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IA.1 Internet Appendix Introduction

In this Internet Appendix, I provide support for the results in the main text.

Section IA.2 extends the Brown, Davies and Ringgenberg (2021) model of the ETF

mechanism to provide theoretical support for the empirical analysis. Section IA.3 addresses

concerns about using higher frequency measures (e.g., daily or weekly). Section IA.4

details the small sample parametric bootstrap procedure used throughout the paper.

Section IA.5 examines the relation between daily returns and a daily measure of SSI to

show that the negative relation between SSI and contemporaneous returns holds even at

higher frequencies. Section IA.6 shows analytically that maintaining a target level of

portfolio leverage via leveraged ETFs requires a trading strategy that is contrarian.

Section IA.6 also computes a measure of implied leverage rebalancing and shows that the

return predictability results using SSI are robust to the inclusion of the measure.

Section IA.7 provides a host of alternative specifications of SSI and considers an additional

robustness test using changes in institutional ownership of leveraged ETFs. Section IA.8

studies the performance of portfolios that condition on realized values of the Speculation

Sentiment Index. Section IA.9 provides the correlations between SSI and the control

variables used throughout the paper.
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IA.2 Model

In this section, I extend the Brown et al. (2021) model of the ETF mechanism to

provide theoretical support for my empirical analysis. Specifically, the model extension

shows that the Speculation Sentiment Index is a natural proxy for market-wide speculative

demand shocks and the model extension also provides novel empirical predictions. There

are four periods t ∈ {0, 1, 2, long term} in which two passively managed, leveraged ETFs

are run by a risk neutral, competitive sponsor (e.g., ProShares). Both leveraged ETFs

provide magnified exposure to a benchmark index χ (e.g., the S&P 500 index). One of the

leveraged ETFs provides magnified long exposure to the benchmark index and the other

leveraged ETF provides magnified short exposure. Furthermore, the long- and

short-leverage are equal in magnitude, for example, the leveraged-long ETF provides 2×

exposure to the benchmark index and the leveraged-short ETF provides −2× exposure. I

characterize the leveraged-long ETF with the subscript L and the leveraged-short ETF

with the subscript S.

In each period t and for each ETF j ∈ {L, S}, there is a qt,j-length measure of ETF

shares traded in a centralized secondary market. The market value of each share is denoted

pt,j. The underlying assets backing each ETF are cash and a derivative contract (e.g., a

total return swap) for which the reference entity is the index χ. The underlying derivative

contracts for the leveraged-long and leveraged-short ETF are the same with the only

difference being the position in the derivative contract; the leveraged-long ETF takes the
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long-end of the derivative contract (i.e, receives the total return on χ) and the

leveraged-short ETF takes the short-end (i.e, pays the total return on χ). I make three

assumptions regarding the derivative contract for tractability. First, I normalize the fixed

rate/fee paid by the long-end to the short-end equal to zero. In other words, the net payoff

of the derivative is the total return on χ. Second, I assume continuous settlement so that at

any time t the fair value of the derivative position is equal to zero and the two parties’ cash

positions absorbs all gains and losses (this also alleviates concerns about roll yield). Third,

I assume the derivative market is perfectly competitive and frictionless. As such, there are

no arbitrage opportunities between the derivative contract and the underlying index χ.

Each unit of ETF j’s underlying assets (cash plus the value of the derivative

position) has a tradable value πt,j (i.e., net asset value or NAV). For simplicity, I assume

that the number of units of the underlying asset are also qt,j so that the NAV per ETF

share is πt,j. Thus, in any period t, the ETF premium (or ETF discount when it is

negative) for ETF j is the difference in the ETF’s share price and the NAV per share,

(IA1) ψt,j ≡ pt,j − πt,j.

ψt,j 6= 0 represents a relative mispricing (i.e., a violation of the law of one price) and an

attractive opportunity for arbitrageurs.

In addition to the ETF shares trading in a secondary market, there also exists a

primary market for each ETF j’s shares. The primary market is constituted by N ≥ 1

authorized participants (e.g., broker-dealers and market-makers) and the ETF sponsor.
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Authorized participants are risk neutral and may be thought of as arbitrageurs. For

simplicity, it is assumed that each authorized participant trades in both the leveraged-long

and leveraged-short ETF markets. In response to ψt,j > 0, each authorized participant may

short-sell ETF j’s shares and hedge the short position with the underlying derivative

security. In response to ψt,j < 0, each authorized participant may purchase ETF j’s shares

and hedge the long position with the underlying derivative security. After conducting the

necessary long-short trade to exploit ψt,j 6= 0, an authorized participant closes the trade

and captures the profits by creating or redeeming ETF j’s shares. For example, if an

authorized participant was short ETF shares, he may deliver cash in the amount of NAV in

exchange for new ETF shares to cover the short position. Alternatively, if an authorized

participant was long ETF shares, he may deliver those shares in exchange for cash in the

amount of NAV. In either case, the authorized participant will simultaneously unwind their

position in the derivative security used to hedge.1

Authorized participant trades only occur at t = 2, so no subscript t is needed on

those variables. I denote each authorized participant i’s arbitrage demand for ETF j as

δj,i. A positive value of δL,i implies shorting ETF L’s shares, hedging with a long position

in the derivative security, and subsequent share creations. A positive value of δS,i implies

shorting ETF S’s shares, hedging with a short position in the derivative security, and

subsequent share creations. A negative value of δL,i implies buying ETF L’s shares,

1In practice, leveraged ETFs adhere to a cash creation/redemption primary market. Conversely, most
nonleveraged ETFs adhere to an in-kind creation/redemption primary market. Mathematically, in this
model, it is equivalent to assume the transactions are in-kind. Furthermore, there is a nominal, fixed fee
charged by the ETF sponsor for any creations or redemptions. I implicitly assume the fee is equal to zero
for simplicity.
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hedging with a short position in the derivative security, and subsequent share redemptions.

A negative value of δS,i implies buying ETF S’s shares, hedging with a long position in the

derivative security, and subsequent share redemptions. The aggregate demand of

authorized participants for ETF j is denoted as,

(IA2) ∆j =
N∑
i=1

δj,i.

The model’s timing is as follows. Within period t = 0, initial prices for the

leveraged ETFs’ shares and the ETFs’ NAVs are established, as are initial share quantities.

Within period t = 1: i) demand shocks (both fundamental and nonfundamental) are

realized, ii) investor demands shift for both ETFs’ shares and the ETFs’ underlying assets,

giving rise to interim ETF premia. At t = 2: i) authorized participants trade against the

premia (i.e., relative mispricing), generating price pressure on both ETFs’ shares and their

underlying assets, ii) authorized participants create or redeem shares in the ETFs to close

their trades, and iii) the equilibrium prices for the ETFs’ shares and NAVs are established.

At t = long term, prices return to their latent fundamental values. I elaborate below.

At t = 0, the initial ETF share price for ETF j is determined by a downward-sloped

demand curve,

(IA3) p0,j = βj − ηjq0,j,

in which βj > 0 is a constant and ηj > 0 proxies for investors’ sensitivity to the measure of
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shares. A downward-sloped demand curve is micro-founded on investor risk aversion and

lower values of ηj imply less price impact from changes in ETF shares outstanding. For

simplicity, I assume that the ETFs’ NAVs are initially equal,

(IA4) Ω ≡ π0,L = π0,S,

for some Ω > 0. It is assumed that Ω is the true, latent fundamental value. Furthermore, I

assume that no initial relative mispricing exist. That is,

(IA5) q0,j ≡
βj − Ω

ηj
,

so that p0,L = p0,S = π0,L = π0,S = Ω. In other words, all ETF shares and NAVs are

efficiently priced at t = 0.

At t = 1, ETF j’s share price is given by,

(IA6) p1,j = βj − ηjq0,j + (ω + ssi) (1− 2× 1j=S),

in which 1j=S is an indicator function that equals 1 for the leveraged-short ETF (i.e.,

j = S) and equals 0 otherwise. ω is a fundamental shock related to the benchmark index

(e.g., news about cash flows or discount rates) and ssi represents a nonfundamental shock

to leveraged ETF investor demand. Specifically, the component ssi is the realization of a

speculative demand shock. Both ω and ssi are drawn from mean zero distributions with
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variances σ2
ω and σ2

ssi respectively. The correlation between ω and ssi is,

(IA7) ρ ≡ CORR(ω, ssi),

with ρ ∈ [−1, 1].

ETF j’s NAV at t = 1 is given by,

(IA8) π1,j = Ω + (ω + ϕssi) (1− 2× 1j=S),

in which ϕ ∈ [0, 1) measures the extent to which ssi also affects the value of the underlying

derivative security. Assuming ϕ ∈ [0, 1) is consistent with my identifying assumption used

in the empirical analysis; leveraged ETF share demand is relatively more sensitive to

gambling-like, uninformed demand shocks than the underlying derivative security demand.

Note, the t = 1 ETF premium for the leveraged-long ETF is,

(IA9) ψ1,L = (1− ϕ)ssi,

and the t = 1 ETF premium for the leveraged-short ETF is,

(IA10) ψ1,S = −(1− ϕ)ssi.

In other words, because the leveraged ETFs’ shares and the underlying derivative security

have different sensitivities to speculative demand shocks, the realization of a nonzero ssi
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gives rise to relative mispricing.

At t = 2, authorized participants trade against ψ1,L and ψ1,S. Their trades have

price impact and the t = 2 price of ETF j is given by,

(IA11) p2,j(∆j) = βj − ηjq0,j + (ω + ssi) (1− 2× 1j=S)− ηj∆j,

which is a function of ∆j and differs from p1,j only by the price impact of the trades −ηj∆j

(shorting ETF j’s shares or purchasing ETF j’s shares). Furthermore, ETF j’s NAV at

t = 2 is given by,

(IA12) π2,j(∆L,∆S) = Ω + (ω + ϕssi+ λ (∆L −∆S)) (1− 2× 1j=S),

which is a function of both ∆L and ∆S and in which λ ≥ 0 represents the price impact that

hedging via the derivative contract has.2 Note, π2,j differs from π1,j only by

λ (∆L −∆S) (1− 2× 1j=S).

Given the model’s timing and the evolution of prices, I now solve for each

authorized participant’s optimal creation/redemption activity in the two ETFs. At the

beginning of t = 2, each authorized participant i chooses a length δL,i ∈ R of shares to

create or redeem in the leveraged-long ETF and a length δS,i ∈ R of shares to create or

redeem in the leveraged-short ETF. Each authorized participant is concerned with

2Note, because the derivative market is perfectly competitive and frictionless, any price impact (i.e.,
λ 6= 0) is also reflected in the value of the underlying index χ. For example, the price impact from authorized
participant trades may be transmitted to the underlying index via counterparties hedging in the physical
underlying.
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maximizing arbitrage profits and he solves the following optimization,

max
δL,i∈R,δS,i∈R

δL,i
(
p2,L(δL,i + δL,−i)− π2,L(δL,i + δL,−i, δS,i + δS,−i)

)
+ δS,i

(
p2,S(δS,i + δS,−i)− π2,S(δL,i + δL,−i, δS,i + δS,−i)

)
,(IA13)

in which δj,−i denotes the trades of the other N − 1 authorized participants. To provide the

most natural and intuitive explanation of the model, hereafter in the main prose I focus on

the special case in which ηL = ηS ≡ η, and in the limit N →∞. Assuming ηL = ηS ≡ η

implies that investor demands in the leveraged-long ETF and leveraged-short ETF are

equally sensitive to changes in shares outstanding. Considering the limiting case in which

N →∞ focuses on perfect competition in the ETF primary market. While I focus on this

special case in the prose, all supporting proofs are performed under the general case.

Lemma IA1. The aggregate trades of authorized participants are,

lim
N→∞,ηL=ηS=η

∆∗L =
ssi(1− ϕ)

2λ+ η
,(IA14)

lim
N→∞,ηL=ηS=η

∆∗S = −ssi(1− ϕ)

2λ+ η
.(IA15)

According to Lemma IA1, a positive speculative demand shock (i.e., ssi > 0) is

associated with share creations in the leveraged-long ETF and share redemptions in the

leveraged-short ETF. For a negative speculative demand shock, the opposite holds.

Notably, the fundamental shock ω does not appear in ∆∗L or in ∆∗S. Furthermore,
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Lemma IA1 may be used to generate a measure SSI∗ as,

SSI∗ ≡ lim
N→∞,ηL=ηS=η

∆∗L − lim
N→∞,ηL=ηS=η

∆∗S(IA16)

=
2ssi(1− ϕ)

2λ+ η
.(IA17)

As such, SSI∗ in the model is akin to the Speculation Sentiment Index used in the

empirical analysis.

I now proceed to solving for the equilibrium t = 2 ETF share prices and NAVs.

Lemma IA2. The equilibrium t = 2 ETF share prices and NAVs are given by,

lim
N→∞,ηL=ηS=η

p2,L(∆∗L) = lim
N→∞,ηL=ηS=η

π2,L(∆∗L,∆
∗
S) = Ω + ω + ssi

2λ+ ηϕ

2λ+ η
,(IA18)

lim
N→∞,ηL=ηS=η

p2,S(∆∗S) = lim
N→∞,ηL=ηS=η

π2,S(∆∗L,∆
∗
S) = Ω− ω − ssi2λ+ ηϕ

2λ+ η
(IA19)

Furthermore, both ψ2,L and ψ2,S equal zero.

Lemma IA2 shows that, with perfect competition, the equilibrium t = 2 ETF share

prices are equal to their respective NAVs. That is, perfect competition among authorized

participants is sufficiently strong to eliminate any relative mispricing between the ETF

shares and their NAVs. The following lemma provides the t = long term prices, which are

equal to their latent fundamental values by assumption.
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Lemma IA3. The t = long term ETF share prices and NAVs are given by,

plong term,L(∆∗L) = πlong term,L(∆∗L,∆
∗
S) = Ω + ω,(IA20)

plong term,S(∆∗S) = πlong term,S(∆∗L,∆
∗
S) = Ω− ω.(IA21)

Using Lemma IA2 and Lemma IA3, price changes for the ETFs and NAVs may be

computed. I focus on two periods: i) the price changes from t = 0 to t = 2 and ii) the price

changes from t = 2 to t = long term.3 I denote a price change by α and I classify the

change between t = 0 and t = 2 as the contemporaneous change (denoted with superscript

C ) and the change between t = 2 and t = long term as the future change (denoted with

the superscript F ). Furthermore, since I am focusing on the limit N →∞, the price

changes for the ETFs’ shares and their respective NAVs are equal.

