	1.100	1.381	-0.281	0.600
Five	1.433	1.115	0.318	0.369
Six	0.996	1.526	-0.530	0.380
	Panel B (Annual Fre	equency): EMP	LOYMENT_GROWTH
One	3.794	3.906	-0.112	0.951
Two	9.723	4.812	4.911	0.369
Three	6.434	5.033	1.401	0.374
Four	9.265	5.217	4.048	0.126
Five	10.178	8.083	2.095	0.223
Six	8.113	8.985	-0.872	0.670
		Panel C (0	Quarterly Frequ	iency): R&D
One	4.441	2.641	1.800	0.317
Two	2.568	4.369	-1.801	0.311
Three	2.275	3.760	-1.485	0.434
Four	4.150	2.376	1.774	0.197
Five	4.342	2.399	1.943	0.221
Six	4.287	2.465	1.822	0.229
	Panel D (Quarterly Frequency): DIVESTITURES			
One	0.076	0.057	0.019	0.234
Two	0.056	0.102	-0.046	0.748
Three	0.071	0.077	-0.006	0.710
Four	0.073	0.054	0.019	0.218
Five	0.071	0.054	0.017	0.289
Six	0.056	0.043	0.013	0.304

Table C.5. Parallel Trends: Textual-Search-Based Approach

This table reports the average INVESTMENT (Panel A), EMPLOYMENT_GROWTH (Panel B), R&D (Panel C), and DI-VESTITURES (Panel D) for firms in the treated and control groups going back different periods prior to Brexit. The treatment indicator is a textual-search-based measure of UK-exposure that sums up the number of Brexit-related words in firms' 2015 10-K forms. The treatment group is made of firms with more than five entries, whereas the control group are firms with zero entries. The table also reports the differences in means and the *p*-value associated with a test statistic for the differences.

Periods prior to Brexit	Treated	Control	Difference	<i>p</i> -value
	Dam	al A (Oscart	aular Euro auron ar	
	Pan	el A (Quart	erly Frequency): INVESTMENT
One	0.958	1.064	-0.106	0.202
Two	0.930	1.047	-0.117	0.186
Three	1.124	1.203	-0.079	0.419
Four	1.174	1.090	0.084	0.348
Five	1.194	1.140	0.054	0.570
Six	1.110	1.122	-0.012	0.897
	Panel B (Annual Fre	equency): EMP	LOYMENT_GROWTH
One	9.711	8.881	0.830	0.678
Two	11.400	13.321	-1.921	0.343
Three	7.600	6.290	1.310	0.448
Four	8.972	6.828	2.144	0.258
Five	10.286	10.076	0.210	0.914
Six	9.928	8.619	1.309	0.498
		Panel C (C	Quarterly Frequ	ency): R&D
One	4.972	5.334	-0.362	0.488
Two	4.830	5.054	-0.224	0.653
Three	4.230	4.218	0.012	0.979
Four	4.246	4.423	-0.177	0.683
Five	4.733	4.258	0.475	0.279
Six	4.263	4.419	-0.156	0.729
	Pane	l D (Quarte	erly Frequency)	: DIVESTITURES
One	0.051	0.059	-0.008	0.566
Two	0.062	0.058	0.004	0.783
Three	0.062	0.076	-0.014	0.297
Four	0.066	0.054	0.012	0.378
Five	0.055	0.038	0.017	0.165
Six	0.039	0.046	-0.007	0.578

The treatment ted as follows. () approach as btain $\beta_{i,CF}^{UK}$ for Srexit's victory t parentheses)	
R&D and DIVESTITURES. ⁷ K_{CF} . A firm's $\beta_{i,CF}^{UK}$ is estima Campbell and Shiller (1988 the dependent variable, to of ant of the referendum and I robust standard-errors (in	DIVESTITURES
APLOYMENT_GROWTH, I in the bottom tercile of $\beta_{i,i}^U$ vs components using the or cash flow component as the callowing the announceme stics are computed using	R&D
Int variables are INVESTMENT, EN trol group is composed by firms i o cash flow and discount rate new e estimate equation (13) with the c o as to compare the two quarters f uncement (2015:Q3–Q4). T -stati	EMPLOYMENT_GROWTH
iis table reports output from equation (14). The depende oup is composed by the top tercile of $\beta_{i,CF}^{UK}$, while the con rst, we decompose volatility of monthly stock returns into pplied to individual stocks by Vuolteenaho (2002). Next, w ich firm. The time dimension of the DID estimator is set so 016:Q3–Q4) <i>versus</i> the two quarters preceding the annou ouble-clustered at the firm and calendar quarter levels.	INVESTMENT

	INVESTMENT	EMPLOYMENT_GROWTH	R&D	DIVESTITURES
	Treatment is Top Tercile of $\beta_{i,CF}^{UK}$ 1	Treatment is Top Tercile of $\beta_{i,CF}^{UK}$ 2	Treatment is Top Tercile of $\beta_{i,CF}^{UK}$ 3	Treatment is Top Tercile of $\beta_{i,CF}^{UK}$ 4
$\text{POST} \times \text{HIGH}_\beta_{i,CF}^{UK}$	-0.330^{***} (0.014)	-5.147** (1.925)	0.348*** (0.050)	-0.034*** (0.010)
Controls Firm	Yes	Yes	Yes	Yes
Fixed Effects Firm Industry×Time	Yes Yes	Yes Yes	Yes Yes	Yes Yes
Observations R-squared	14,709 0.75	3,247 0.45	5,060 0.88	14,953 0.33
	Statistical significan	ce levels: *** <i>p</i> -value<0.01, ** <i>p</i> -val	lue<0.05, * <i>p</i> -value<0.10.	

