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A Black Formula for Credit Swaptions

A regular CDS contract is often called a spot CDS contract because protection immediately

starts to apply as soon as a trade is made. In contrast, protection takes effect a certain

period of time after the trade date in the case of a forward CDS contract. In a forward

CDS contract, investors enter into a (T−τ)-year CDS contract after a τ period from today

either as a protection buyer (i.e., long protection forward) or as a protection seller (i.e., short

protection forward) at a deal spread pre-established today. That is, while the deal spread is

determined at time t, protection against credit events begins at future time t+τ and lasts

until maturity t+T .

The deal spread should be a quantity that the protection seller and buyer can both

agree upon. In other words, the deal spread is chosen so the value of the forward contract

is zero at the beginning of the contract. This spread is observable in the market and is

called the forward CDS spread. We denote the time-t forward CDS spread for firm i as

Fi,t = Fi(t, t+τ , t+T ). The forward CDS spread Fi,t is the main object of interest in the

Black model.

The Black formula is derived based on the payoff of a non-standard single-name credit
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swaption.1 Recall that under the SNAC, when credit swaptions are exercised, the holder

enters into a standard CDS contract with a fixed deal spread of 1% and receives/pays the

strike upfront fee KU at the beginning of the CDS contract. However, in the case of non-

standard credit swaptions, the holder enters into a non-standard CDS contract at a given

strike spread KS without an upfront payment. Let V Pay

i,t+τ and V Rcv
i,t+τ denote the payoffs of

non-standard payer and receiver swaptions at their maturity. It follows that

V Pay

i,t+τ = Πi(t+τ , t+T )max
[
Si(t+τ , t+T )−KS, 0

]
,

V Rcv

i,t+τ = Πi(t+τ , t+T )max
[
KS − Si(t+τ , t+T ), 0

]
.

A payer swaption is only exercised when the spot spread is higher than the strike spread.

In this case, the holder obtains credit protection by paying a cheaper premium than the fair

spot level. On the other hand, a receiver swaption is only exercised when the spot spread

is lower than the strike spread. This is because the holder can sell credit protection for

receiving a higher-than-the-fair spread. In either case, the gap between the spot spread and

the strike spread is converted into the corresponding dollar value when it is multiplied by

Πi(t+τ , t+T ), the present value of a risky annuity at time t+τ .

Note that a spot CDS contract can be viewed as a special case of a forward contract that

immediately becomes effective. Thus, we can re-express the spot CDS spread at time t+τ

as

Si(t+τ , t+T ) = Fi(t+τ , t+τ , t+T ),

1Furthermore, the Black formula assumes knockout swaptions: when the firm defaults before maturity,
it assumes that swaptions disappear without any payments. In the U.S., standard credit swaptions are
non-knockout swaptions that do not cancel at default. In the case of a non-knockout payer swaption, the
holder is still able to exercise the option at maturity and enters into a CDS contract as the protection buyer.
Since the reference entity is already defaulted, this protection buy position immediately allows the holder
to collect a protection payment from the counterparty or deliver a defaulted bond at par. In contrast, a
non-knockout receiver swaption would never be exercised because it is not profitable to sell protection on an
already defaulted entity.
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which implies that

V Pay

i,t+τ = Πi(t+τ , t+T )max
[
Fi(t+τ , t+τ , t+T )−KS, 0

]
, (A.1)

V Rcv

i,t+τ = Πi(t+τ , t+T )max
[
KS − Fi(t+τ , t+τ , t+T ), 0

]
. (A.2)

The Black model calculates the time-t values of payer and receiver swaptions by assuming

that between times t and t+ τ , the forward spread Fi,t follows a geometric Brownian motion

under the τ -forward survival measure.2 Coupled with the payoff structures in equations

(A.1) and (A.2), this assumption results in the Black formula for payer and receiver credit

swaptions:

V Pay

i,t = Πi(t, t+τ , t+T )
[
Fi(t, t+τ , t+T )Φ(d1)−KSΦ(d2)

]
,

V Rcv

i,t = Πi(t, t+τ , t+T )
[
KSΦ(−d2)− Fi(t, t+τ , t+T )Φ(−d1)

]
,

where

d1 =
log(Fi(t, t+τ , t+T )/KS) + σ2τ/2

σ
√
τ

and d2 = d1 − σ
√
τ .

The function Φ(·) represents the cumulative distribution function of the standard normal

distribution, and Πi(t, t+τ , t+T ) the time-t present value of a risky annuity between times

t+τ and t+T .3

B Description of Variables in the Predictive Regressions

From Panel A of Table 1, we observe that the variance risk premium in the corporate bond

market has a sample mean of 0.03 and a sample standard deviation of 0.12. This variable is

positively skewed with its median lesser than its mean, and is fat-tailed with a large kurtosis.

In addition, the corporate bond variance risk premium has a monthly AR(1) coefficient of

2For more details about the forward survival measure and its relation with other probability measures,
see, for instance, O’Kane (2011).

3The present value of a risky annuity Πi is estimated from market CDS spreads. Specifically, we estimate
it by exactly fitting the term structures of spot and forward CDS spreads every day.
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0.24, which suggests that this variable quickly mean-reverts with relatively low persistence.

From this table, we can also see the characteristics of the variance risk premium in the equity

market. The equity variance risk premium has a sample mean of 9.59 and a sample standard

deviation of 6.36. This variable has a skewness near zero, albeit slightly negative, and a

kurtosis of 4.73, which indicates that the equity variance risk premium also has a fat-tailed

sample distribution.

Looking at the summary statistics for implied variances and realized variances, we can

see that in both markets, on average, the implied variance has a larger magnitude than the

realized variance, while the standard deviations are about the same. However, in terms of

kurtosis and skewness, the patterns are different in the two markets. In the equity market,

the realized variance has a larger skewness and kurtosis compared to those of the implied

variance. In the case of the corporate bond market, this pattern is reversed such that the

implied variance has a larger skewness and kurtosis.

The bottom two rows in Panel A summarize synthetic bond returns and equity returns

in our sample. Bond returns are, on average, 0.12% per month (1.43% annually), with a

standard deviation of 0.36% (1.25% annually). The skewness value is close to zero but the

kurtosis value is large at 6.15. The average equity return in our sample period is approxi-

mately 1.12% per month (13.39% annually), which is higher than the post-war sample, but

the standard deviation is 2.83% per month (9.80% annually), which is lower than the post-

war sample. This is because our sample coincides with the post Great Recession period when

the stock market has steadily recovered from the financial crisis.

Panel B of Table 1 lists the monthly correlations among our eight variables of interest.

The positive correlations among the six variance-related variables imply that they tend to

comove in the same direction (with the exception of the equity variance risk premium and

the equity realized variance). For example, the corporate bond variance risk premium and

the equity variance risk premium are moderately correlated at 0.27.

We can also see from this panel that the returns on the bond and the returns on the

equity are positively correlated at 0.77. As anticipated, the first six variance-related vari-
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ables exhibit negative contemporaneous correlations with the two return time series: during

bad times when markets suffer, variance risk as well as the compensation for variance risk

typically go up. For instance, the corporate bond variance risk premium has a correlation

of -0.66 with the bond return and a correlation of -0.60 with the equity return.
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