Lemma IA4. The contemporaneous price changes are given by,

lim
N→∞,ηL=ηS=η

αCL = ω + ssi
2λ+ ηϕ

2λ+ η
,(IA22)

lim
N→∞,ηL=ηS=η

αCS = −ω − ssi2λ+ ηϕ

2λ+ η
.(IA23)

3I do not focus on the price changes between t = 0 and t = 1 and between t = 1 and t = 2, as the
time it takes for authorized participants to exploit relative mispricing may be quick and unobservable to the
empiricist.
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The future price changes are given by,

lim
N→∞,ηL=ηS=η

αFL = −ssi2λ+ ηϕ

2λ+ η
,(IA24)

lim
N→∞,ηL=ηS=η

αFS = ssi
2λ+ ηϕ

2λ+ η
.(IA25)

I now explore the empirical implications from the preceding analysis. Specifically, I

consider the sign of the slope coefficient from univariate regressions in which the

independent variable is SSI∗ and the dependent variable is either αCL or αFL (i.e., either the

contemporaneous or future price change in the leveraged-long ETF). Considering αCS and

αFS as dependent variables is redundant as slope coefficients are mechanically the negative

of the coefficients using αCL or αFL . Furthermore, I note that while the dependent variable is

the leveraged ETF share price change (or NAV change), the signs on the coefficients would

be the same if one used the price change on the underlying index χ instead. As such,

without loss of generality, I do not calculate or explicitly consider price changes for the

benchmark index.4

Proposition IA1. In a regression in which the independent variable is SSI∗ and the

dependent variable is contemporaneous price change αCL , the regression slope coefficient is

given by,

bCSSI ≡
Cov(αCL , SSI

∗)

Var(SSI∗)
= ρ

σω
2σssi

(
2λ+ η

1− ϕ

)
+

(
2λ+ ηϕ

2(1− ϕ)

)
.(IA26)

4For example, ω reflects the fundamental price change in the leveraged ETF share price and NAV. For
the nonleveraged benchmark index, the magnitude of the fundamental price change would be attenuated by
one half, all else equal.
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bCSSI is positive valued if ρ > ρ, is negative valued if ρ < ρ, and is equal to zero if ρ = ρ in

which,

(IA27) ρ ≡ −σssi(2λ+ ηϕ)

σω(2λ+ η)
< 0.

In a regression in which the independent variable is SSI∗ and the dependent variable is

future price change αFL , the regression slope coefficient is given by,

bFSSI ≡
Cov(αFL , SSI

∗)

Var(SSI∗)
= − 2λ+ ηϕ

2(1− ϕ)
.(IA28)

bFSSI is weakly negative valued and strictly negative valued if ϕ > 0.

Corollary IA1. If ∆∗L is used in place of SSI∗ in the regressions, the signs on the slope

coefficients are given by,

Sign(bC∆L
) = Sign(bCSSI),(IA29)

Sign(bF∆L
) = Sign(bFSSI).(IA30)

If ∆∗S is used in place of SSI∗ in the regressions, the signs on the slope coefficients are

given by,

Sign(bC∆S
) = −1× Sign(bCSSI),(IA31)

Sign(bF∆S
) = −1× Sign(bFSSI).(IA32)
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According to Proposition IA1, SSI∗ negatively predicts future price changes. That

is, a positive value of SSI∗ is associated with negative future price changes in the

benchmark index χ. Furthermore, Corollary IA1 shows that share changes in the

leveraged-long ETF also have a negative relation with future price changes in the

benchmark index while share changes in the leveraged-short ETF have a positive relation.

These insights yield the following remark.

Remark IA1. In empirical tests, both SSI∗ and ∆∗L should negatively predict future index

returns. ∆∗S should positively predict future index returns.

Proposition IA1 also shows that the relation between SSI∗ and contemporaneous

price changes is equivocal and depends on the correlation between the fundamental demand

shock ω and the speculative demand shock ssi. If ρ > 0, the relation between ω and ssi is

best characterized as extrapolative; speculative demand shocks amplify fundamental news.

If ρ < 0, the relation between ω and ssi is best characterized as contrarian; speculative

demand shocks attenuate fundamental news. The threshold condition in Proposition IA1

implies that if speculative demand shocks are sufficiently contrarian (i.e., ρ < ρ < 0), then

the regression coefficient bCSSI is negative valued. As such, observing a negative relation

between SSI∗ and contemporaneous price changes in data is evidence that ρ is negative

valued. Conversely, observing a positive relation between SSI∗ and contemporaneous price

changes is not indicative of whether ρ is negative valued or positive valued.

Remark IA2. In empirical tests, a negative relation between SSI∗ and contemporaneous

returns is evidence that speculative demand shocks are contrarian.
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Note, Remark IA2 suggests that the negative relation between contemporaneous

returns and SSI documented in Table 3 is sufficient evidence to confirm that speculative

demand shocks themselves are contrarian (i.e., speculative sentiment bets against

fundamental news). While both the empirical evidence throughout the paper and the model

are consistent with this interpretation, a few disclaimers are in order. First, the model is

highly stylized as it is intended to provide guiding intuition. As such, the model does not

consider additional market frictions which could confound classifying demand shocks as

either contrarian or extrapolative. Second, in the empirical analysis, while the measure of

SSI is contrarian, there is no means to cleanly show that the nonfundamental demand

measured by SSI itself is contrarian . For example, SSI could be comprised by two pieces:

SSI = SENTIMENT SHOCKS + REBALANCING DEMAND.

While the analysis in Section V.A shows that the return predictability is not driven by

REBALANCING DEMAND and instead is driven by SENTIMENT SHOCKS, it is not

possible to cleanly disentangle the two for contemporaneous returns. Specifically,

REBALANCING DEMAND is highly correlated (perhaps collinear) with contemporaneous

returns. As such, the negative relation between SSI and contemporaneous returns may be

driven by REBALANCING DEMAND as opposed to SENTIMENT SHOCKS.

While the model assumes that there are no limits to arbitrage (e.g., transaction

costs), in practice arbitrage capital is limited and arbitrageurs face bid-ask spreads. As

such, to the extent that ∆∗L and ∆∗S are measured with noise and the noise between the two
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is positively correlated, SSI∗ may be a cleaner measure of speculative demand shocks than

either ∆∗L or ∆∗S alone. Specifically, since SSI∗ is the difference between ∆∗L and ∆∗S, any

positively correlated noise on both share changes will be attenuated.

Remark IA3. If ∆∗L and ∆∗S are measured with noise and the noise terms are positively

correlated (e.g., variation in the cost of arbitrage capital), SSI∗ provides a cleaner measure

of speculative demand shocks.

Finally, it is worth noting that the leveraged ETF market is relatively small as

compared to the broad equity market. As such, the price impact of authorized participant

trades on the underlying assets may be minimal (i.e., λ ≈ 0). Nevertheless, in the limit

λ→ 0,

lim
λ→0

bCSSI ≡
Cov(αCL , SSI

∗)

Var(SSI∗)
= ρ

σω
2σssi

(
η

1− ϕ

)
+

(
ηϕ

2(1− ϕ)

)
,(IA33)

lim
λ→0

bFSSI ≡
Cov(αFL , SSI

∗)

Var(SSI∗)
= − ϕη

2(1− ϕ)
.(IA34)

A sufficient condition for both bCSSI and bFSSI to be nonzero valued is that ϕ > 0 (i.e.,

speculative demand shocks are market-wide). The following remark highlights this insight.

Remark IA4. Even if authorized participant trades in the leveraged ETF market have no

price impact on the underlying assets, SSI∗ provides a measure of market-wide speculative

demand shocks.
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IA.2.1 Supporting Proofs

Proof of Lemma IA1: Denote each authorized participant’s objective function, given the

trades of the other N − 1 authorized participants, as Π(δL,i, δS,i). Π(δL,i, δS,i) is explicitly

given by,

Π(δL,i, δS,i) =δL,i ((1− ϕ)ssi− ηL(δL,i + δL,−i)− λ(δL,i + δL,−i − δS,i − δS,−i))

+ δS,i (−(1− ϕ)ssi− ηS(δS,i + δS,−i) + λ(δL,i + δL,−i − δS,i − δS,−i)) .(IA35)

It is straightforward that Π(δL,i, δS,i) is concave in {δL,i, δS,i} because,

∂2Π

∂δ2
L,i

= −2(ηL + λ)

< 0,(IA36)

∂2Π

∂δ2
S,i

= −2(ηS + λ)

< 0,(IA37)

∂2Π

∂δL,i∂δS,i
= 2λ

≥ 0.(IA38)

Therefore, first-order conditions are necessary and sufficient to solve for each authorized

participants optimal choices {δ∗L,i, δ∗S,i}.

The first-order conditions yields a system of two equations with two unknowns.
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Solving the system yields,

δL,i =
−ληLδL,−i − ηS(ηL + λ)δL,−i + ηSssi(1− ϕ)

2((ηL + ηS)λ+ ηLηS)
,(IA39)

δS,i =
−ληSδS,−i − ηL(ηS + λ)δS,−i − ηLssi(1− ϕ)

2((ηL + ηS)λ+ ηLηS)
.(IA40)

Next, the symmetric solution may be solved for by substituting (N − 1)δj,i in place of δj,−i

into equation (IA39) and equation (IA40) and then solving for δL,i and δS,i. Doing so yields,

δ∗L,i =
ηSssi(1− ϕ)

(N + 1)((ηL + ηS)λ+ ηLηS)
,(IA41)

δ∗S,i =
−ηLssi(1− ϕ)

(N + 1)((ηL + ηS)λ+ ηLηS)
.(IA42)

Therefore, the aggregate trades are,

∆∗L =
NηSssi(1− ϕ)

(N + 1)((ηL + ηS)λ+ ηLηS)
,(IA43)

∆∗S =
−NηLssi(1− ϕ)

(N + 1)((ηL + ηS)λ+ ηLηS)
.(IA44)

Finally, in the special case in which ηL = ηS ≡ η and in the limit N →∞, the aggregate

trades simplify to,

∆∗L =
ssi(1− ϕ)

2λ+ η
,(IA45)

∆∗S = −ssi(1− ϕ)

2λ+ η
.(IA46)
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�

Proof of Lemma IA2: Using the results from Lemma IA1 and equation (IA5), the t = 2

share prices are given by,

p2,L(∆∗L) = Ω + ω + ssi− ηL
(

NηSssi(1− ϕ)

(N + 1)((ηL + ηS)λ+ ηLηS)

)
,(IA47)

p2,S(∆∗S) = Ω− ω − ssi− ηS
(

−NηLssi(1− ϕ)

(N + 1)((ηL + ηS)λ+ ηLηS)

)
.(IA48)

Additionally, the t = 2 NAVs are given by,

π2,L(∆∗L,∆
∗
S) = Ω +

(
ω + ϕssi+ λ

(
N(ηL + ηS)ssi(1− ϕ)

(N + 1)((ηL + ηS)λ+ ηLηS)

))
,(IA49)

π2,S(∆∗L,∆
∗
S) = Ω−

(
ω + ϕssi+ λ

(
N(ηL + ηS)ssi(1− ϕ)

(N + 1)((ηL + ηS)λ+ ηLηS)

))
.(IA50)

Finally, in the special case in which ηL = ηS ≡ η and in the limit N →∞, the t = 2 ETF

share prices and NAVs simplify to,

lim
N→∞,ηL=ηS=η

p2,L(∆∗L) = lim
N→∞,ηL=ηS=η

π2,L(∆∗L,∆
∗
S) = Ω + ω + ssi− ssi(1− ϕ)η

2λ+ η
,(IA51)

lim
N→∞,ηL=ηS=η

p2,S(∆∗S) = lim
N→∞,ηL=ηS=η

π2,S(∆∗L,∆
∗
S) = Ω− ω − ssi+

ssi(1− ϕ)η

2λ+ η
.(IA52)

�

Proof of Lemma IA3:

The prices, by assumption, return to their latent fundamental values.

�
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Proof of Lemma IA4:

The proof follows directly from the main text.

�

Proof of Proposition IA1 and Corollary IA1: First, I provide several results that are

subsequently used to derive the regression slope coefficients. First, the variances of

lim
N→∞,ηL=ηS=η

∆∗L and lim
N→∞,ηL=ηS=η

∆∗S are both given by,

(IA53) Var(∆∗L) = Var(∆∗S) =

(
1− ϕ
2λ+ η

)2

σ2
ssi,

and the variance of SSI∗ is given by,

(IA54) Var(SSI∗) =

(
2(1− ϕ)

2λ+ η

)2

σ2
ssi.

Second, the covariance between lim
N→∞,ηL=ηS=η

∆∗L and αCL is given by,

(IA55) Cov(αCL ,∆
∗
L) = ρσωσssi

(
1− ϕ
2λ+ η

)
+ σ2

ssi

(
(2λ+ ηϕ)(1− ϕ)

(2λ+ η)2

)
,

and the covariance between lim
N→∞,ηL=ηS=η

∆∗S and αCL is given by,

(IA56) Cov(αCL ,∆
∗
S) = −ρσωσssi

(
1− ϕ
2λ+ η

)
− σ2

ssi

(
(2λ+ ηϕ)(1− ϕ)

(2λ+ η)2

)
.
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The covariance between SSI∗ and αCL is given by,

(IA57) Cov(αCL , SSI
∗) = ρσωσssi

(
2(1− ϕ)

2λ+ η

)
+ σ2

ssi

(
2(2λ+ ηϕ)(1− ϕ)

(2λ+ η)2

)
.

Third, the covariance between lim
N→∞,ηL=ηS=η

∆∗L and αFL is given by,

(IA58) Cov(αFL ,∆
∗
L) = −σ2

ssi

(
(2λ+ ηϕ)(1− ϕ)

(2λ+ η)2

)
,

and the covariance between lim
N→∞,ηL=ηS=η

∆∗S and αFL is given by,

(IA59) Cov(αFL ,∆
∗
S) = σ2

ssi

(
(2λ+ ηϕ)(1− ϕ)

(2λ+ η)2

)
.

The covariance between SSI∗ and αFL is given by,

(IA60) Cov(αFL , SSI
∗) = −σ2

ssi

(
2(2λ+ ηϕ)(1− ϕ)

(2λ+ η)2

)
.

Using the preceding results, the slope coefficients using contemporaneous price changes as

the dependent variable are,

Cov(αCL ,∆
∗
L)

Var(∆∗L)
= ρ

σω
σssi

(
2λ+ η

1− ϕ

)
+

(
2λ+ ηϕ

1− ϕ

)
,(IA61)

Cov(αCL ,∆
∗
S)

Var(∆∗S)
= −ρ σω

σssi

(
2λ+ η

1− ϕ

)
−
(

2λ+ ηϕ

1− ϕ

)
,(IA62)

Cov(αCL , SSI
∗)

Var(SSI∗)
= ρ

σω
2σssi

(
2λ+ η

1− ϕ

)
+

(
2λ+ ηϕ

2(1− ϕ)

)
.(IA63)

22



The signs on the preceding coefficients are determined by ρ. Define,

(IA64) ρ ≡ −σssi(2λ+ ηϕ)

σω(2λ+ η)
.