Table C.6. The Impact of the Brexit Vote on Investment, Employment, R&D and Divestitures: Cash Flow News Decomposition

Table C.7. The Impact of the Brexit Vote on US Investment: First-Moment Controls

This table reports output from equation (14). The dependent variables are INVESTMENT and EMPLOY-MENT_GROWTH. INVESTMENT is defined as capital expenditures divided by lagged total assets (quarterly). EM-PLOYMENT_GROWTH is the percentage change in the number of employees (annual). In the first specification, the measure of UK-exposure (β_i^{UK}) enters the regression as a linear continuous variable. In the second specification, the treatment group is composed by the top tercile of β_i^{UK} , while the control group is composed by firms in the bottom tercile of β_i^{UK} . The third specification is a textual-search-based measure of UK-exposure that sums up the number of Brexit-related words in firms' 2015 10-K forms. The treatment group is made of firms with more than five entries, whereas the control group are firms with zero entries. The time dimension of the DID estimator is set so as to compare the two quarters following the announcement of the Brexit referendum victory (2016:Q3–Q4) *versus* the two quarters preceding the announcement of the price of oil, and the Treasury rate from Alfaro, Bloom, and Lin (2018). *T*-statistics are computed using robust standard-errors (in parentheses) double-clustered at the firm and calendar quarter levels.

	Pane	el A: INVESTM	ENT
	Linear Model	Treatment is Top Tercile of	Treatment is > 5 Brevit
		β_i^{UK}	Entries in 10-Ks
	1	2	3
POST	-0.042		
$\text{POST} \times \beta_i^{UK}$	(0.030) -0.127***		
POST × HIGH_ β_i^{UK}	(0.016)	-0.182^{***}	
POST × HIGH_10-K_ENTRIES		(0.018)	-0.063*** (0.010)
SIZE	0.105** (0.050)	0.088 (0.108)	0.186** (0.081)
TOBIN_Q	0.162***	0.108***	0.168***
CASH_FLOW	1.486***	1.540*	0.270
SALES_GROWTH	0.059**	0.056	0.032
CONSENSUS_EARNINGS_FORECAST	(0.028) 0.051***	0.025	(0.025) 0.028** (0.012)
STOCK_RETURNS	(0.012) -0.053 (0.044)	(0.014) 0.117 (0.083)	(0.012) -0.062 (0.048)
Controls	(0.011)	(01000)	(01010)
Macroeconomic	Yes	No	No
First-Moment Instruments	Yes	Yes	Yes
Fixed Effects			
Firm Industry×Time	Yes No	Yes Yes	Yes Yes
Observations R-squared	41,630 0.68	17,199 0.75	21,253 0.73

Statistical significance levels: *** *p*-value<0.01, ** *p*-value<0.05, * *p*-value<0.10.

	Panel B: El	MPLOYMENT	_GROWTH
	Linear Model	Treatment is Top	Treatment is > 5
		Tercile of β_i^{UK}	Brexit Entries in 10-Ks
	1	2	3
POST	1.986		
$POST \times \beta_i^{UK}$	(2.787) -3.999* (2.186)		
POST × HIGH_ β_i^{UK}	(2.100)	-4.924^{***} (1.566)	
POST × HIGH_10-K_ENTRIES			-1.111^{**}
SIZE	16.997***	17.486***	(0.545)
TOBIN_Q	(2.119) 3.288***	(2.590) 2.112	(3.178) 3.616***
CASH_FLOW	(0.614) -4.682	(1.120) -10.845	(0.898) -3.512
SALES GROWTH	(5.017) –1.738	(6.515) -1.468	(7.697) -0.734
- CONSENSUS EARNINGS FORECAST	(1.058) 0.288**	(1.381) -0.056	(1.620) 0.420**
STOCK_RETURNS	(0.101) 4.726***	(0.216) 5.563***	(0.160) 4.697**
	(0.969)	(1.093)	(1.432)
Controls	Vec	No	No
First-Moment Instruments	Yes	Yes	Yes
Fixed Effects			
Firm	Yes	Yes	Yes
Industry×Time	No	Yes	Yes
Observations	9,143	3,540	4,173
R-squared	0.35	0.45	0.45

 Statistical significance levels: *** p-value<0.01, ** p-value<0.05, * p-value<0.10.</td>

Appendix D Timeline of Brexit Key Events

Jun · 26 · 2012 · · · · •	David Cameron is elected with support of the UK Independent Party
Jan · 11 · 2013 · · · · •	PM David Cameron makes contingent promise: A referendum before 2017 if Conservatives win the 2015 general elections
May · 07 · 2015 · · · · •	General Elections: Cameron wins another term on tight margin of votes
Jun · 09 · 2015 · · · · •	House of Commons approves the European Union Referendum Act
Dec · 14 · 2015 · · · · •	House of Lords approves the Referendum
Dec · 17 · 2015 · · · · •	EU Referendum Act receives Royal Assent. A referendum is to be held on the question "Should the UK remain a member of the EU or leave?"
Feb · 20 · 2016 · · · · •	Announcement: Cameron announces that referendum will be held on June 23 2016
Apr · 15 · 2016 · · · · •	Start of the referendum campaign period
Jun · 23 · 2016 · · · · •	Referendum takes place, Brexit wins
Jun · 24 · 2016 · · · · •	Result of the referendum is announced (Brexit wins)
Jul · 13 · 2016 · · · · •	David Cameron resigns, Theresa May assumes as Prime Minister
Jul · 13 · 2016 ·····• Oct · 02 · 2016 ·····•	David Cameron resigns, Theresa May assumes as Prime Minister PM May voices intention to trigger Article 50 (exit process) by March 2017
Jul · 13 · 2016 · · · · • Oct · 02 · 2016 · · · · • Jan · 24 · 2017 · · · · •	David Cameron resigns, Theresa May assumes as Prime Minister PM May voices intention to trigger Article 50 (exit process) by March 2017 UK Supreme Court rules that the UK government must hold a vote in parliament before beginning the process of leaving EU, delaying Prime Minister May's timetable
Jul · 13 · 2016 · · · · · • Oct · 02 · 2016 · · · · • Jan · 24 · 2017 · · · · • Feb · 08 · 2017 · · · · •	David Cameron resigns, Theresa May assumes as Prime Minister PM May voices intention to trigger Article 50 (exit process) by March 2017 UK Supreme Court rules that the UK government must hold a vote in parliament before beginning the process of leaving EU, delaying Prime Minister May's timetable House of Commons approves Theresa May's Article 50 bill without amendments to proceed with Brexit negotiation with the EU