Using ρ, the signs are given by,

Sign

(
Cov(αCL ,∆

∗
L)

Var(∆∗L)

)
=



+ if ρ > ρ

0 if ρ = ρ

− if ρ < ρ,

(IA65)

Sign

(
Cov(αCL ,∆

∗
S)

Var(∆∗S)

)
=



− if ρ > ρ

0 if ρ = ρ

+ if ρ < ρ,

(IA66)

Sign

(
Cov(αCL , SSI

∗)

Var(SSI∗)

)
=



+ if ρ > ρ

0 if ρ = ρ

− if ρ < ρ.

(IA67)

Also using the preceding results, the slope coefficients using future price changes as
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the dependent variable are,

Cov(αFL ,∆
∗
L)

Var(∆∗L)
= −2λ+ ηϕ

1− ϕ
,(IA68)

Cov(αFL ,∆
∗
S)

Var(∆∗S)
=

2λ+ ηϕ

1− ϕ
,(IA69)

Cov(αFL , SSI
∗)

Var(SSI∗)
= − 2λ+ ηϕ

2(1− ϕ)
.(IA70)

The signs on the preceding coefficients given by,

Sign

(
Cov(αFL ,∆

∗
L)

Var(∆∗L)

)
= −,(IA71)

Sign

(
Cov(αFL ,∆

∗
S)

Var(∆∗S)

)
= +,(IA72)

Sign

(
Cov(αFL , SSI

∗)

Var(SSI∗)

)
= −.(IA73)

�

IA.3 Pitfalls With Higher Frequency Measures

A clear advantage of SSI relative to other sentiment measures is the frequency at

which it may be calculated; ETF share changes are reported on a daily basis. Therefore,

one can construct a speculation sentiment measure at the daily frequency as easily as one

can construct it at the monthly frequency. However, one should be cautious in using higher

frequency (e.g., daily or weekly) measures constructed from ETF share changes.

First, Staer (2017) shows that ETFs often report using T + 1 accounting meaning
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that shares outstanding (and share changes) are reported with a one day lag, but that the

lag is time-varying and may at times be T accounting. Furthermore, changes in reporting

lag are not public. This implies that daily share change data may be one-day stale on some

dates and not stale on others. Second, Evans, Moussawi, Pagano and Sedunov (2019)

describes how APs can strategically delay the creation of new shares until T + 6. By doing

so, APs avoid costs associated with short-selling and it also allows APs to strategically

time return reversals (since the authorized participants are essentially engaging in a naked

short position). Therefore, given potential accounting inconsistencies and strategic delay in

creating new ETF shares, observed share change activity on a given date might be related

to market activities from several trading days prior.

IA.4 Small Sample Parametric Bootstrap

Stambaugh (1999) highlights potential biases in predictive regressions, that is, the

OLS estimator’s small sample properties violate standard regression assumptions. As such,

t-statistics that do not account for this bias may be inflated and give a false sense of

statistical significance. Therefore, to ensure that the coefficients on SSIt in Table 3 are

statistically significant, I correct for a potential Stambaugh bias in this ancillary analysis.

Specifically, I compute p-values using a small sample parametric bootstrap detailed below.

Let rt be the return on the benchmark index in period t and SSIt be the value of the

Speculation Sentiment Index at the end of period t. The univariate predictive regressions
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reported in Panel B of Table 3 are of the form,

(IA74) rt+1 = a+ βSSIt + εt+1.

I estimate the coefficients using OLS and the t-statistics are computed as GMM corrected

standard errors (with equal weighting). Denote the t-statistic for β as τ . After obtaining

the coefficient estimates and t-statistics, I estimate the small-sample distribution of the

t-statistics under the null hypothesis of no predictability. To obtain the distribution, I

perform the following bootstrap procedure:

i) I estimate the restricted VAR,

(IA75)

 rt+1

SSIt+1

 = A+

0 0

0 φ


 rt

SSIt

+ εt+1,

and keep the residuals εt+1.

ii) For each bootstrap simulation I,

(a) Initialize

 r0

SSI0

 to their unconditional means.

(b) For t = 1 through t = T , let,

(IA76)

 rt+1

SSIt+1

 = A+

0 0

0 φ


 rt

SSIt

+ et+1,
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in which et+1 is a random draw (with replacement) from the residuals εt+1

recovered in step i).

(c) I throw away the “burn-in” initial data and keep the last T observations

corresponding to the length of the original data sample. I then estimate a

coefficient β̂ and corresponding t-statistic τ̂ using the simulated data.

iii) I use the bootstrap distribution of the τ̂ to get a p-value for the actual t-statistic τ .

In total, I use 1,000,000 bootstrap simulations and in each simulation T is equal to 300.5 In

addition to using the small sample parametric bootstrap to obtain p-values for the

regression coefficients, I also use the simulated data to estimate the bias in the regression

coefficients and to assess the statistical significance of realized adjusted R2’s. See Panel B

of Table 3. This procedure is also utilized in Section V.D to assess the statistical

significance of the out-of-sample R2’s reported in Table 8. Note, for that analysis, I utilize

10,000 bootstrap simulations.

IA.5 Daily Returns and Daily SSI

Using monthly returns and monthly values of SSI, the results in Section IV show a

negative relation between SSI and contemporaneous returns. One may be concerned that

the results are an artifact of timing within the month and that, at higher frequencies, no

contrarian relation between SSI and returns exists. To address this, I construct SSIdailyt as

5To compute the GMM corrected standard errors I use John Cochrane’s olsgmm.m Matlab function.
Furthermore, I am indebted to Shri Santosh for his comments on this analysis.
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the daily Speculation Sentiment Index and I examine whether or not lagged daily returns

predict the SSIdailyt value. In Section IA.3 of this Internet Appendix, I highlight that there

are potential pitfalls using daily data (such as stale data). Thus, I address the possibility of

stale share change concerns by including five daily lagged returns. The predictive

regression used with SSIdailyt is,

(IA77) SSIdailyt = a+ β0drt + β1drt−1d + β2drt−2d + β3drt−3d + β4drt−4d + β5drt−5d + εt,

in which SSIdailyt is the daily Speculation Sentiment Index value, a is the regression

intercept, rt−id is the index daily return i days before day t, βid is the estimated coefficient

on rt−id, and εt is the error term. The results are reported in Table IA1. Regressions 1-3

report the results using the full sample and Regressions 4-6 report the results using the

post-2009 sample. Regressions 1 and 4 use the CRSP equal weighted index, Regressions 2

and 5 use the CRSP value weighted index, and Regressions 3 and 6 use the S&P 500 index.

Table IA1 shows that daily returns are strong predictors of daily SSI; the

contemporaneous daily return and each of the previous five trading days’ returns carry a

negative coefficient and all coefficients are statistically significant. In other words, daily SSI

is contrarian as it is negatively related to recent market returns, confirming the insight

from Section IV.
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Table IA1: Predicting SSIdaily with Daily Returns

The daily Speculation Sentiment Index value is regressed on the contemporaneous daily return and five

lagged daily index returns for the CRSP equal weighted index, CRSP value weighted index, or S&P 500

index monthly index: SSIdailyt = a+β0drt+β1drt−1d+β2drt−2d+β3drt−3d+β4drt−4d+β5drt−5d+εt in which

SSIdailyt is the daily Speculation Sentiment Index value, a is the regression intercept, rt−id is the index daily

return i days before day t, βid is the estimated coefficient on rt−id, and εt is the error term. In Regressions

1-3, the sample returns run from Nov. 2006 through Dec. 2019. In Regressions 4-6, the sample returns run

from Jan. 2010 through Dec. 2019. SSIdailyt is constructed with daily share change data from ProShares.

White standard errors are used to account for heteroscedasticity and t-statistics are reported, in parenthesis,

below each estimated coefficient. All variables, except for returns, are standardized.

Predicting Daily SSI with Daily Returns

Full Sample Post-2009

1 2 3 4 5 6
EW VW SP500 EW VW SP500

α 0.03∗∗ 0.03∗∗ 0.03∗ 0.01 0.01 0.01
(2.06) (2.04) (1.82) (0.58) (0.85) (0.75)

rt -0.19∗∗∗ -0.18∗∗∗ -0.18∗∗∗ -0.09∗∗∗ -0.09∗∗∗ -0.08∗∗∗

(-9.31) (-9.18) (-8.96) (-4.17) (-4.52) (-4.43)
rt−1 -0.21∗∗∗ -0.22∗∗∗ -0.23∗∗∗ -0.13∗∗∗ -0.13∗∗∗ -0.13∗∗∗

(-10.29) (-11.02) (-11.00) (-7.82) (-8.37) (-8.25)
rt−2 -0.14∗∗∗ -0.16∗∗∗ -0.17∗∗∗ -0.11∗∗∗ -0.11∗∗∗ -0.11∗∗∗

(-6.95) (-8.12) (-8.27) (-6.16) (-6.79) (-6.69)
rt−3 -0.06∗∗∗ -0.09∗∗∗ -0.10∗∗∗ -0.06∗∗∗ -0.08∗∗∗ -0.08∗∗∗

(-3.28) (-4.86) (-5.15) (-3.71) (-5.00) (-5.04)
rt−4 -0.06∗∗∗ -0.08∗∗∗ -0.09∗∗∗ -0.03∗ -0.04∗∗∗ -0.05∗∗∗

(-3.16) (-4.55) (-4.84) (-1.90) (-2.99) (-3.13)
rt−5 -0.07∗∗∗ -0.08∗∗∗ -0.08∗∗∗ -0.03∗∗ -0.04∗∗ -0.04∗∗

(-4.05) (-4.57) (-4.56) (-1.97) (-2.51) (-2.50)

Adj. R2 0.15 0.16 0.15 0.07 0.07 0.07
N 3344 3344 3344 2516 2516 2516
Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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IA.6 SSI as Rational Rebalancing

It is possible that SSI measures rational trading. To see this, consider an investor

that desires a particular portfolio on the CML and requires leverage to achieve the

portfolio. Because leveraged ETFs provide daily magnified exposure that does not

compound, the investor must rebalance her portfolio daily to retain the target leverage

quantity. Specifically, suppose the investor begins with one dollar of wealth and she desires

a leverage quantity m ∈ {−3,−2, 2, 3} and uses a leveraged ETF that provides daily m×

exposure. Over any two consecutive days, the investor’s objective is to achieve,

(IA78) m

(
2∏
i=1

(1 + ri)− 1

)
,

however, a buy-and-hold strategy with a leveraged ETF share yields,

(IA79)
2∏
i=1

(1 +mri)− 1.

This implies that the investor must rebalance to have notional exposure ω1 at the end of

day 1 such that the following equation is satisfied,

(IA80) m ((1 + r1)(1 + E[r2])− 1) = ((1 +mr1)ω1(1 +mE[r2]) + (1− ω1)(1 +mr1)− 1) .
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If ω1 < 1, the investor holds a fraction (1− ω1) of her wealth (1 +mr1) in cash (and earns

a rate of return equal to zero). Conversely, if ω1 > 1, the investor borrows a fraction

(1− ω1) of her wealth (1 +mr1) (at a cost equal to zero). Using equation (IA80), ω1 (the

daily rebalancing value) is given explicitly by,

(IA81) ω1 ≡
1 + r1

1 +mr1

.

Note, that the change in ω1 with respect to a change in r1 is given by,

(IA82)
dω1

dr1

≡ 1−m
(1 +mr1)2

,

which is negative valued if m is positive and is positive valued if m is negative. In other

words, if an investor purchases a leveraged-long ETF (m > 0), she must sell shares if

market returns are positive and buy shares if market returns are negative. Conversely, if an

investor purchases a leveraged-short ETF (m < 0), she must buy shares if market returns

are positive and sell shares if market returns are negative. This implies that rational

rebalancing is mechanically contrarian.6

If one assumes that all rebalancing is accomplished via share creations, this implies

that the daily share change is linear in ω1. As such, I construct implied rebalancing

demand as a control. Specifically, I calculate the daily implied rebalancing demand using

the expression in equation (IA81) and the realized leveraged ETF returns. For a

6For a similar discussion, see Ivanov and Lenkey (2014).
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leveraged-long ETF, the daily implied rebalancing demand is equal to,

(IA83) ωL,imp
t ≡

1 +
rLt
m

1 + rLt
,

in which rLt is the leveraged-long ETF’s daily return. For a leveraged-short ETF, the daily

implied rebalancing demand is equal to,

(IA84) ωS,imp
t ≡

1 +
rSt
m

1 + rSt
,

in which rSt is the leveraged-short ETF’s daily return. I then aggregate monthly net

implied rebalancing demand REBALt as,

(IA85) REBALt =
∑
i∈J

T∏
τ=1

ωL,imp
i,τ −

∑
i∈K

T∏
τ=1

ωS,imp
i,τ ,

in which J is the set of leveraged-long ETFs and K is the set of leveraged-short ETFs. The

products of ωL,imp
i,τ and ωS,imp

i,τ from τ = 1 to t = T reflect the compounding of share change

over month t’s T days. Over the entire data sample of Oct. 2006 through Nov. 2019,

REBALt and SSIt have a correlation coefficient of 0.61.

Table IA2 replicates the analysis from Table 4 but with REBALt in the place of rt.

Similar to the results in Table 4 using rt, REBALt has little to no predictive power in the

univariate regressions reported in Panel A. In fact, in the post-2009 sample, the coefficients

on REBALt are all positive valued and the coefficient in Regression 6 is marginally

significant. Similarly, Panel B of Table IA2 reports results consistent with those in Panel B
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Table IA2: Predictive Regressions with Implied Rebalancing and SSI

In Panel A, the future CRSP equal weighted, CRSP value weighted, or S&P 500 index monthly returns

are regressed on the implied rebalancing level: rt+1 = a + βREBALt + εt+1 in which rt+1 is the future

index monthly return, REBALt is the implied rebalancing level from equation (IA85), β is the estimated

coefficient on REBALt, and εt+1 is the error term. In Panel B, the future CRSP equal weighted, CRSP

value weighted, or S&P 500 index monthly returns are regressed on SSI and the implied rebalancing level:

rt+1 = a + βSSISSIt + βrebalREBALt + εt+1 in which rt+1 is the future index monthly return, SSIt is the

monthly value of SSI, REBALt is the implied rebalancing level, βSSI is the estimated coefficient on SSIt,

βrebal is the estimated coefficient on REBALt and εt+1 is the error term. For both panels, in Regressions

1-3, the sample returns run from Nov. 2006 through Dec. 2019 and in Regressions 4-6, the sample returns

run from Jan. 2010 through Dec. 2019. White standard errors are used to account for heteroscedasticity and

t-statistics are reported, in parenthesis, below each estimated coefficient. All variables, except for returns,

are standardized.

Panel A: Univariate Predictive Regressions rt+1

Full Sample Post-2009

1 2 3 4 5 6
EW VW SP500 EW VW SP500

REBALt -0.87 -0.44 -0.36 0.54 0.70 0.70∗

(-1.43) (-0.89) (-0.78) (1.08) (1.61) (1.68)

Adj. R2 0.02 0.00 0.00 0.01 0.02 0.02
N 158 158 158 120 120 120

Panel B: Bivariate Predictive Regressions rt+1

SSIt -1.81∗∗∗ -1.60∗∗∗ -1.46∗∗ -2.53∗∗∗ -2.26∗∗∗ -2.10∗∗∗

(-2.81) (-2.70) (-2.60) (-3.35) (-3.08) (-2.93)
REBALt 0.24 0.54 0.54 1.24∗∗ 1.33∗∗∗ 1.29∗∗∗

(0.39) (1.07) (1.09) (2.53) (3.04) (3.02)

Adj. R2 0.10 0.08 0.07 0.10 0.11 0.10
N 158 158 158 120 120 120
Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

of Table 4; SSI becomes a stronger predictor of returns with the inclusion of implied

rebalancing.
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IA.7 Alternative SSI Specifications

For robustness, in this ancillary analysis, I consider several alternative constructions

of SSI that maintain the measure’s economic interpretation but control for possible omitted

variables or provide additional evidence that the predictability results from Section IV are

not Type I errors.

IA.7.1 Autocorrelation Adjusted Index

Naturally, one might be concerned about persistence in SSI and the possibility of a

Stambaugh-bias (Stambaugh (1999)). In this ancillary analysis, I document the

autocorrelation of SSI. Specifically, in Panel A of Table IA3, I report the results of a

regression of SSIt on five of its lagged values,

(IA86) SSIt = a+ β1SSIt−1 + β2SSIt−2 + β3SSIt−3 + β4SSIt−4 + β5SSIt−5 + εt.

The coefficient β1 on the first lagged value SSIt−1 carries a coefficient of approximately 0.29

and is statistically significant at a 1% p-value threshold. Given serial correlation across

months, for robustness, I provide an alternative index by estimating SSI as an AR(1)

process,

(IA87) SSIt = a+ γSSIt−1 + SSIARt ,
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in which a is a constant, γ is the AR(1) coefficient on SSIt−1, and SSIARt is the innovation

to the series. I use the time series of SSI from Oct. 2006 through Dec. 2019 to estimate the

AR(1) process. After estimating the parameters a and γ, the series of innovations are given

by,

(IA88) SSIAR ≡ {SSIAR1 , . . . , SSIART }.

Panel B of Table IA3 provides the AR(1) estimation and Panel C of Table IA3 presents the

results of the regression of SSIARt on five of its lagged values,

(IA89) SSIARt = a+ β1SSIARt−1 + β2SSIARt−2 + β3SSIARt−3 + β4SSIARt−4 + β5SSIARt−5 + εt.

The results do not exhibit autocorrelation in SSIAR.

I repeat much of the regression analysis from Section IV and Section V but use

SSIAR in place of SSI. Table IA4 provides the results. Regression 1 presents the univariate

regression results while Regressions 2-17 present the bivariate regression results with

controls. The results in Table IA4 are nearly identical to the results in Table 3, Table 4,

and Table 7; the coefficient values and corresponding t-statistics are nearly identical for

regressions using the CRSP equal weighted index, CRSP value weighted index, and the

S&P 500 index. The adjusted R2’s are nearly identical as well. The analysis with SSIAR

provides evidence that the return predictability results are not due to persistence in the

predictor variable.
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Table IA3: Autocorrelation in SSIt and SSIARt

Panel A presents the results of the regression SSIt = a + β1SSIt−1 + β2SSIt−2 + β3SSIt−3 + β4SSIt−4 +

β5SSIt−5 + εt, in which SSIt is defined in equation (2), a is the regression intercept and εt is the error term.

Panel B presents the estimation of the AR(1) process governing SSIARt . The AR(1) process is estimated

using OLS. Panel C presents the results of the regression SSIARt = a + β1SSIARt−1 + β2SSIARt−2 + β3SSIARt−3 +

β4SSIARt−4 + β5SSIARt−5 + εt, in which SSIARt is the Speculation Sentiment Index controlling for autocorrelation

on date t, a is the regression intercept and εt is the error term. In all panels, t-statistics are reported, in

parenthesis, below each estimated coefficient.

Panel A: SSIt Regression with Lags
Intercept -0.03

(-0.53)
SSIt−1 0.29∗∗∗

(3.61)
SSIt−2 -0.09

(-1.03)
SSIt−3 0.16∗

(1.94)
SSIt−4 -0.03

(-0.32)
SSIt−5 0.04

(0.47)
Adj. R2 0.07
N 154

Panel B: AR(1) Estimation
Intercept -0.04

(-0.81)
SSIt−1 0.28∗∗∗

(3.62)
Adj. R2 0.07
N 158

Panel C: SSIARt Regression with Lags
Intercept 0.01

(0.18)
SSIAR

t−1 0.01
(0.18)

SSIAR
t−2 -0.09

(-1.11)
SSIAR

t−3 0.14∗

(1.78)
SSIAR

t−4 0.01
(0.14)

SSIAR
t−5 0.10

(1.21)
Adj. R2 0.00
N 153

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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Table IA4: Return Predictability and SSIARt

Regression 1 regresses the future CRSP equal weighted, CRSP value weighted, or S&P 500 index monthly returns on the Speculation Sentiment
Index controlling for autocorrelation: rt+1 = a + βSSIARt + εt+1 in which rt+1 is the future index monthly return, SSIARt is the Speculation
Sentiment Index controlling for autocorrelation, β is the estimated coefficient on SSIARt , and εt+1 is the error term. Regressions 2-17 regress
the future CRSP equal weighted, CRSP value weighted, or S&P 500 index monthly returns on the Speculation Sentiment Index controlling
for autocorrelation and a control variable: rt+1 = a + βSSIARt + γCONTt + εt+1 in which rt+1 is the future index monthly return, SSIARt
is the Speculation Sentiment Index controlling for autocorrelation, β is the estimated coefficient on SSIARt , CONTt is a control variable, γ
is the estimated coefficient on CONTt, and εt+1 is the error term. The control variables are index monthly return (r), cyclically adjusted
earnings-to-price (CAEP), term spread (TERM), dividend-to-price (DP), short-rate (RATE), variance risk premium (VRP), intermediary
capital risk factor (INTC), innovation to aggregate liquidity (∆ LIQ), short interest (SHORT), VIX (VIX), Baker-Wurgler sentiment level
(SENT), aligned investor sentiment level (HJTZ), closed-end fund discount (CEFD), consumer confidence level (CONF), change in consumer
confidence (∆ CONF), and investor lottery demand (FMAX). White standard errors are used to account for heteroscedasticity and t-statistics
are reported, in parenthesis, below each estimated coefficient. The sample returns run from Dec. 2006 through Dec. 2019 (if the control variable
is available through 2019). All variables, except for returns, are standardized.

Panel A: EW CRSP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r CAEP TERM DP RATE VRP INTC ∆ LIQ SHORT VIX SENT HJTZ CEFD CONF ∆ CONF FMAX

SSIARt -1.69∗∗∗ -1.76∗∗ -1.67∗∗∗ -1.70∗∗∗ -1.68∗∗∗ -1.68∗∗∗ -1.22∗ -1.59∗∗ -1.55∗∗∗ -1.58∗∗∗ -1.78∗∗∗ -1.59∗∗∗ -1.61∗∗∗ -1.71∗∗∗ -1.70∗∗∗ -1.69∗∗∗ -1.51∗∗

(-2.87) (-2.60) (-2.75) (-2.85) (-2.74) (-2.83) (-1.91) (-2.31) (-2.81) (-2.71) (-2.94) (-2.64) (-2.77) (-2.83) (-2.84) (-2.84) (-2.40)
CONTt -0.02 0.89 0.22 0.95 -0.55∗ 1.23∗∗ 0.24 0.65 -0.90∗∗ 0.49 -1.01∗∗ -0.37 0.91∗∗ -0.17 0.19 0.46

(-0.19) (1.57) (0.64) (1.43) (-1.79) (2.58) (0.42) (1.24) (-2.12) (0.83) (-2.57) (-0.70) (2.27) (-0.34) (0.45) (0.90)

Adj. R2 0.11 0.11 0.14 0.11 0.14 0.12 0.16 0.11 0.12 0.14 0.11 0.15 0.11 0.14 0.11 0.11 0.11
N 157 157 157 157 157 157 157 145 157 157 157 146 146 146 157 157 157

Panel B: VW CRSP

SSIARt -1.27∗∗ -1.52∗∗ -1.27∗∗ -1.27∗∗ -1.27∗∗ -1.27∗∗ -0.89 -1.27∗∗ -1.11∗∗ -1.21∗∗ -1.28∗∗ -1.22∗∗ -1.14∗∗ -1.28∗∗ -1.26∗∗ -1.27∗∗ -1.27∗∗

(-2.44) (-2.40) (-2.39) (-2.44) (-2.40) (-2.42) (-1.53) (-1.99) (-2.44) (-2.34) (-2.43) (-2.26) (-2.31) (-2.41) (-2.43) (-2.43) (-2.18)
CONTt -0.10 0.29 -0.06 0.29 -0.29 0.99∗∗ -0.00 0.74 -0.52 0.05 -0.50 -0.58 0.43 0.17 -0.04 0.02

(-0.84) (0.61) (-0.18) (0.52) (-1.00) (2.13) (-0.00) (1.40) (-1.34) (0.10) (-1.43) (-1.25) (1.24) (0.40) (-0.10) (0.04)

Adj. R2 0.08 0.08 0.08 0.07 0.08 0.08 0.12 0.08 0.10 0.09 0.07 0.09 0.09 0.08 0.08 0.07 0.07
N 157 157 157 157 157 157 157 145 157 157 157 146 146 146 157 157 157

Panel C: S&P 500

SSIARt -1.12∗∗ -1.30∗∗ -1.11∗∗ -1.11∗∗ -1.11∗∗ -1.11∗∗ -0.76 -1.10∗ -0.94∗∗ -1.05∗∗ -1.10∗∗ -1.06∗∗ -0.97∗∗ -1.12∗∗ -1.10∗∗ -1.12∗∗ -1.12∗∗

(-2.29) (-2.18) (-2.25) (-2.29) (-2.26) (-2.27) (-1.39) (-1.82) (-2.22) (-2.19) (-2.24) (-2.11) (-2.12) (-2.25) (-2.27) (-2.29) (-2.03)
CONTt -0.08 0.17 -0.08 0.17 -0.30 0.92∗∗ 0.03 0.78 -0.48 -0.08 -0.44 -0.62 0.41 0.24 -0.06 -0.00

(-0.65) (0.38) (-0.26) (0.32) (-1.07) (1.99) (0.06) (1.49) (-1.29) (-0.16) (-1.32) (-1.37) (1.21) (0.57) (-0.16) (-0.01)

Adj. R2 0.06 0.06 0.06 0.06 0.06 0.06 0.10 0.06 0.08 0.07 0.06 0.07 0.08 0.07 0.06 0.06 0.06
N 157 157 157 157 157 157 157 145 157 157 157 146 146 146 157 157 157

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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IA.7.2 SSI Orthogonal to Aggregate ETF Flows

ETF arbitrage activity (i.e., ETF flows) exhibits time trends across all funds. For

example, since the mid 2000s, ETFs have exploded in popularity and the ETF industry as

a whole has been characterized by ETF inflows. As a robustness test, I control for

aggregate ETF flows in generating the time series of SSI. Specifically, I use,

(IA90) SSIt = a+ χETFPCA1t + SSIflowst ,

in which ETFPCA1t is the first principal component that explains aggregate ETF flows.

To form ETFPCA1t, I take the largest 100 ETFs (based on June 2006 end-of-month

market capitalizations) and form the first principal component that explains the joint

variation in the covariance matrix of ETF share change (in which share change is measured

as monthly percent change). The time series of SSIflowst forms the Speculation Sentiment

Index orthogonal to aggregate ETF flows.

I repeat much of the regression analysis from Section IV and Section V but use

SSIflows in place of SSI. Table IA5 provides the results. Regression 1 presents the

univariate regression results while Regressions 2-17 present the bivariate regression results

with controls. The results in Table IA5 are qualitatively the same as the results in Table 3,

Table 4, and Table 7. The analysis with SSIflows provides evidence that the return

predictability results are not due to the growth of ETF industry.
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Table IA5: Return Predictability and SSIflowt

Regression 1 regresses the future CRSP equal weighted, CRSP value weighted, or S&P 500 index monthly returns on the Speculation Sentiment

Index orthogonal to aggregate ETF flows: rt+1 = a+βSSIflowt +εt+1 in which rt+1 is the future index monthly return, SSIflowt is the Speculation

Sentiment Index orthogonal to aggregate ETF flows, β is the estimated coefficient on SSIflowt , and εt+1 is the error term. Regressions 2-17
regress the future CRSP equal weighted, CRSP value weighted, or S&P 500 index monthly returns on the Speculation Sentiment Index

orthogonal to aggregate ETF flows and a control variable: rt+1 = a + βSSIflowt + γCONTt + εt+1 in which rt+1 is the future index monthly

return, SSIflowt is the Speculation Sentiment Index orthogonal to aggregate ETF flows, β is the estimated coefficient on SSIflowt , CONTt
is a control variable, γ is the estimated coefficient on CONTt, and εt+1 is the error term. The control variables are index monthly return
(r), cyclically adjusted earnings-to-price (CAEP), term spread (TERM), dividend-to-price (DP), short-rate (RATE), variance risk premium
(VRP), intermediary capital risk factor (INTC), innovation to aggregate liquidity (∆ LIQ), short interest (SHORT), VIX (VIX), Baker-Wurgler
sentiment level (SENT), aligned investor sentiment level (HJTZ), closed-end fund discount (CEFD), consumer confidence level (CONF), change
in consumer confidence (∆ CONF), and investor lottery demand (FMAX). White standard errors are used to account for heteroscedasticity
and t-statistics are reported, in parenthesis, below each estimated coefficient. The sample returns run from Nov. 2006 through Dec. 2019 (if
the control variable is available through 2019). All variables, except for returns, are standardized.