Figure D.1. Timeline of the Brexit Referendum. This figure lists the key events preceding the referendum leading to Brexit. Events in **bold blue** represent two key dates used in our analysis; the *Announcement* of the date when the referendum would be held, and the *Referendum* vote itself.

Appendix E Measures of Exposure to Automation

E.1 Details on Automation Exposure Measures

For more details on the geographic measure of exposure to automation for all commuting zones in the continental US, we refer the reader to Acemoglu and Restrepo (2020) and Leigh and Kraft (2018). In this appendix, we describe in more detail the procedure to construct our text-based measure of automation exposure at the firm level. We draw inspiration from an extensive literature in corporate finance that uses textual analysis (e.g., Loughran and McDonald (2011)) and define a dictionary of keywords that capture automation at the firm level. We first gather the syllabuses of many courses on "*Industrial Automation and Integration*" taught at top Engineering schools in North America (MIT, CalTech, University of Toronto, among others). Reading each syllabus, we identify the most frequently adopted textbook. This analysis points to Benhabib's (2003) "*Manufacturing: Design, Production, Automation, and Integration*" as one of the most commonly required textbooks in these universities.

With the textbook in hand, we parse its full textual content and use a standard keyword ranking algorithm ("*TextRank*", see Mihalcea and Tarau (2004)) to order the most distinctive keywords reflecting automation. Following the usual procedures in textual analysis (e.g., exclusion of "stop words"), we select the top 100 keywords that are closely related to automation and use them as a dictionary for parsing firms' 10-Ks. The list of keywords is provided in Table E.1. Finally, we define AUTOMATION_{*i*}, which is a continuous variable (in logs) that measures how frequently the top 100 automation keywords appear in the firm's business description (Section 1 of the 10-K form) and management discussion (Section 7 of the 10-K form). To capture cases in which a firm discusses automation efforts in only one year, we average the word count across all years in our sample. AUTOMATION_{*i*} = $log(1 + AUTOMATION_KEYWORDS_$ *i*), where AUTOMATION_KEYWORDS_{*i*} is the number of mentions of the top 100 automation-related keywords in firm *i*'s 10-K forms. Figure E.1 shows a histogram with the distribution of the AUTOMATION_{*i*} variable.

E.2 Additional Figures and Tables

Figure E.1. Distribution of Firm-Level Measure of Automation Exposure. This figure shows the histogram of the text-based, firm-level measure of automation exposure. Specifically, the measure is constructed as AUTOMATION_{*i*} = $log(1 + AUTOMATION_KEYWORDS_i)$, where AUTOMATION_KEYWORDS_{*i*} is the number of mentions of the top 100 automation-related keywords in firm *i*'s 10-K forms as described in Subsection E.1. The total number of firm *i*'s keyword mentions per year are then averaged across the pre-Brexit sample period of our baseline analysis (2010–15).

Table E.1. List of Automation-Related Keywords

This table reports the list of top 100 automation-related keywords as identified by the procedure listed in Section E.1.