Panel A: EW CRSP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r CAEP TERM DP RATE VRP INTC ∆ LIQ SHORT VIX SENT HJTZ CEFD CONF ∆ CONF FMAX

SSI
flow
t -1.61∗∗∗ -1.78∗∗ -1.62∗∗∗ -1.62∗∗∗ -1.66∗∗∗ -1.63∗∗∗ -1.08∗ -1.55∗∗ -1.45∗∗∗ -1.51∗∗∗ -1.79∗∗∗ -1.54∗∗∗ -1.52∗∗∗ -1.69∗∗∗ -1.63∗∗∗ -1.60∗∗∗ -1.42∗∗

(-2.93) (-2.61) (-2.87) (-2.93) (-2.92) (-2.97) (-1.77) (-2.22) (-2.88) (-2.79) (-3.16) (-2.76) (-2.83) (-3.04) (-2.94) (-2.86) (-2.30)
CONTt -0.05 0.95 0.23 1.04 -0.57∗ 1.23∗∗ 0.13 0.66 -0.90∗∗ 0.67 -1.02∗∗∗ -0.29 0.97∗∗ -0.23 0.11 0.39

(-0.39) (1.65) (0.69) (1.57) (-1.96) (2.40) (0.21) (1.20) (-2.18) (1.11) (-2.65) (-0.55) (2.45) (-0.44) (0.27) (0.70)

Adj. R2 0.10 0.10 0.13 0.10 0.14 0.11 0.15 0.10 0.11 0.13 0.11 0.14 0.10 0.13 0.10 0.09 0.10
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Panel B: VW CRSP

SSI
flow
t -1.20∗∗ -1.56∗∗ -1.20∗∗ -1.20∗∗ -1.22∗∗ -1.21∗∗ -0.77 -1.24∗ -1.02∗∗ -1.14∗∗ -1.24∗∗ -1.16∗∗ -1.04∗∗ -1.23∗∗ -1.18∗∗ -1.20∗∗ -1.23∗∗

(-2.48) (-2.50) (-2.46) (-2.47) (-2.49) (-2.50) (-1.38) (-1.93) (-2.46) (-2.39) (-2.49) (-2.34) (-2.26) (-2.53) (-2.45) (-2.44) (-2.17)
CONTt -0.13 0.33 -0.04 0.36 -0.32 1.00∗∗ -0.09 0.74 -0.52 0.16 -0.51 -0.53 0.48 0.13 -0.09 -0.06

(-1.02) (0.70) (-0.13) (0.65) (-1.16) (2.03) (-0.16) (1.38) (-1.40) (0.33) (-1.51) (-1.13) (1.41) (0.30) (-0.25) (-0.12)

Adj. R2 0.07 0.08 0.07 0.07 0.07 0.07 0.11 0.07 0.09 0.08 0.07 0.08 0.08 0.08 0.07 0.07 0.07
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Panel C: S&P 500

SSI
flow
t -1.06∗∗ -1.33∗∗ -1.06∗∗ -1.06∗∗ -1.07∗∗ -1.08∗∗ -0.67 -1.08∗ -0.87∗∗ -1.01∗∗ -1.07∗∗ -1.02∗∗ -0.89∗∗ -1.09∗∗ -1.04∗∗ -1.07∗∗ -1.10∗∗

(-2.36) (-2.28) (-2.35) (-2.35) (-2.38) (-2.39) (-1.26) (-1.79) (-2.26) (-2.28) (-2.29) (-2.23) (-2.07) (-2.42) (-2.31) (-2.33) (-2.05)
CONTt -0.10 0.21 -0.06 0.24 -0.34 0.92∗ -0.05 0.78 -0.49 0.02 -0.46 -0.57 0.46 0.20 -0.11 -0.08

(-0.80) (0.46) (-0.19) (0.44) (-1.25) (1.88) (-0.10) (1.47) (-1.34) (0.05) (-1.41) (-1.25) (1.39) (0.48) (-0.31) (-0.17)

Adj. R2 0.06 0.06 0.06 0.05 0.06 0.06 0.09 0.06 0.08 0.07 0.05 0.07 0.07 0.07 0.05 0.05 0.05
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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IA.7.3 SSI Orthogonal to Aggregate Macro Conditions

ETF arbitrage activity (i.e., ETF flows) is an equilibrium outcome and reflects,

among other market conditions, the cost of arbitrage capital. As a robustness test, I

control for several macro variables in generating the time series of SSI. Specifically, I use,

(IA91) SSIt = a+ χCONTROLSt + SSI⊥t ,

in which controlst consists of short interest (SHORT), VIX (VIX), and the intermediary

capital risk factor (INTC). SSI⊥t forms the Speculation Sentiment Index orthogonal to

macro conditions.

I repeat much of the regression analysis from Section IV and Section V but use SSI⊥

in place of SSI. Table IA6 provides the results. Regression 1 presents the univariate

regression results while Regressions 2-17 present the bivariate regression results with

controls. The results in Table IA6 are qualitatively the same as the results in Table 3,

Table 4, and Table 7. The analysis with SSI⊥ provides evidence that the return

predictability results are not due to variation in the costs of arbitrage capital.

IA.7.4 Dollar Flow SSI

The main specification of SSI is based on percent changes in shares outstanding for

the leveraged ETFs, rather than dollar changes. Using percent changes in shares

outstanding has the attractive feature that they are likely more stationary than dollar

changes. However, in this robustness test, I compute a dollar flow measure. Specifically, I
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Table IA6: Return Predictability and SSI⊥t

Regression 1 regresses the future CRSP equal weighted, CRSP value weighted, or S&P 500 index monthly returns on the Speculation Sentiment
Index orthogonal to macro conditions: rt+1 = a + βSSI⊥t + εt+1 in which rt+1 is the future index monthly return, SSI⊥t is the Speculation
Sentiment Index orthogonal to macro conditions, β is the estimated coefficient on SSI⊥t , and εt+1 is the error term. Regressions 2-17 regress
the future CRSP equal weighted, CRSP value weighted, or S&P 500 index monthly returns on the Speculation Sentiment Index orthogonal
to macro conditions and a control variable: rt+1 = a + βSSI⊥t + γCONTt + εt+1 in which rt+1 is the future index monthly return, SSI⊥t
is the Speculation Sentiment Index orthogonal to macro conditions, β is the estimated coefficient on SSI⊥t , CONTt is a control variable, γ
is the estimated coefficient on CONTt, and εt+1 is the error term. The control variables are index monthly return (r), cyclically adjusted
earnings-to-price (CAEP), term spread (TERM), dividend-to-price (DP), short-rate (RATE), variance risk premium (VRP), intermediary
capital risk factor (INTC), innovation to aggregate liquidity (∆ LIQ), short interest (SHORT), VIX (VIX), Baker-Wurgler sentiment level
(SENT), aligned investor sentiment level (HJTZ), closed-end fund discount (CEFD), consumer confidence level (CONF), change in consumer
confidence (∆ CONF), and investor lottery demand (FMAX). White standard errors are used to account for heteroscedasticity and t-statistics
are reported, in parenthesis, below each estimated coefficient. The sample returns run from Nov. 2006 through Dec. 2018 (note, 2019 data
is not included as SSI⊥ is obtained using the intermediate capital risk factor data which is available only through Nov. 2018). All variables,
except for returns, are standardized.

Panel A: EW CRSP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r CAEP TERM DP RATE VRP INTC ∆ LIQ SHORT VIX SENT HJTZ CEFD CONF ∆ CONF FMAX

SSI⊥t -1.41∗∗ -1.14∗ -1.34∗ -1.47∗∗ -1.36∗∗ -1.54∗∗ -0.84 -1.41∗∗ -1.21∗∗ -1.41∗∗ -1.41∗∗ -1.44∗∗ -1.32∗∗ -1.60∗∗ -1.41∗∗ -1.42∗∗ -1.22∗∗

(-2.18) (-1.86) (-1.95) (-2.25) (-1.99) (-2.41) (-1.25) (-2.26) (-2.16) (-2.36) (-2.16) (-2.28) (-2.15) (-2.50) (-2.16) (-2.21) (-1.98)
CONTt 0.17 0.96 0.51 0.91 -0.85∗∗∗ 1.54∗∗∗ 0.94∗ 1.09∗ -1.19∗∗∗ 0.11 -1.12∗∗∗ -0.46 1.05∗∗∗ -0.15 0.31 0.88∗

(1.50) (1.52) (1.52) (1.22) (-2.72) (3.28) (1.94) (1.93) (-2.72) (0.17) (-2.94) (-0.87) (2.67) (-0.28) (0.67) (1.66)

Adj. R2 0.07 0.09 0.10 0.08 0.10 0.10 0.15 0.10 0.10 0.13 0.07 0.12 0.08 0.11 0.07 0.07 0.10
N 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146

Panel B: VW CRSP

SSI⊥t -1.10∗ -1.00∗ -1.08∗ -1.13∗ -1.09∗ -1.19∗∗ -0.66 -1.10∗ -0.91∗ -1.10∗∗ -1.10∗ -1.12∗ -0.98∗ -1.20∗∗ -1.10∗ -1.10∗ -1.02∗

(-1.89) (-1.71) (-1.79) (-1.91) (-1.83) (-2.03) (-1.05) (-1.91) (-1.83) (-2.00) (-1.91) (-1.93) (-1.80) (-2.05) (-1.91) (-1.89) (-1.75)
CONTt 0.08 0.36 0.24 0.26 -0.58∗ 1.22∗∗ 0.55 1.08∗ -0.78∗ -0.22 -0.59∗ -0.63 0.55 0.14 0.00 0.37

(0.77) (0.71) (0.77) (0.43) (-1.91) (2.58) (1.51) (1.89) (-1.95) (-0.43) (-1.79) (-1.34) (1.59) (0.33) (0.00) (0.80)

Adj. R2 0.06 0.06 0.06 0.05 0.05 0.07 0.12 0.07 0.10 0.08 0.05 0.07 0.07 0.07 0.05 0.05 0.06
N 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146

Panel C: S&P 500

SSI⊥t -0.95∗ -0.85 -0.93 -0.97∗ -0.94∗ -1.03∗ -0.53 -0.95∗ -0.75 -0.95∗ -0.95∗ -0.96∗ -0.82 -1.04∗ -0.95∗ -0.94∗ -0.88
(-1.71) (-1.53) (-1.64) (-1.73) (-1.67) (-1.86) (-0.89) (-1.72) (-1.57) (-1.81) (-1.74) (-1.75) (-1.58) (-1.87) (-1.73) (-1.71) (-1.56)

CONTt 0.09 0.26 0.23 0.15 -0.58∗∗ 1.13∗∗ 0.51 1.09∗ -0.73∗ -0.31 -0.52∗ -0.66 0.51 0.19 -0.04 0.31
(0.81) (0.52) (0.73) (0.26) (-1.99) (2.41) (1.47) (1.94) (-1.91) (-0.63) (-1.66) (-1.44) (1.53) (0.45) (-0.12) (0.68)

Adj. R2 0.04 0.04 0.04 0.04 0.04 0.06 0.10 0.05 0.09 0.07 0.04 0.05 0.06 0.05 0.04 0.04 0.04
N 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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use,

(IA92) SSI$
t =

∑
i∈J

(SOi,t − SOi,t−1)

(
Pi,t + Pi,t−1

2

)
−
∑
i∈K

(SOi,t − SOi,t−1)

(
Pi,t + Pi,t−1

2

)
.

Equation (IA92) represents the difference in dollar flows into the leveraged-long ETFs and

leveraged-short ETFs, in which changes in shares outstanding are weighted by the average

price.

I repeat much of the regression analysis from Section IV and Section V but use SSI$

in place of SSI. Table IA7 provides the results. Regression 1 presents the univariate

regression results while Regressions 2-17 present the bivariate regression results with

controls. The results in Table IA7 are qualitatively the same as the results in Table 3,

Table 4, and Table 7. The analysis with SSI$ provides evidence that the return

predictability results are robust to measuring Speculation Sentiment with dollar flows.

IA.7.5 Evolving SSI

The baseline specification of SSI is restricted to the original set of leveraged ETFs.

Since the introduction of the ProShares funds in 2006, there have been many -3x, -2x, 2x,

and 3x leveraged ETFs launched. As a robustness test, I form an evolving version of SSI.

Specifically, I include any leveraged ETF pair that follows either the Dow Jones Industrial

Average, NASDAQ-100 index, and the S&P 500 index. In total, there are 7 ETF pairs (14

funds in total). Each month, a leveraged-long, index-level ETF share change is computed
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Table IA7: Return Predictability and SSI$
t

Regression 1 regresses the future CRSP equal weighted, CRSP value weighted, or S&P 500 index monthly returns on the dollar flow Speculation

Sentiment Index: rt+1 = a+βSSI$t +εt+1 in which rt+1 is the future index monthly return, SSI$t is the dollar flow Speculation Sentiment Index, β

is the estimated coefficient on SSI$t , and εt+1 is the error term. Regressions 2-17 regress the future CRSP equal weighted, CRSP value weighted,

or S&P 500 index monthly returns on the dollar flow Speculation Sentiment Index and a control variable: rt+1 = a+ βSSI$t + γCONTt + εt+1

in which rt+1 is the future index monthly return, SSI$t is the dollar flow Speculation Sentiment Index, β is the estimated coefficient on SSI$t ,
CONTt is a control variable, γ is the estimated coefficient on CONTt, and εt+1 is the error term. The control variables are index monthly return
(r), cyclically adjusted earnings-to-price (CAEP), term spread (TERM), dividend-to-price (DP), short-rate (RATE), variance risk premium
(VRP), intermediary capital risk factor (INTC), innovation to aggregate liquidity (∆ LIQ), short interest (SHORT), VIX (VIX), Baker-Wurgler
sentiment level (SENT), aligned investor sentiment level (HJTZ), closed-end fund discount (CEFD), consumer confidence level (CONF), change
in consumer confidence (∆ CONF), and investor lottery demand (FMAX). White standard errors are used to account for heteroscedasticity
and t-statistics are reported, in parenthesis, below each estimated coefficient. The sample returns run from Nov. 2006 through Dec. 2019 (if
the control variable is available through 2019). All variables, except for returns, are standardized.

Panel A: EW CRSP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r CAEP TERM DP RATE VRP INTC ∆ LIQ SHORT VIX SENT HJTZ CEFD CONF ∆ CONF FMAX

SSI$t -1.56∗∗∗ -1.64∗∗ -1.54∗∗ -1.55∗∗∗ -1.59∗∗∗ -1.55∗∗∗ -1.03 -1.47∗∗ -1.42∗∗∗ -1.46∗∗ -1.69∗∗∗ -1.44∗∗ -1.45∗∗ -1.60∗∗∗ -1.57∗∗∗ -1.55∗∗∗ -1.36∗∗

(-2.70) (-2.44) (-2.60) (-2.68) (-2.69) (-2.70) (-1.63) (-2.03) (-2.73) (-2.59) (-2.90) (-2.46) (-2.60) (-2.79) (-2.71) (-2.64) (-2.03)
CONTt -0.03 0.89 0.12 0.99 -0.49 1.26∗∗ 0.16 0.78 -0.90∗∗ 0.56 -0.97∗∗ -0.33 0.92∗∗ -0.16 0.13 0.38

(-0.20) (1.51) (0.36) (1.48) (-1.65) (2.41) (0.25) (1.42) (-2.19) (0.93) (-2.44) (-0.61) (2.29) (-0.31) (0.32) (0.66)

Adj. R2 0.09 0.09 0.12 0.09 0.13 0.10 0.14 0.09 0.11 0.12 0.10 0.12 0.09 0.12 0.09 0.09 0.09
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Panel B: VW CRSP

SSI$t -1.13∗∗ -1.36∗∗ -1.12∗∗ -1.13∗∗ -1.14∗∗ -1.13∗∗ -0.69 -1.13∗ -0.98∗∗ -1.07∗∗ -1.15∗∗ -1.06∗∗ -0.95∗∗ -1.13∗∗ -1.11∗∗ -1.13∗∗ -1.15∗

(-2.23) (-2.24) (-2.18) (-2.23) (-2.24) (-2.22) (-1.21) (-1.70) (-2.31) (-2.16) (-2.26) (-2.04) (-2.00) (-2.25) (-2.22) (-2.20) (-1.89)
CONTt -0.09 0.29 -0.12 0.32 -0.26 1.04∗∗ -0.04 0.83 -0.53 0.09 -0.48 -0.57 0.44 0.18 -0.07 -0.05

(-0.73) (0.60) (-0.39) (0.59) (-0.94) (2.10) (-0.08) (1.57) (-1.41) (0.17) (-1.37) (-1.21) (1.29) (0.42) (-0.20) (-0.10)

Adj. R2 0.06 0.06 0.06 0.06 0.06 0.06 0.10 0.06 0.08 0.07 0.06 0.07 0.07 0.07 0.06 0.06 0.06
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Panel C: S&P 500

SSI$t -0.98∗∗ -1.13∗∗ -0.98∗∗ -0.98∗∗ -0.99∗∗ -0.98∗∗ -0.58 -0.96 -0.82∗∗ -0.92∗∗ -0.97∗∗ -0.91∗ -0.79∗ -0.99∗∗ -0.96∗∗ -0.99∗∗ -1.01∗

(-2.08) (-2.01) (-2.04) (-2.08) (-2.09) (-2.07) (-1.07) (-1.53) (-2.10) (-2.00) (-2.05) (-1.89) (-1.79) (-2.10) (-2.06) (-2.06) (-1.74)
CONTt -0.06 0.18 -0.13 0.21 -0.28 0.97∗ -0.00 0.86 -0.49 -0.05 -0.43 -0.61 0.42 0.24 -0.09 -0.06

(-0.52) (0.37) (-0.43) (0.38) (-1.06) (1.98) (-0.00) (1.65) (-1.36) (-0.10) (-1.28) (-1.34) (1.28) (0.59) (-0.27) (-0.12)

Adj. R2 0.05 0.05 0.04 0.04 0.05 0.05 0.09 0.04 0.07 0.06 0.04 0.05 0.06 0.05 0.05 0.04 0.04
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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by taking a weighted average of each leveraged-long ETF’s share change (in which weights

are determined by monthly ETF market capitalizations) for each of the three indices (i.e,

the Dow Jones Industrial Average, NASDAQ-100 index, and the S&P 500 index).

Similarly, a leveraged-short, index-level ETF share change is computed by taking a

weighted average of each leveraged-short ETF’s share change. Then, as in equation (2), the

net change is computed by taking the difference between the leveraged-long and the

leveraged-short index changes (forming SSI∗). The evolving SSI∗ allows for the index to

reflect the introduction of new leveraged ETFs. Furthermore, by weighting share change

within benchmark index category by market capitalization, investor preferences are also

reflected in the evolving SSI (i.e., the more popular and larger ETFs exhibit greater

representation in the index).

I repeat much of the regression analysis from Section IV and Section V but use SSI∗

in place of SSI. Table IA8 provides the results. Regression 1 presents the univariate

regression results while Regressions 2-17 present the bivariate regression results with

controls. The results in Table IA8 are qualitatively the same as the results in Table 3,

Table 4, and Table 7. The results show that accounting for new leveraged ETFs provides

similar insights as to using the original six ProShares ETFs.

IA.7.6 Long Component and Short Component Separated

SSI is constructed by taking the difference between leveraged-long ETFs’ share

change and leveraged-short ETFs’ share change, as seen in equation (2). The theoretical
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Table IA8: Return Predictability and SSI∗t

Regression 1 regresses the future CRSP equal weighted, CRSP value weighted, or S&P 500 index monthly returns on the evolving Speculation
Sentiment Index: rt+1 = a+βSSI∗t + εt+1 in which rt+1 is the future index monthly return, SSI∗t is the evolving Speculation Sentiment Index, β
is the estimated coefficient on SSI∗t , and εt+1 is the error term. Regressions 2-17 regress the future CRSP equal weighted, CRSP value weighted,
or S&P 500 index monthly returns on the evolving Speculation Sentiment Index and a control variable: rt+1 = a+ βSSI∗t + γCONTt + εt+1 in
which rt+1 is the future index monthly return, SSI∗t is the evolving Speculation Sentiment Index, β is the estimated coefficient on SSI∗t , CONTt
is a control variable, γ is the estimated coefficient on CONTt, and εt+1 is the error term. The control variables are index monthly return
(r), cyclically adjusted earnings-to-price (CAEP), term spread (TERM), dividend-to-price (DP), short-rate (RATE), variance risk premium
(VRP), intermediary capital risk factor (INTC), innovation to aggregate liquidity (∆ LIQ), short interest (SHORT), VIX (VIX), Baker-Wurgler
sentiment level (SENT), aligned investor sentiment level (HJTZ), closed-end fund discount (CEFD), consumer confidence level (CONF), change
in consumer confidence (∆ CONF), and investor lottery demand (FMAX). White standard errors are used to account for heteroscedasticity
and t-statistics are reported, in parenthesis, below each estimated coefficient. The sample returns run from Nov. 2006 through Dec. 2019 (if
the control variable is available through 2019). All variables, except for returns, are standardized.

Panel A: EW CRSP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r CAEP TERM DP RATE VRP INTC ∆ LIQ SHORT VIX SENT HJTZ CEFD CONF ∆ CONF FMAX

SSI∗t -1.63∗∗∗ -1.94∗∗∗ -1.66∗∗∗ -1.64∗∗∗ -1.69∗∗∗ -1.64∗∗∗ -1.12∗ -1.70∗∗ -1.47∗∗∗ -1.53∗∗∗ -1.84∗∗∗ -1.57∗∗∗ -1.58∗∗∗ -1.72∗∗∗ -1.66∗∗∗ -1.62∗∗∗ -1.46∗∗

(-3.09) (-2.85) (-3.06) (-3.08) (-3.08) (-3.08) (-1.92) (-2.44) (-3.06) (-2.94) (-3.34) (-2.88) (-2.99) (-3.14) (-3.08) (-3.02) (-2.43)
CONTt -0.09 0.97∗ 0.24 1.04 -0.52∗ 1.22∗∗ 0.00 0.64 -0.90∗∗ 0.72 -0.99∗∗ -0.27 0.92∗∗ -0.24 0.13 0.35

(-0.64) (1.71) (0.70) (1.59) (-1.77) (2.47) (0.00) (1.14) (-2.20) (1.19) (-2.55) (-0.51) (2.34) (-0.46) (0.31) (0.61)

Adj. R2 0.10 0.10 0.14 0.10 0.14 0.11 0.15 0.11 0.11 0.13 0.12 0.14 0.10 0.13 0.10 0.10 0.10
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Panel B: VW CRSP
SSI∗t -1.22∗∗∗ -1.74∗∗∗ -1.23∗∗∗ -1.22∗∗∗ -1.24∗∗∗ -1.23∗∗∗ -0.80 -1.36∗∗ -1.04∗∗∗ -1.17∗∗ -1.28∗∗∗ -1.19∗∗ -1.08∗∗ -1.26∗∗∗ -1.21∗∗ -1.23∗∗ -1.27∗∗

(-2.63) (-2.67) (-2.62) (-2.62) (-2.65) (-2.62) (-1.51) (-2.10) (-2.66) (-2.55) (-2.66) (-2.44) (-2.38) (-2.62) (-2.59) (-2.59) (-2.32)
CONTt -0.18 0.35 -0.03 0.36 -0.28 0.99∗∗ -0.19 0.73 -0.52 0.20 -0.49 -0.52 0.45 0.12 -0.08 -0.10

(-1.25) (0.75) (-0.11) (0.67) (-1.02) (2.06) (-0.34) (1.34) (-1.40) (0.40) (-1.43) (-1.10) (1.31) (0.28) (-0.22) (-0.20)

Adj. R2 0.07 0.09 0.07 0.07 0.08 0.07 0.11 0.08 0.09 0.08 0.07 0.08 0.08 0.08 0.07 0.07 0.07
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Panel C: S&P 500
SSI∗t -1.08∗∗ -1.49∗∗ -1.09∗∗ -1.08∗∗ -1.10∗∗ -1.09∗∗ -0.70 -1.18∗ -0.90∗∗ -1.03∗∗ -1.10∗∗ -1.04∗∗ -0.92∗∗ -1.11∗∗ -1.06∗∗ -1.09∗∗ -1.15∗∗

(-2.51) (-2.40) (-2.51) (-2.50) (-2.53) (-2.50) (-1.39) (-1.92) (-2.45) (-2.43) (-2.44) (-2.31) (-2.18) (-2.49) (-2.46) (-2.48) (-2.18)
CONTt -0.15 0.23 -0.05 0.24 -0.30 0.91∗ -0.14 0.76 -0.49 0.05 -0.44 -0.56 0.43 0.19 -0.10 -0.12

(-1.00) (0.51) (-0.18) (0.45) (-1.12) (1.90) (-0.26) (1.44) (-1.35) (0.11) (-1.34) (-1.22) (1.31) (0.46) (-0.29) (-0.24)

Adj. R2 0.06 0.07 0.06 0.06 0.06 0.06 0.10 0.06 0.08 0.07 0.06 0.07 0.07 0.07 0.06 0.06 0.06
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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underpinning for the index’s construction is that it captures the net bullish-bearish

speculation sentiment, that is, only when there is consensus among speculators is the index

significantly bullish or bearish. The netting in equation (2) does not allow one to examine

the predictability coming from only leveraged-long ETFs, nor does it allow one to examine

the predictability coming from only leveraged-short ETFs. It is natural to consider each

separately. Moreover, the model in Section IA.2 of this Internet Appendix suggests that

leveraged-long ETF share changes should negatively predict returns and leveraged-short

ETF share changes should positively predict returns (see Remark IA1). Define SSIL as the

long-component of SSI and define SSIS as the short-component.

I repeat much of the regression analysis from Section IV and Section V but use SSIL

and SSIS in place of SSI. Table IA9 provides the results using SSIL. Regression 1 presents

the univariate regression results while Regressions 2-17 present the bivariate regression

results with controls. The results in Table IA9 are qualitatively the same as the results in

Table 3, Table 4, and Table 7, albeit slightly weaker. Table IA10 provides the results using

SSIS. The results in Table IA9 demonstrate positive return predictability (consistent with

Remark IA1 from Section IA.2), but are weaker than those using SSI or SSIL. Collectively,

Table IA9 and Table IA10 show that both SSIL and SSIS provide predictability, but both

are weaker predictors than the main specification SSI. The weaker predictability is

consistent with Remark IA3 from Section IA.2, that is, netting the leveraged-long and

leveraged-short share changes attenuates noise and provides a cleaner measurement of

speculative demand shocks.
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Table IA9: Return Predictability and SSILt

Regression 1 regresses the future CRSP equal weighted, CRSP value weighted, or S&P 500 index monthly returns on the leveraged-long
Speculation Sentiment Index: rt+1 = a+βSSILt + εt+1 in which rt+1 is the future index monthly return, SSILt is the leveraged-long Speculation
Sentiment Index, β is the estimated coefficient on SSILt , and εt+1 is the error term. Regressions 2-17 regress the future CRSP equal weighted,
CRSP value weighted, or S&P 500 index monthly returns on the leveraged-long Speculation Sentiment Index and a control variable: rt+1 =
a+βSSILt + γCONTt + εt+1 in which rt+1 is the future index monthly return, SSILt is the leveraged-long Speculation Sentiment Index, β is the
estimated coefficient on SSILt , CONTt is a control variable, γ is the estimated coefficient on CONTt, and εt+1 is the error term. The control
variables are index monthly return (r), cyclically adjusted earnings-to-price (CAEP), term spread (TERM), dividend-to-price (DP), short-rate
(RATE), variance risk premium (VRP), intermediary capital risk factor (INTC), innovation to aggregate liquidity (∆ LIQ), short interest
(SHORT), VIX (VIX), Baker-Wurgler sentiment level (SENT), aligned investor sentiment level (HJTZ), closed-end fund discount (CEFD),
consumer confidence level (CONF), change in consumer confidence (∆ CONF), and investor lottery demand (FMAX). White standard errors
are used to account for heteroscedasticity and t-statistics are reported, in parenthesis, below each estimated coefficient. The sample returns
run from Nov. 2006 through Dec. 2019 (if the control variable is available through 2019). All variables, except for returns, are standardized.