machine tool designmaterial removal machineindividual component designsdesign partsmodern machine toolslean manufacturing machinesindustrial design processesbased manufacturingautonomous manufacturing systemsdesign processesbased manufacturingmachine vision systemsautomated production machinesultrasonic machine toolsmachine ivosion systemsmaterial removal machine toolsstatistical process controlautomotive partsmanufacturing systemscnc machine toolsmachining processesstatistical process control toolsbased material removalmachining processcomposite part designengineering design modelsmaterial handling robotsmanufacturing processorientation systemslayered partsnor machine tool controlmold design techniquescylindrical partsmodular product designorientation systemsindustrial manufacturing environmentsproduct designorbet harge manufacturing companiesindustrial robot applicationsaitscret parts manufacturingrobot motion controlmanufacturing system modelingbased processesmetal conting processeparametri designmetal fabrication processesindustrial processesparametri designmetal fabrication processesindustrial processesparametri designmetal partsindustrial processesparametri designmetal partsindustrial processesparametri designmetal partsindustrial processesparametri designmetal partsother en		Automation-Related Keywords	
design partsmodern machine toolslean manufacturing machinesindustrial design processesmachine tool historyautonomous manufacturing systemsautomated production machinesultrasonic machine toolsprocess controllersmaterial removal machine toolsstatistical process control toolsmachining processesstatistical process control toolsmachining processescontachine toolsmaterial handling robotsstatistical process control toolsbased material removalmaterial handling processcomposite part designengineering design modelsmaterial handling processmoutfacturing processortentation systemslayered partsnc machine tool controlmold design techniquescolindustrial manufacturing environmentsmodular product designother large manufacturing companiesindustrial manufacturing environmentsindustrial machine toolsautomatic device controllaminated partsrobot cheignexperimental design proceduresindustrial robot applicationsaitcraft parts manufacturingrobot controlmanufacturing industrialrobot motion controlautomatic device controlmanufacturing system modelingaitcraft parts manufacturingrobot motion controlmanufacturing system modelingabsed processesmetal forming processesdeformation processesmetal fabrication processesdiscrete parts manufacturing industrieresistance welding processesmetal partsother engineering productsintegrated sensosmetal porcessesdiscrete parts manufacturin	machine tool design	material removal machine	individual component designs
industrial design processesmachine tool historyautonomous manufacturing systemsdesign processesbased manufacturingmachine vision systemsautomated production machinesultrasonic machine toolsprocesse controllersmanufacturing systemscnc machine toolsautomated processesstatistical process controlultrasonic machine toolsmachining processescomposite part designengineering design modelsmaterial handling robotsprocess materialspart geometriescontinuous path machining processmanufacturing processorientation systemslayered partsnodular product designother large manufacturing companiesindustrial manufacturing environmentsmodular product designother large manufacturing companiesindustrial machine toolsaltered partsautomatic device controllaminated partsindustrial machine toolsautomatic device controllaminated partsindustrial machine toolsmetal cutting toolsindustrial robot applicationsaircraft parts manufacturingrobot motion controlmanufacturing system modelingmetal partsother engineering productsintegraf designmetal partsother engineering productsintegrated sensometal processesother casting processesintegrated sensometal partsother casting processesintegrated sensometal partsother casting processesintegrated sensometal partsother casting processesintegrated sensometal fabrication processessm	design parts	modern machine tools	lean manufacturing machines
design processesbased manufacturingmachine vision systemsautomated production machinesultrasonic machine toolsprocess controllersmaterial removal machine toolsstatistical process controlautomotive partsmanufacturing systemscnc machine toolsmachining processesstatistical process control toolsbased material removalrobot fabrication processcomposite part designengineering design modelsmaterial handling robotsprocess materialspart geometriescontinuous path machining processmanufacturing processorientation systemslayered partsnc machine tool controlmold design techniquescylindrical partsmodular product designother large manufacturing companiesindustrial manufacturing environmentsidicrete parts manufacturingexperimental design procedureshermoplastic partsindustrial machine toolsautomatic device controlmanufacturing system modelingbased processesmetal forming processesdeformation processesarteraf parts manufacturingrobot notion controlmanufacturing system modelingbased processesdiscrete parts manufacturing industrialrobot applicationsattraft partsother engineering productsintegral designmetal laptication processesdiscrete partsintegral designmetal processesdiscrete partsmatfacturing system modelingbased processesdiscrete partsintegral designmetal partsother engineering productsintegral designmeta	industrial design processes	machine tool history	autonomous manufacturing systems
automated production machinesultrasonic machine toolsprocess controllersmaterial removal machine toolsautomotive partsmanufacturing systemscn machine toolsmaterial handling robcessestatistical process control toolsbased material removalrobot fabrication processcomposite part designengineering design modelsmaterial handling robotsprocess materialspart geometriescontinuous path machining processnanufacturing processorientation systemslayered partsnadular product designother large manufacturing companiesindustrial manufacturing environmentsproduct materialslarger designcomposite partsdiscrete parts manufacturingexperimental design proceduresthermoplastic partsindustrial machine toolsmatel cutting toolsindustrial robot applicationsaircraft parts manufacturingrobot motion controlmanufacturing system modelingbased processesmetal forming processesdeformation processesmetal fabrication processesdiscrete parts manufacturingresistance welding processesmetal fabrication processesdiscret partsmanufacturing industrialmetal fabrication processessmanufacturing industrialresistance welding processesmetal fabrication processessmanufacturing industrialresistance welding processesmetal aprocessessade systemscomputer integrated manufacturing devicesmetal fabrication processessmanufacturing opolasincere partsmetal aprotenting systemsmater alog p	design processes	based manufacturing	machine vision systems
material removal machine toolsstatistical process controlautomotive partsmanufacturing systemscnc machine toolsmachining processesstatistical process control toolsbased material removalmobof fabrication processcomposite part designengineering design modelsmaterial handling robotsprocess materialspart geometriescontinuous path machining processnc machine tool controlmold design techniquescylindrical partsmodular product designother large manufacturing companiesindustrial manufacturing environmentsproduct materialsautomatic device controllaminated partsidustrial machine toolsautomatic device controlmanufacturing system modelingaitraft parts manufacturingmototion controlmanufacturing system modelingaitraft parts manufacturingmototin controlmanufacturing system modelingbased processesmetal forning processesdeformation processesmetal fabrication processesdiscrete parts manufacturing industrialresistance welding processesmetal partsindustrial processesdeformation processesmetal forciessesdiscrete parts manufacturing industrialresistance welding processesanterial partsother engineering productsresistance welding processesmetal partsother engineering productsintegral designsmetal fabrication processessmall mechanical partsresistance welding processesanterial partsother engineering processesother engineering processesmetal parts	automated production machines	ultrasonic machine tools	process controllers