Panel A: EW CRSP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r CAEP TERM DP RATE VRP INTC ∆ LIQ SHORT VIX SENT HJTZ CEFD CONF ∆ CONF FMAX

SSILt -1.64∗∗∗ -1.63∗∗∗ -1.68∗∗∗ -1.64∗∗∗ -1.73∗∗∗ -1.61∗∗∗ -1.02 -1.51∗∗ -1.48∗∗∗ -1.45∗∗ -1.87∗∗∗ -1.44∗∗ -1.55∗∗∗ -1.55∗∗∗ -1.67∗∗∗ -1.63∗∗∗ -1.44∗∗∗

(-3.18) (-2.79) (-3.07) (-3.14) (-3.09) (-2.92) (-1.44) (-2.39) (-3.22) (-2.60) (-3.21) (-2.45) (-3.16) (-2.71) (-3.14) (-3.06) (-2.76)
CONTt 0.01 0.99∗ -0.03 1.09∗ -0.11 1.13∗ 0.26 0.64 -0.64 0.75 -0.73∗ -0.39 0.57 -0.26 0.08 0.56

(0.05) (1.78) (-0.08) (1.71) (-0.32) (1.90) (0.44) (1.18) (-1.49) (1.26) (-1.66) (-0.78) (1.27) (-0.52) (0.20) (1.10)

Adj. R2 0.10 0.10 0.14 0.10 0.15 0.10 0.14 0.10 0.11 0.11 0.12 0.12 0.11 0.11 0.10 0.10 0.11
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Panel B: VW CRSP

SSILt -1.23∗∗∗ -1.41∗∗ -1.25∗∗∗ -1.26∗∗∗ -1.26∗∗∗ -1.24∗∗ -0.72 -1.19∗∗ -1.05∗∗∗ -1.14∗∗ -1.30∗∗ -1.14∗∗ -1.08∗∗ -1.18∗∗ -1.22∗∗ -1.24∗∗ -1.19∗∗

(-2.66) (-2.57) (-2.64) (-2.70) (-2.66) (-2.53) (-1.09) (-2.03) (-2.77) (-2.33) (-2.58) (-2.20) (-2.53) (-2.38) (-2.60) (-2.60) (-2.47)
CONTt -0.08 0.36 -0.23 0.39 0.03 0.94 0.02 0.73 -0.31 0.22 -0.28 -0.60 0.18 0.10 -0.11 0.11

(-0.69) (0.79) (-0.74) (0.74) (0.10) (1.64) (0.05) (1.37) (-0.81) (0.43) (-0.73) (-1.31) (0.47) (0.24) (-0.31) (0.24)

Adj. R2 0.08 0.07 0.08 0.07 0.08 0.07 0.10 0.07 0.09 0.07 0.07 0.07 0.09 0.07 0.07 0.07 0.07
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Panel C: S&P 500

SSILt -1.12∗∗∗ -1.28∗∗ -1.13∗∗∗ -1.15∗∗∗ -1.15∗∗∗ -1.12∗∗ -0.66 -1.08∗∗ -0.94∗∗∗ -1.04∗∗ -1.15∗∗ -1.03∗∗ -0.96∗∗ -1.07∗∗ -1.10∗∗ -1.14∗∗∗ -1.10∗∗

(-2.66) (-2.50) (-2.65) (-2.72) (-2.67) (-2.49) (-1.07) (-1.98) (-2.72) (-2.32) (-2.49) (-2.19) (-2.47) (-2.35) (-2.58) (-2.62) (-2.46)
CONTt -0.07 0.24 -0.23 0.27 -0.02 0.85 0.03 0.75 -0.29 0.08 -0.25 -0.62 0.19 0.17 -0.13 0.05

(-0.61) (0.54) (-0.76) (0.52) (-0.06) (1.49) (0.06) (1.45) (-0.78) (0.16) (-0.67) (-1.40) (0.51) (0.42) (-0.38) (0.12)

Adj. R2 0.07 0.06 0.06 0.06 0.06 0.06 0.09 0.06 0.08 0.06 0.06 0.06 0.08 0.06 0.06 0.06 0.06
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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Table IA10: Return Predictability and SSISt

Regression 1 regresses the future CRSP equal weighted, CRSP value weighted, or S&P 500 index monthly returns on the leveraged-short
Speculation Sentiment Index: rt+1 = a+βSSISt + εt+1 in which rt+1 is the future index monthly return, SSISt is the leveraged-short Speculation
Sentiment Index, β is the estimated coefficient on SSISt , and εt+1 is the error term. Regressions 2-17 regress the future CRSP equal weighted,
CRSP value weighted, or S&P 500 index monthly returns on the leveraged-short Speculation Sentiment Index and a control variable: rt+1 =
a+βSSISt +γCONTt+ εt+1 in which rt+1 is the future index monthly return, SSISt is the leveraged-short Speculation Sentiment Index, β is the
estimated coefficient on SSISt , CONTt is a control variable, γ is the estimated coefficient on CONTt, and εt+1 is the error term. The control
variables are index monthly return (r), cyclically adjusted earnings-to-price (CAEP), term spread (TERM), dividend-to-price (DP), short-rate
(RATE), variance risk premium (VRP), intermediary capital risk factor (INTC), innovation to aggregate liquidity (∆ LIQ), short interest
(SHORT), VIX (VIX), Baker-Wurgler sentiment level (SENT), aligned investor sentiment level (HJTZ), closed-end fund discount (CEFD),
consumer confidence level (CONF), change in consumer confidence (∆ CONF), and investor lottery demand (FMAX). White standard errors
are used to account for heteroscedasticity and t-statistics are reported, in parenthesis, below each estimated coefficient. The sample returns
run from Nov. 2006 through Dec. 2019 (if the control variable is available through 2019). All variables, except for returns, are standardized.

Panel A: EW CRSP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r CAEP TERM DP RATE VRP INTC ∆ LIQ SHORT VIX SENT HJTZ CEFD CONF ∆ CONF FMAX

SSISt 0.97∗∗ 0.67 0.95∗∗ 1.04∗∗ 0.97∗∗ 1.27∗∗∗ 0.77∗ 0.80 0.85∗ 1.13∗∗∗ 1.01∗∗ 1.19∗∗∗ 0.85∗ 1.37∗∗∗ 0.97∗∗ 0.97∗∗ 0.64
(2.13) (1.54) (2.24) (2.26) (2.33) (2.72) (1.94) (1.65) (1.96) (2.76) (2.29) (2.89) (1.86) (3.21) (2.15) (2.11) (1.47)

CONTt 0.12 0.90 0.35 0.94 -0.91∗∗∗ 1.59∗∗∗ 0.64 0.96 -1.22∗∗∗ 0.29 -1.33∗∗∗ -0.53 1.26∗∗∗ -0.09 0.23 0.82
(0.90) (1.45) (0.97) (1.32) (-2.79) (3.96) (1.10) (1.54) (-2.89) (0.42) (-3.56) (-0.86) (3.17) (-0.18) (0.48) (1.44)

Adj. R2 0.03 0.04 0.06 0.03 0.06 0.06 0.13 0.05 0.06 0.09 0.03 0.09 0.04 0.08 0.03 0.03 0.05
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Panel B: VW CRSP

SSISt 0.76∗ 0.72∗ 0.76∗ 0.77∗ 0.76∗∗ 0.95∗∗ 0.61∗ 0.71 0.64∗ 0.87∗∗ 0.75∗ 0.90∗∗ 0.61 0.99∗∗ 0.76∗ 0.76∗ 0.65
(1.96) (1.78) (1.96) (1.94) (2.00) (2.30) (1.74) (1.60) (1.79) (2.31) (1.96) (2.37) (1.60) (2.57) (1.93) (1.95) (1.58)

CONTt 0.02 0.29 0.05 0.29 -0.57∗ 1.25∗∗∗ 0.29 0.95 -0.76∗ -0.09 -0.75∗∗ -0.69 0.69∗∗ 0.22 -0.00 0.28
(0.19) (0.59) (0.16) (0.50) (-1.87) (3.12) (0.65) (1.61) (-1.97) (-0.16) (-2.28) (-1.34) (2.00) (0.51) (-0.00) (0.55)

Adj. R2 0.03 0.02 0.02 0.02 0.02 0.03 0.10 0.03 0.06 0.05 0.02 0.05 0.04 0.04 0.02 0.02 0.02
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Panel C: S&P 500

SSISt 0.65∗ 0.60 0.65∗ 0.66∗ 0.65∗ 0.84∗∗ 0.51 0.59 0.53 0.75∗∗ 0.63∗ 0.77∗∗ 0.49 0.86∗∗ 0.64∗ 0.66∗ 0.56
(1.78) (1.59) (1.77) (1.75) (1.80) (2.13) (1.55) (1.41) (1.56) (2.10) (1.73) (2.14) (1.36) (2.35) (1.74) (1.78) (1.38)

CONTt 0.03 0.18 0.02 0.18 -0.56∗ 1.14∗∗∗ 0.29 0.96∗ -0.70∗ -0.20 -0.66∗∗ -0.71 0.64∗ 0.28 -0.03 0.23
(0.23) (0.37) (0.06) (0.31) (-1.87) (2.85) (0.68) (1.69) (-1.87) (-0.39) (-2.09) (-1.46) (1.91) (0.67) (-0.08) (0.46)

Adj. R2 0.02 0.01 0.01 0.01 0.01 0.03 0.09 0.02 0.05 0.04 0.01 0.04 0.04 0.03 0.02 0.01 0.01
N 158 158 158 158 158 158 158 146 158 158 158 147 147 147 158 158 158

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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IA.7.7 Long-Short Pairs Separated

Similar to examining the long component and short component separately, it is also

natural to consider each long-short ETF pair individually. Specifically, rather than

calculating SSI using three leveraged-long ETFs and three leveraged-short ETFs, I analyze

the return predictability arising from the S&P 500 index pair (SSO and SDS), the

NASDAQ-100 index pair (QLD and QID), and the Dow Jones Industrial Average pair

(DDM and DXD). I repeat the univariate regression analysis from Section IV but use each

pair in place of SSI. Table IA11 provides the results.

The results in Table IA11 show that each index pair exhibits strong predictability in

the univariate regressions; all three univariate regression coefficients are significant with a

5% p-value threshold (or lower) in each panel. Furthermore, the NASDAQ-100 index pair

outperforms both the S&P 500 index pair and Dow Jones Industrial Average index pair in

a horse race regression in which all three are included as independent variables. Albeit, in

the horse race regressions, none of the coefficients are statistically significant, which is

likely due to the three independent variables being strongly collinear.

IA.7.8 Institutional Ownership

My identifying assumption is that leveraged ETF share demand is relatively more

sensitive to short-horizon, gambling-like demand shocks than the underlying derivative

security demand. The assumption is predicated on the observation that ETF shares are

traded almost exclusively by individuals and the underlying assets (i.e., derivative
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Table IA11: Return Predictability and ETF Index Pairs

Regression 1 regresses the future CRSP equal weighted, CRSP value weighted, or S&P 500 index monthly
returns on the net difference in each of the three ETF index pairs’ share changes: rt+1 = a+βSP500SP500t+
βNASDAQNASDAQt + βDJIADJIAt + εt+1 in which rt+1 is the future index monthly return, SP500t is
the net difference in share changes from SSO and SDS, βSP500 is the estimated coefficient on SP500t,
NASDAQt is the net difference in share changes from QLD and QID, βNASDAQ is the estimated coefficient
on NASDAQt, DJIAt is the net difference in share changes from DDM and DXD, βDJIA is the estimated
coefficient on DJIAt, and εt+1 is the error term. Regression 2 is a univariate regression using SP500t:
rt+1 = a + βSP500SP500t + εt+1. Regression 3 is a univariate regression using NASDAQt: rt+1 = a +
βNASDAQNASDAQt+εt+1. Regression 4 is a univariate regression using DJIAt: rt+1 = a+βDJIADJIAt+
εt+1. White standard errors are used to account for heteroscedasticity and t-statistics are reported, in
parenthesis, below each estimated coefficient. The sample returns run from Nov. 2006 through Dec. 2019.
All variables, except for returns, are standardized.

Panel A: EW CRSP

1 2 3 4

SP500 PAIR -0.59 -1.49∗∗∗

(-1.30) (-2.99)
NASDAQ PAIR -1.44 -1.71∗∗∗

(-1.50) (-2.91)
DJ PAIR 0.21 -1.16∗∗

(0.34) (-2.35)

Adj. R2 0.11 0.08 0.11 0.05
N 158 158 158 158

Panel B: VW CRSP

SP500 PAIR -0.25 -1.06∗∗

(-0.69) (-2.43)
NASDAQ PAIR -1.16 -1.32∗∗

(-1.23) (-2.44)
DJ PAIR 0.01 -0.96∗∗

(0.01) (-2.45)

Adj. R2 0.08 0.05 0.09 0.04
N 158 158 158 158

Panel C: S&P 500

SP500 PAIR -0.23 -0.94∗∗

(-0.68) (-2.34)
NASDAQ PAIR -0.98 -1.17∗∗

(-1.09) (-2.30)
DJ PAIR -0.04 -0.88∗∗

(-0.08) (-2.42)

Adj. R2 0.06 0.04 0.07 0.04
N 158 158 158 158

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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securities) are traded by institutions. Notably, however, institutional ownership of

leveraged ETF shares is not zero (see Table 2). Thus, by revealed preferences, institutions

do trade leveraged ETF shares at times.

To further strengthen the case that SSI proxies for nonfundamental demand, I

examine changes in institutional ownership of leveraged ETF shares in this ancillary

analysis. Specifically, I utilize monthly changes in institutional ownership of leveraged

ETFs using data from Bloomberg. Bloomberg reports the percentage of shares held by

institutions and institutional ownership is defined as Percentage of Shares Outstanding held

by institutions. Institutions include 13Fs, US and International Mutual Funds, Schedule Ds

(US Insurance Companies) and Institutional stake holdings that appear on the aggregate

level. Based on holdings data collected by Bloomberg. Similar to constructing SSIt in

equation (2), I construct net change in institutional ownership as,

(IA93) INSTt =
∑
i∈J

∆inst
i,t −

∑
i∈K

∆inst
i,t ,

in which J is the set of leveraged-long ETFs (QLD, SSO, DDM) and K is the set of

leveraged-short ETFs (QID, SDS, DXD) and ∆inst
i,t is,

(IA94) ∆inst
i,t =

% Ownershipi,t
% Ownershipi,t−1

− 1.

Similar to SSIt, INSTt proxies for the net demand shock for leveraged ETF shares among

institutions. If the number is large and positive, institutional investors heavily demanded
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leveraged-long exposure via leveraged ETF shares. If the number is large and negative,

institutional investors heavily demanded leveraged-short exposure.

The Bloomberg institutional ownership data is not available until early 2010. As

such, I consider the ability of INSTt to predict the CRSP equal weighted index return, the

CRSP value weighted index return, and the S&P 500 index return over the period May

2010 through Dec. 2019 (yielding 81 monthly observations). I perform univariate

regressions of the form,

(IA95) rt+1 = aβINSTt + εt+1,

in which rt+1 is either the CRSP equal weighted index monthly return, the CRSP value

weighted index monthly return, or the S&P 500 index month return in month t+ 1, a is

the regression intercept, INSTt is the net changes in institutional ownership in month t, β

is the regression coefficient, and εt+1 is the regression error term. The results are located in

Panel A Table IA12.