manufacturing systemscnc machine toolsmachining processesstatistical process control toolsbased material removalrobot fabrication processcomposite part designengineering design modelsmaterial handling robotsprocess materialspart geometriescontinuous path machining processnc machine tool controlmold design techniquescylindrical partsmodular product designother large manufacturing companiesindustrial manufacturing environmentsproduct materialslarger design proceduresthermoplastic partsdiscrete parts manufacturingexperimental design procedureslaminated partsproduct design methodsmetal cutting toolsindustrial robot applicationsaircraft parts manufacturingrobot motion controlmanufacturing system modelingbased processesmetal forming processesparametric designmetal fabrication processesdiscrete parts manufacturing industrisresistance welding processesmetal fabrication processesdiscrete parts manufacturing industrisresistance welding processesmetal fabrication processesdiscrete parts manufacturing industrisresistance welding processesmetal fabrication processesmanufacturing processesparametric designmetal fabrication processesmanufacturing constructionsmaterial headmetal fabrication processesmanufacturingrobot motion controlmetal fabrication processesmanufacturing processesparametric designmetal fabrication processesmanufacturingrobot motion control<	material removal machine tools	statistical process control	automotive parts
statistical process control toolsbased material removalrobot fabrication processcomposite part designengineering design modelsmaterial handling robotsprocess materialspart geometriescontinuous path machining processnamufacturing processorientation systemslayered partsnc machine tool controlmold design techniquescylindrical partsproduct materialslarge designcomposite partsindustrial machine toolsautomatic device controllaminated partsindustrial machine toolsmetal cutting processesindustrial robot applicationsaircraft parts manufacturingmetal cutting processesdeformation processesmetal partsmetal forming processesdeformation processesmetal fabrication processesmetal forming processesprametric designmetal fabrication processesdiscrete parts manufacturingsestance welding processesmetal partsindustrial processesproduct manufacturing system modelingmetal fabrication processesdiscrete parts manufacturing machinesresistance welding processesmetal partsindustrial processesintegral designsmetal processesmany partscomputer integrated manufacturing devicesmanufacturing machine solssign processesaided design aspectsmanufacturing machinescutting toolsprogrammable manufacturing devicesmetal fabrication processessmall mechanical partmodel sensorsmetal partsdiscrete partsautomatic partsmatification product	manufacturing systems	cnc machine tools	machining processes
composite part designengineering design modelsmaterial handling robotsprocess materialspart geometriescontinuous path machining processmanufacturing processorientation systemslayered partsnc machine tool controlmold design techniquescylindrical partsmodular product designother large manufacturing companiesindustrial manufacturing environmentsproduct materialslarger designcomposite partsindustrial machine toolsautomatic device controllaminated partsaircraft parts manufacturingrobot motion controlmanufacturing system modelingbased processesmetal curting processesdeformation processesmetal fabrication processesmetal forming processesdeformation processesmetal fabrication processesdiscrete parts manufacturing system modelingmetal fabrication processesdiscrete parts manufacturing industriesmetal fabrication processesdiscrete parts manufacturing industriesmetal fabrication processesmanufacturing processesmetal fabrication processesmanufacturing processesmetal fabrication processesmanufacturing processesmetal fabrication processesmanufacturing processesmanufacturing systemsmanufacturing industriesmetal fabrication processesmanufacturing processesmetal fabrication processesmanufacturing machinesmetal fabrication processesmanufacturing machinesmatifical partscomplexessesmatifical partsmanufacturing machines	statistical process control tools	based material removal	robot fabrication process
process materialspart geometriescontinuous path machining processmanufacturing processorientation systemslayered partsnc machine tool controlmold design techniquescylindrical partsmodular product designother large manufacturing companiesindustrial manufacturing environmentsproduct materialslarger designcomposite partsdiscrete parts manufacturingexperimental design proceduresthermoplastic partsindustrial machine toolsmetal cutting toolsindustrial robot applicationsaircraft parts manufacturingrobot motion controlmanufacturing system modelingbased processesmetal otring processesdeformation processesmetal partsindustrial processesparametric designmetal partsdiscrete parts manufacturing industriesresistance welding processesmetal processesdiscrete parts manufacturing industriesresistance welding processesmetal processesdiscrete parts manufacturing industriesresistance welding processesmetal processessaed systemscohor control ensorsmanufacturing machinessmall mechanical partsrobot motion controllersmanufacturing machinescutting toolsmicregrad design appectsmanufacturing machinescutting toolsmicregrad design appectsmanufacturing machinescutting toolsmicregrad design appectsmanufacturing machineother casting processesaided design appectsmanufacturing machinerobot part fabricationmicregrad earospace parts<	composite part design	engineering design models	material handling robots
manufacturing processorientation systemslayered partsnc machine tool controlmold design techniquescylindrical partsmodular product designother large manufacturing companiesindustrial manufacturing environmentsproduct materialslarger designcomposite partsdiscrete parts manufacturingexperimental design proceduresthermoplastic partsindustrial machine toolsautomatic device controllaminated partsproduct design methodsmetal cutting toolsindustrial robot applicationsaircraft parts manufacturingrobot motion controlmanufacturing system modelingbased processesmetal forming processesdeformation processesmetal fabrication processesdiscrete parts manufacturing industriesresistance welding processesmetal fabrication processesdiscrete parts manufacturing industriesresistance welding processesmetal fabrication processesdiscrete parts manufacturing industriesresistance welding processesmetal processesmany partscomputer integrated manufacturingmanufacturing machinessmall mechanical partsintegrated sensorsmanufacturing partscutting toolsaide design aspectsmanufacturing partsorbot processesaided design aspectsmultidisciplinary product design teamsother casting processesaided design aspectsmultidisciplinary product design teamsrobot part fabricationrobot programming techniquesmultidisciplinary product design teamsrobot part fabricationsuctomata tools <tr< td=""><td>process materials</td><td>part geometries</td><td>continuous path machining process</td></tr<>	process materials	part geometries	continuous path machining process
nc machine tool controlmold design techniquescylindrical partsmodular product designother large manufacturing companiesindustrial manufacturing environmentsproduct materialslarger designcomposite partsdiscrete parts manufacturingexperimental design proceduresHermoplastic partsindustrial machine toolsautomatic device controllaminated partsproduct design methodsmetal cutting toolsindustrial robot applicationsaircraft parts manufacturingrobot motion controlmanufacturing system modelingbased processesmetal forming processesdeformation processesmetal fabrication processesdiscrete parts manufacturing industriesresistance welding processesmetal partsother engineering productsintegral designsmetal porcessesbased systemsrobot motion controllersmetal porcessesmanu partscomputer integrated manufacturingmetal portion processessmall mechanical partsintegrat designsmetal processessmall mechanical partsintegrated sensorsmanufacturing machinescutting toolsprogrammable manufacturing devicesmultidisciplinary product design teamsother casting processesaided design aspectsmanufactured partsrobot part fabricationrobot programming techniquesmanufactured partsrobot part fabricationrobot programming techniquesmanufacturing machine toolsrobot part fabricationsuch palyback-based robot motion techniquesmanufacturing techniquesindustrial robot	manufacturing process	orientation systems	layered parts
modular product designother large manufacturing companiesindustrial manufacturing environmentsproduct materialslarger designcomposite partsdiscrete parts manufacturingexperimental design proceduresthermoplastic partsindustrial machine toolsautomatic device controllaminated partsproduct design methodsmetal cutting toolsindustrial robot applicationsaircraft parts manufacturingrobot motion controlmanufacturing system modelingbased processesmetal forming processesdeformation processesmetal partsindustrial processesparametric designmetal fabrication processesdiscrete parts manufacturing industrisintegral designsmetal porcessesother engineering productsintegral designsmetal processessaed systemsrobot motion controllersmetal processesmanufacturing toolsintegrated sensorsmetal processessmall mechanical partsintegrated sensorsmetalisciplinary product design teamother casting processesaided design aspectsmultidisciplinary product design teamothot rating rocessesaided design aspectsautomatic machine toolsrobot part fabricationmicrodetailed aerospace partsautomatic toroly birationsindustrial robotssuch part toolspart modelsrobot part fabricationcompercal industrial robotsautomatic machine toolsindustrial robotssuch part toolspart modelsnobot part fabricationcompercal industrial robotspart models<	nc machine tool control	mold design techniques	cylindrical parts
product materialslarger designcomposite partsdiscrete parts manufacturingexperimental design proceduresthermoplastic partsindustrial machine toolsautomatic device controllaminated partsproduct design methodsmetal cutting toolsindustrial robot applicationsaircraft parts manufacturingrobot motion controlmanufacturing system modelingbased processesmetal forming processesdeformation processesmetal partsindustrial processesgarametric designmetal fabrication processesother engineering productsresistance welding processeslarge sheet metal partsother engineering productsrobot motion controllersmetal processesmany partscomputer integrated manufacturingmachine toolssmall mechanical partsintegrated sensorsmanufacturing machinesother casting processesaided design aspectsmultidisciplinary product design teamother casting processesaided design aspectsmultidisciplinary product design teamrobotsautomate doslpart modelsrobot part fabricationrobot programming techniquespart modelsproduct assemblycommercial industrial robotspart modelsproduct assemblycommercial industrial robotspart modelscomplex genetry partscommercial industrial robotspart modelscomplex genetry partscomplex genetry partspart modelsproduct design parameter valuessucomate doslpart modelscomplex genetry partssucomate dosl <td>modular product design</td> <td>other large manufacturing companies</td> <td>industrial manufacturing environments</td>	modular product design	other large manufacturing companies	industrial manufacturing environments
discrete parts manufacturingexperimental design proceduresthermoplastic partsindustrial machine toolsautomatic device controllaminated partsproduct design methodsmetal cutting toolsindustrial robot applicationsaircraft parts manufacturingrobot motion controlmanufacturing system modelingbased processesmetal forming processesdeformation processesmetal partsindustrial processesparametric designmetal fabrication processesdiscrete parts manufacturing industriesresistance welding processeslarge sheet metal partsother engineering productsintegral designsmetal processesbased systemsrobot motion controllersmetal processessmall mechanical partscomputer integrated manufacturingmachine toolssmall mechanical partsintegrated sensorsmanufacturing machinescutting toolsprogrammable manufacturing devicesmultidisciplinary product design teamsother casting processesaided design aspectsmanufactured partsrobot part fabricationmotor programming techniquesautomatic machine toolsrobot part fabricationsuch parate toolspart modelsrobot part fabricationsuch programming techniquespart modelsrobot part fabricationsuch parate toolspart modelsproduct assemblycommercial industrial robotspart modelsproduct assemblycommercial industrial robotspart modelsproduct assemblycommercial industrial robotspart modelsproduct	product materials	larger design	composite parts
industrial machine toolsautomatic device controllaminated partsproduct design methodsmetal cutting toolsindustrial robot applicationsaircraft parts manufacturingrobot motion controlmanufacturing system modelingbased processesmetal forming processesdeformation processesmetal partsindustrial processesparametric designmetal fabrication processesdiscrete parts manufacturing industrieresistance welding processeslarge sheet metal partsother engineering productsintegral designsmetal processesbased systemsrobot motion controllersmetal processesmany partscomputer integrated manufacturing devicesmanufacturing machinescutting toolsprogrammable manufacturing devicesmanufacturing machinesother casting processesaided design aspectsmatufocture partsother casting processesaided design aspectsmanufacturing toolsrobot part fabricationrobot programming techniquespart modelsrobot part fabricationrobot programming techniquespart modelsrobot part fabricationsuch playback-based robot motion techniquespartspoduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturing robotsobot chip formationcomplex geometry partsautomated manufacturing robots	discrete parts manufacturing	experimental design procedures	thermoplastic parts
product design methodsmetal cutting toolsindustrial robot applicationsaircraft parts manufacturingrobot motion controlmanufacturing system modelingbased processesmetal forming processesdeformation processesmetal partsindustrial processesparametric designmetal fabrication processesdiscrete parts manufacturing industriesresistance welding processeslarge sheet metal partsother engineering productsintegral designsmetal processesbased systemsrobot motion controllersmechanical part orienting systemsmany partscomputer integrated manufacturing devicesmanufacturing machinescutting toolsprogrammable manufacturing devicesmanufactured partsother casting processesaided design aspectsmanufactured partscobot part fabricationmicrodetailed aerospace partsautomatic machine toolsrobot part fabricationsuch playback-based robot motion techniquespart modelsrobot part fabricationsuch playback-based robot motion techniquesmatter toolsindustrial robotssuch playback-based robot motion techniquespartsproduct assemblycommercial industrial robotsautomated machine toolscomplex systemsautomated manufacturing robotspart modelcomplex systemssuch playback-based robot motion techniquespart modelsproduct assemblycommercial industrial robotspart modelscomplex systemssuch playback-based robot motion techniquesprobot chip formationrobot complex systems </td <td>industrial machine tools</td> <td>automatic device control</td> <td>laminated parts</td>	industrial machine tools	automatic device control	laminated parts
aircraft parts manufacturingrobot motion controlmanufacturing system modelingbased processesmetal forming processesdeformation processesmetal partsindustrial processesparametric designmetal fabrication processesdiscrete parts manufacturing industriesresistance welding processeslarge sheet metal partsother engineering productsintegral designsmetal processesbased systemsrobot motion controllersmetal part orienting systemsmany partscomputer integrated manufacturing devicesmanufacturing machinescutting toolsprogrammable manufacturing devicesmultidisciplinary product design teamsother casting processesaided design aspectsmutatic machine toolsrobot part fabricationmicrodetailed aerospace partsautomatic modelsrobot part fabricationrobot programming techniquesmachine tool vibrationsindustrial robotssuch playback-based robot motion techniquesautomated machine toolscomplex geometry partsautomated manufacturing robotsnobot chip formationcomplex geometry partssuch playback-based robot motion techniques	product design methods	metal cutting tools	industrial robot applications