Panel A shows that institutional demand positively predicts subsequent returns; a

1-standard-deviation increase in INSTt predicts a 0.84% increase in the CRSP equal

weighted index the following month, a 0.74% increase in the CRSP value weighted index

the following month, and a 0.67% increase in the S&P 500 index the following month.

Thus, while leveraged ETF shares are rarely held by intuitions, when they are traded by

institutions, those trades appear informed. This suggests that incorporating SSI may
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improve the measure INST. To that end, I construct,

(IA96) SSI MINUS INSTt = SSIt − INSTt.

SSI MINUS INSTt reflects the net demand shock among individual investors after

stripping out institutional ownership changes. Panel B of Table IA12 reports the univariate

return predictability regressions using SSI MINUS INSTt as the predictor. A

1-standard-deviation increase in SSI MINUS INSTt predicts a 0.92% decline in the CRSP

equal weighted index the following month, a 0.79% decline in the CRSP value weighted

index the following month, and a 0.72% decline in the S&P 500 index the following month.

IA.8 SSI-Managed Portfolios

The return predictability results in Section IV and the out-of-sample results in

Section V.D suggest that traders could manage their portfolios based on monthly values of

SSI and improve the portfolios’ risk-return characteristics. In this section, I study the

performance of portfolios that trade a market index based on realized values of the

Speculation Sentiment Index (e.g., by using a total return swap). The three benchmark

market indices considered are the CRSP equal weighted index, the CRSP value weighted

index, and the S&P 500 index. I consider two basic managed portfolios: one is a long-only

portfolio that only purchases a market index when SSI is negative (if SSI is positive, the

portfolio does not invest in the market index and instead earns the risk-free rate) and one

53



Table IA12: Return Predictability with Institutional Ownership of Leveraged ETFs

In Panel A, Regressions 1-3 regresses the future CRSP equal weighted, CRSP value weighted, or S&P 500
index monthly returns on the net difference in institutional ownership for leveraged-long and leveraged-short
ETFs: rt+1 = a+βINSTt+εt+1 in which rt+1 is the future index monthly return, INSTt is the net difference
in institutional ownership for leveraged-long and leveraged-short ETF, β is the estimated coefficient on intst,
and εt+1 is the error term. In Panel B, Regressions 1-3 regresses the future CRSP equal weighted, CRSP value
weighted, or S&P 500 index monthly returns on the Speculation Sentiment Index minus the net difference in
institutional ownership for leveraged-long and leveraged-short ETFs: rt+1 = a+βSSI MINUS INSTt+εt+1 in
which rt+1 is the future index monthly return, SSI MINUS INSTt is the Speculation Sentiment Index minus
the net difference in institutional ownership for leveraged-long and leveraged-short ETFs, β is the estimated
coefficient on SSI MINUS INSTt, and εt+1 is the error term. White standard errors are used to account for
heteroscedasticity and t-statistics are reported, in parenthesis, below each estimated coefficient. The sample
returns run from May 2010 through Dec. 2019. All variables, except for returns, are standardized.

Panel A: INST

1 2 3
EW CRSP VW CRSP S&P 500

INSTt 0.84∗∗ 0.74∗∗ 0.67∗∗

(2.13) (2.10) (2.12)

Adj. R2 0.04 0.03 0.03
N 116 116 116

Panel B: SSI MINUS INSTt

EW CRSP rt VW CRSP rt S&P 500 rt

SSI MINUS INSTt -0.92∗∗ -0.79∗∗ -0.72∗∗

(-2.39) (-2.26) (-2.24)

Adj. R2 0.05 0.04 0.03
N 116 116 116

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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is a long-short portfolio that buys the market index when SSI is negative and shorts the

market index when SSI is positive. Furthermore, to take advantage of large speculative

demand shocks versus small ones, the notional exposures of the portfolios are determined

by the magnitude of SSI.

It is worth emphasizing that the SSI-managed portfolios studied hereafter are

among the simplest strategies one could consider.7 A long-only SSI-managed portfolio

(denoted with the superscript LO) is constructed as,

(IA97) f †,LOt+1 =


−1× c× SSIt × ft+1 SSIt ≤ 0

c× SSIt × rfrt+1 SSIt > 0,

in which ft+1 is the buy-and-hold market index excess return in month t+ 1, rfrt+1 is the

risk-free rate in month t+ 1, SSIt is the Speculation Sentiment Index value in month t, and

c is a constant that controls for the average exposure of the trading strategy. Similarly, a

long-short SSI-managed portfolio (denoted with the superscript LS) is constructed as,

(IA98) f †,LSt+1 = −1× c× SSIt × ft+1.

For ease of interpretation and comparison, c is chosen so that each SSI-managed portfolio

has the same unconditional standard deviation as its benchmark market index.8 Note, the

7The motivation for simply trading based on realized values of SSIt and not utilizing any empirical model
is that it allows the entire time series (158 months) of SSIt to be used. More sophisticated trading strategies
may yield better performance but come at the cost of losing a fraction of the data in the calibration process.

8This is a standard assumption in the literature. See, for example, Moreira and Muir (2017).
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choice of c has no effect on an SSI-managed portfolio’s Sharpe Ratio. Furthermore, I do

not standardize SSI to prevent any lookahead bias. As such, the value of SSIt used in

constructing the portfolio is the same as the one a trader would observe in real time.

To examine the performance of the SSI-managed portfolios, I perform time series

regressions,

(IA99) f †t+1 = α + βft+1 + εt+1,

in which α is the intercept, f †t+1 is the return on the managed portfolio, ft+1 is the

benchmark market index excess return, β is the coefficient on ft+1, and εt+1 is the error

term. A positive intercept has the economic interpretation that the SSI-managed portfolio

improves the investor’s Sharpe Ratio, assuming i) investors only face market risk, and ii)

the benchmark market index is “the market.” Table IA13 reports the results in Panel A:

Regressions 1-3 report the long-only results for the whole sample, Regressions 4-6 report

the long-short results for the whole sample, Regressions 7-9 report the long-only results in

the post-2009 sample, and Regressions 10-12 report the long-short results in the post-2009

sample. The reported α’s in Panel A are monthly values.

According to Panel A of Table IA13, in the full sample of returns, SSI-managed

long-only portfolios achieve monthly α between 0.60%-0.71% (7.20%-8.47% annually) and

the long-short portfolios achieve monthly α between 0.80%-0.97% (9.57%- 11.66%

annually). Panel A also provides the annualized appraisal ratios (i.e., excess return Sharpe
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Table IA13: Trading Strategy Performance

In Panel A, a SSI-managed portfolio’s return is regressed on the contemporaneous monthly return of either the CRSP equal weighted index,

CRSP value weighted index, or S&P 500 index monthly index: f†t+1 = α + βft+1 + εt+1 in which f†t+1 is the SSI-managed portfolio return, α
is the SSI-managed portfolio’s alpha, ft+1 is the reference index monthly excess return, β is the estimated coefficient on ft+1, and εt+1 is the
error term. In Regressions 1-3 and 7-9, SSI-managed portfolios are long-only strategies. In Regressions 4-6 and 10-12, SSI-managed portfolios
are long-short strategies. Panel A also reports the RMSE from the regressions and the SSI-managed portfolio’s annualized appraisal ratio

(α
√
12

σε
). In Panel B, SSI-managed portfolio alphas are reported, controlling for the Fama–French 3-factors (Mkt, SMB, and HML). In Panel C,

realized annual Sharpe Ratios are reported for each SSI-managed portfolio and the reference index Sharpe Ratios are included for reference.
In Regressions 1-6, the sample returns run from Nov. 2006 through Dec. 2019. In Regressions 7-12, the sample returns run from Jan. 2010
through Dec. 2019. White standard errors are used to account for heteroscedasticity and t-statistics are reported, in parenthesis, below each
estimated coefficient.

Panel A: Univariate Regressions

Full Sample Post-2009

Long Only Long-Short Long Only Long-Short

1 2 3 4 5 6 7 8 9 10 11 12
EW† VW† SP500† EW† VW† SP500† EW† VW† SP500† EW† VW† SP500†

Alpha (α) 0.71∗∗ 0.63∗∗ 0.60∗∗ 0.97∗∗ 0.88∗ 0.80∗ 0.81∗∗∗ 0.59∗∗ 0.51∗∗ 0.96∗∗ 0.77∗∗ 0.66∗

(2.33) (2.22) (2.11) (1.99) (1.82) (1.80) (3.15) (2.61) (2.22) (2.40) (2.12) (1.97)
EW 0.53∗∗∗ -0.19 0.59∗∗∗ 0.09

(3.61) (-0.74) (4.64) (0.52)
VW 0.51∗∗∗ -0.23 0.59∗∗∗ 0.12

(4.18) (-0.86) (4.28) (0.68)
SP500 0.53∗∗∗ -0.21 0.60∗∗∗ 0.16

(4.51) (-0.83) (4.43) (0.96)

Adj. R2 0.28 0.26 0.28 0.03 0.05 0.04 0.34 0.34 0.35 0.00 0.01 0.02
N 158 158 158 158 158 158 120 120 120 120 120 120
RMSE 4.19 3.70 3.53 4.85 4.20 4.08 3.22 2.96 2.88 3.97 3.63 3.54
APPRAISAL 0.58 0.59 0.59 0.69 0.72 0.68 0.87 0.69 0.61 0.84 0.73 0.65

Panel B: Alphas Controlling for Fama–French 3-Factors

Alpha (α) 0.90∗∗ 0.84∗∗ 0.80∗∗ 1.01∗ 0.74∗ 1.02∗∗ 0.79∗∗∗ 0.56∗∗ 0.97∗∗∗ 0.92∗∗ 0.63∗∗ 1.16∗∗

(2.46) (2.16) (2.47) (1.96) (1.87) (2.02) (2.66) (2.22) (2.76) (2.29) (2.00) (2.50)

Panel C: Realized Sharpe Ratios

Strategy SR 0.70 0.79 0.74 0.60 0.58 0.56 1.09 1.11 1.01 0.89 0.83 0.78
Index SR 0.44 0.61 0.52 0.44 0.61 0.52 0.69 0.97 0.92 0.69 0.97 0.92

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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Ratios) for each of the portfolios. The annualized appraisal ratio is calculated as,

(IA100) Annualized Appraisal Ratio =
α
√

12

RMSE
,

and has the interpretation that it is the portfolio’s excess return per unit of risk. For the

long-only portfolios, the appraisal ratios are between 0.58-0.59 for each benchmark market

index. For the long-short portfolios, the appraisal range between 0.68-0.72. The post-2009

sample yields monthly portfolio α’s that are qualitatively similar and statistically

significant. Furthermore, the annualized appraisal ratios are in the same range as the full

sample results.

Panel B of Table IA13 provides estimates of α after controlling for the Fama–French

3-factors (Fama and French (1993)). The α estimates are qualitatively the same in

economic magnitude and statistical significance. Panel C of Table IA13 dovetails with the

reported values of α and reports the annualized Sharpe Ratios for each of considered

portfolios and compares it to the portfolio’s benchmark index Sharpe Ratio over the same

period; SSI-managed portfolios typically achieve superior Sharpe Ratios. Finally,

Figure IA1 depicts the performance of one dollar invested in one of three portfolios: the

S&P 500 Index, a long-only SSI-managed S&P 500 portfolio, and a long-short SSI-managed

S&P 500 portfolio. As can be see in the graph, SSI-managed portfolios outperform the

benchmark index. Figures showing the performance of SSI-managed CRSP equal weighted

index portfolios and SSI-managed CRSP value weighted index portfolios look qualitatively

the same.
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Figure IA1: Trading Strategy Performance

Figure IA1 shows the performance of one dollar invested in one of three portfolios: the S&P 500 Index, a

long-only SSI-managed S&P 500 portfolio, and a long-short SSI-managed S&P 500 portfolio. The sample

covers Nov. 2006 through Dec. 2019.
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IA.9 Correlation between SSI and Control Variables

In this ancillary analysis, I provide the correlations between SSI and the control

variables used in the empirical analysis. Specifically, I calculate pairwise correlations

between SSI and index monthly returns (rew, rvw, and rsp), cyclically adjusted

earnings-to-price (CAEP), term spread (TERM), dividend-to-price (DP), short-rate

(RATE), variance risk premium (VRP), intermediary capital risk factor (INTC),

innovation to aggregate liquidity (∆ LIQ), short interest (SHORT), VIX (VIX),

Baker-Wurgler sentiment level (SENT), aligned investor sentiment level (HJTZ), closed-end

fund discount (CEFD), consumer confidence level (CONF), change in consumer confidence

(∆ CONF), and investor lottery demand (FMAX). The results are located in Table IA14.

The results in Table IA14 provide additional evidence that SSI is contrarian in

nature: SSI is strongly negatively correlated with contemporaneous returns (r), the

variance risk premium (VRP), the intermediary capital risk factor (INTC), innovations to

aggregate liquidity (∆ LIQ). Indeed, each of these control variables is associated with

poorly performing markets. To that end, SSI is strongly positively correlated with monthly

VIX (VIX). Thus, when VIX levels are high (which typically occur in down markets), SSI

is bullish.
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Table IA14: Correlations of SSI with Control Variables

Table IA14 presents the correlation coefficients for SSI and the controls used throughout the analysis: index

monthly returns (rew, rvw, and rsp), cyclically adjusted earnings-to-price (CAEP), term spread (TERM),

dividend-to-price (DP), short-rate (RATE), variance risk premium (VRP), intermediary capital risk factor

(INTC), innovation to aggregate liquidity (∆ LIQ), short interest (SHORT), VIX (VIX), Baker-Wurgler

sentiment level (SENT), aligned investor sentiment level (HJTZ), closed-end fund discount (CEFD),

consumer confidence level (CONF), change in consumer confidence (∆ CONF), and investor lottery demand

(FMAX). The sample returns run from Nov. 2006 through Dec. 2019 (if the control variable is available

through 2019). The t-statistics are calculated as t = r
√

n−2
1−r2 , in which r is the sample correlation and n

is the number of paired observations. Statistical significance is determined using a Student’s t-distribution

with degrees of freedom of n− 2.

Correlations with SSI

SSI

rew -0.66∗∗∗

rvw -0.63∗∗∗

rsp -0.60∗∗∗

CAEP 0.01
TERM 0.04
DP 0.05
RATE -0.02
VRP -0.45∗∗∗

INTC -0.49∗∗∗

∆ LIQ -0.27∗∗∗

SHORT 0.13
VIX 0.31∗∗∗

SENT 0.09
HJTZ 0.30∗∗∗

CEFD 0.07
CONF -0.11
∆ CONF -0.08
FMAX -0.47∗∗∗

Note:

∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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