based processesmetal forming processesdeformation processesmetal partsindustrial processesparametric designmetal fabrication processesdiscrete parts manufacturing industriesresistance welding processeslarge sheet metal partsother engineering productsintegral designsmetal processesbased systemsrobot motion controllersmechanical part orienting systemsmany partscomputer integrated manufacturing devicesmachine toolssmall mechanical partsintegrated sensorsmultidisciplinary product design teamsother casting processesaided design aspectsmanufactured partsdesign parameter valuesmicrodetailed aerospace partsautomatic machine toolsrobot semethyautomata toolspart modelsrobot programming techniquesmachine tool vibrationsindustrial robotssuch playback-based robot motion techniqueslarge partsproduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturing	aircraft parts manufacturing	robot motion control	manufacturing system modeling
metal partsindustrial processesparametric designmetal fabrication processesdiscrete parts manufacturing industriesresistance welding processeslarge sheet metal partsother engineering productsintegral designsmetal processesbased systemsrobot motion controllersmechanical part orienting systemsmany partscomputer integrated manufacturing devicesmachine toolssmall mechanical partsintegrated sensorsmultidisciplinary product design teamsother casting processesaided design aspectsmanufactured partsdesign parameter valuesmicrodetailed aerospace partsautomatic machine toolsrobot programming techniquespart modelsmachine tool vibrationsindustrial robotssuch playback-based robot motion techniqueslarge partsproduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturingobst chip formationindustrial robotssuch playback-based robot motion techniques	based processes	metal forming processes	deformation processes
metal fabrication processesdiscrete parts manufacturing industriesresistance welding processeslarge sheet metal partsother engineering productsintegral designsmetal processesbased systemsrobot motion controllersmechanical part orienting systemsmany partscomputer integrated manufacturing devicesmachine toolssmall mechanical partsintegrated sensorsmultidisciplinary product design teamsother casting processesaided design aspectsmanufactured partsdesign parameter valuesmicrodetailed aerospace partsautomatic machine toolsrobot sautomata toolspart modelsrobot programming techniquesmachine tool vibrationsindustrial robotssuch playback-based robot motion techniqueslarge partsproduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturing	metal parts	industrial processes	parametric design
large sheet metal partsother engineering productsintegral designsmetal processesbased systemsrobot motion controllersmechanical part orienting systemsmany partscomputer integrated manufacturingmachine toolssmall mechanical partsintegrated sensorsmanufacturing machinescutting toolsprogrammable manufacturing devicesmultidisciplinary product design teamsother casting processesaided design aspectsmanufactured partsdesign parameter valuesmicrodetailed aerospace partsautomatic machine toolsrobot sautomata toolspart modelsrobot part fabricationrobot programming techniquesmachine tool vibrationsindustrial robotssuch playback-based robot motion techniqueslarge partsproduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturing	metal fabrication processes	discrete parts manufacturing industries	resistance welding processes
metal processesbased systemsrobot motion controllersmechanical part orienting systemsmany partscomputer integrated manufacturingmachine toolssmall mechanical partsintegrated sensorsmanufacturing machinescutting toolsprogrammable manufacturing devicesmultidisciplinary product design teamsother casting processesaided design aspectsmanufactured partsdesign parameter valuesmicrodetailed aerospace partsautomatic machine toolsrobotsautomata toolspart modelsrobot part fabricationrobot programming techniquesmachine tool vibrationsindustrial robotssuch playback-based robot motion techniqueslarge partsproduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturing	large sheet metal parts	other engineering products	integral designs
mechanical part orienting systemsmany partscomputer integrated manufacturingmachine toolssmall mechanical partsintegrated sensorsmanufacturing machinescutting toolsprogrammable manufacturing devicesmultidisciplinary product design teamsother casting processesaided design aspectsmanufactured partsdesign parameter valuesmicrodetailed aerospace partsautomatic machine toolsrobotsautomata toolspart modelsnobot part fabricationrobot programming techniqueslarge partsproduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturing	metal processes	based systems	robot motion controllers
machine toolssmall mechanical partsintegrated sensorsmanufacturing machinescutting toolsprogrammable manufacturing devicesmultidisciplinary product design teamsother casting processesaided design aspectsmanufactured partsdesign parameter valuesmicrodetailed aerospace partsautomatic machine toolsrobot sautomata toolspart modelsrobot part fabricationrobot programming techniqueslarge partsproduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturing	mechanical part orienting systems	many parts	computer integrated manufacturing
manufacturing machinescutting toolsprogrammable manufacturing devicesmultidisciplinary product design teamsother casting processesaided design aspectsmanufactured partsdesign parameter valuesmicrodetailed aerospace partsautomatic machine toolsrobotsautomata toolspart modelsrobot part fabricationrobot programming techniquesmachine tool vibrationsindustrial robotssuch playback-based robot motion techniqueslarge partsproduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturing	machine tools	small mechanical parts	integrated sensors
multidisciplinary product design teamsother casting processesaided design aspectsmanufactured partsdesign parameter valuesmicrodetailed aerospace partsautomatic machine toolsrobotsautomata toolspart modelsrobot part fabricationrobot programming techniquesmachine tool vibrationsindustrial robotssuch playback-based robot motion techniqueslarge partsproduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturing	manufacturing machines	cutting tools	programmable manufacturing devices
manufactured partsdesign parameter valuesmicrodetailed aerospace partsautomatic machine toolsrobotsautomata toolspart modelsrobot part fabricationrobot programming techniquesmachine tool vibrationsindustrial robotssuch playback-based robot motion techniqueslarge partsproduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturingrobot chip formationrobot programming techniques	multidisciplinary product design teams	other casting processes	aided design aspects
automatic machine toolsrobotsautomata toolspart modelsrobot part fabricationrobot programming techniquesmachine tool vibrationsindustrial robotssuch playback-based robot motion techniqueslarge partsproduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturingrobot chip formation	manufactured parts	design parameter values	microdetailed aerospace parts
part modelsrobot part fabricationrobot programming techniquesmachine tool vibrationsindustrial robotssuch playback-based robot motion techniqueslarge partsproduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturingrobot chip formationcomplex geometry partsautomated manufacturing	automatic machine tools	robots	automata tools
machine tool vibrationsindustrial robotssuch playback-based robot motion techniqueslarge partsproduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturingrobot chip formationcomplex geometry partsautomated manufacturing	part models	robot part fabrication	robot programming techniques
large partsproduct assemblycommercial industrial robotsautomated machine toolscomplex geometry partsautomated manufacturingrobot chip formationautomated manufacturing	machine tool vibrations	industrial robots	such playback-based robot motion techniques
automated machine tools complex geometry parts automated manufacturing robot chip formation	large parts	product assembly	commercial industrial robots
robot chip formation	automated machine tools	complex geometry parts	automated manufacturing
	robot chip formation		

Table E.2. The Impact of the Brexit Vote on Automation Exposure

This table reports output from equation (14). The dependent variable is AUTOMATION_{*i*,*t*}, which is constructed from a dictionary of keywords that capture exposure to automation at the firm level, as described in Appendix E. This textbased continuous variable is the logarithm of the total number of automation-related keywords that appear in firm *is* business description (10-K Section 1) and management discussion (10-K Section 7), at the firm-year level. In the first specification, the treatment group is composed by the top tercile of β_i^{UK} , while control group is composed by firms in the bottom tercile of β_i^{UK} . The second specification is a textual-search-based measure of UK-exposure that sums up the number of Brexit-related words in firms' 2015 10-K forms. The treatment group is made of firms with more than five entries, whereas the control group are firms with zero entries. The testing specification and estimation procedure is as per the EMPLOYMENT_GROWTH tests in Table 2.

	AUTOMATION _{<i>i</i>,<i>t</i>}	
	Treatment is Top Tercile of β_i^{UK}	Treatment is > 5 Brexit Entries in 10-Ks
	1	2
$POST \times HIGH_{\beta_{i}}^{UK}$	0.144* (0.075)	
POST × HIGH_10-K_ENTRIES		0.096* (0.048)
Controls		
Firm	Yes	Yes
Fixed Effects		
Firm	Yes	Yes
Industry×Time	Yes	Yes
Observations R-squared	3,540 0.20	4,173 0.28

Statistical significance levels: *** *p*-value<0.01, ** *p*-value<0.05, * *p*-value<0.10.