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Internet Appendix 
 

This appendix provides a summary of the missing data problem and discusses several 
popular econometric approaches to handling missing data that are considered in this paper. With 
partially observed data, we can rarely be sure of the mechanism leading to such missing data. 
Therefore, we highlight some approaches to analyzing missing data under different mechanisms, 
which helps to establish inference robustness in the face of uncertainty about the missingness 
mechanism. In particular, we consider listwise deletion, deterministic imputation, inverse 
probability weighting, Heckman selection, and multiple imputation. For exposition simplicity (as 
in the main body of the paper), we consider the case where only one explanatory variable contains 
missing observations. Let !! be the dependent variable and "! be the explanatory variables with 
missingness. We have the linear relation:  

 
!! = $ + &"! +	(! ,				* = 1,… ,-.  (IA1) 
 

Let !!  be a selection indicator where !! = 1 when $!  is not missing and firm % is included in the 
regression. Otherwise, when !! = 0 firm % is deleted from the data. The validity of solutions to this 
problem depends on the missing mechanism, thus we first present the three missing mechanisms.  
 

1. Missing completely at random (MCAR):  
 

/(1 = 0|!, ", 4) = /(1 = 0). 
 

This means that the missing probability does not depend on any random variables.  
 

2. Missing at random (MAR): The probability of missing can be formulated by: 
 

/(1 = 0|!, ", 4) = /(1 = 0|4). 
 

In other words, the probability of missingness only depends on the set of observed variables 4, 
but not on the missing variable itself nor on unobservables.  
 

3. Missing not at random (MNAR): the missing mechanism is neither MAR nor MCAR. For 
example, the missing mechanism depends on the value of $  itself, or on unobserved 
variables, e.g., high-income individuals do not participate in surveys related to income.  

 
 
Effects of Listwise Deletion 

Listwise deletion only uses a subsample of observations, deleting those that contain missing 
values in the $-variable.1 This leads to estimating the following regression using the subsample of 
the data: 
 

!! =	1!$ + &1!"! +	1!(! , (IA2) 
 

1 We consider the univariate setup for simplicity. There might be other covariates of interest that drive the outcome variable 
but including them in the regression does not change the problem of deletion. 
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where !!$!  is now the explanatory variable and 1!(!  is the error term. The OLS (ordinary least 
squares) estimator is unbiased if '(!!)!$!) = 0, which can be implied by '()!|$! , !!) = 0. If MCAR 
holds and "!  is exogenous, then '()!|$! , !!) = '()!|$!) = 0. Thus, deletion can lead to consistent 
estimates in the case of MCAR. However, if selection is driven by observed or even unobserved 
variables as in MAR and MNAR cases, '()!|$! , !!) ≠ 0 in general because )! can be correlated with 
!! even if one controls for $!, leading to biased estimates produced by deletion. 
 
 
Deterministic Imputation 
 

Another popular approach used in empirical studies is to impute the missing observations 
using various methods, and then treat the resulting data as given for further analysis. Frequently 
used deterministic imputation employs, e.g., zero, overall average, average from “similar” 
observations, or fitted values based on some pre-specified models. The validity of this method 
depends on whether the specified imputation models are correct. If the imputation model perfectly 
coincides with the missing mechanism, then the resulting estimate using the imputed sample is 
consistent. On the contrary, misspecification of the imputation models can lead to potentially 
biased estimates because of the distortion of the variance-covariance matrices.  
 
 
Inverse Probability Weighting 
 

Inverse probability weighting assigns different weights to observed data points depending 
on their probability of being observed. Thus, the computation of IPW requires researchers to know 
the probability of being observed. Consider the case of MAR, where the probability of missing (or 
equivalently being observed) only depends on a set of observed variables / . Denote 6(4) ≡
0(! = 1|/) = 0(! = 1|1, /, $), then we can solve the missing data problem by: 

 
min
",$

	 ∑ < %!
&((!)

=*
!+, (!! − $ − &"!)-. 

 
In practice, 6(4) is often unknown except in some special cases, and thus we need to estimate it. 
To this end, we can regress the selection indicator 1	on 4 using flexible binary choice models, such 
as logit or probit, or even nonparametric models, and obtain the estimated selection probability 
(or alternatively called the propensity score)  6̂(4).  
 

 
Heckman’s Correction for Selection Bias  
 

We know from (IA2) that the OLS estimator  23 is biased because '(1!|!! = 1, $!) = 4! +
2$! + '()!|$! , !! = 1) , and '()!|$! , !! = 1) ≠ 0  in general. Heckman’s method assumes that the 
missing mechanism is determined by the following model: 

 
1!
∗ = @4! +	A! ,				* = 1,… ,-, (IA3) 

 
where 1!∗  is the latent variable associated with 1! , i.e., 1! = 1  if 1!∗ > 0  and 1! = 0  if 1!∗ ≤ 0 . 
Further, assume that the error terms in (IA3) is normally distributed with variance D/-  and 
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correlated with (! in (IA1), and their covariance is E; 4 and " are both exogeneous. The Heckman 
selection procedure approximates the “omitted variable” ((!|"! , 1! = 1) by its consistent estimate 
and includes this proxy in the regression to correct for the bias. In particular, based on the joint 
distribution of A! and (!, one could write F((!|"! , 1! = 1) = D/EG(4!@) = HG(4!@), where G(4!@) 
is the inverse Mills ratio defined by: 
 

G(4!@) =
0(1(!2)

,13(1(!2)
= 0((!2)

3((!2)
 . 

  
Then we can rewrite the conditional expectation of !! given 4! and selection into the sample as: 
 

F(!!|4! , 1! = 1) = $ + &"! + HG(4!@). 
 

This leads to Heckman’s two-step procedure.  
 
Step 1: Estimate a probit regression P(1! = 1|4!) = Φ(4!@) using all - observations and obtain 
the estimate	@J . Then compute the inverse Mills ratio GK4!@JL.  
Step 2: Estimate the regression !! = $ + &"! + HG(4!@J) using OLS.  
 

The estimates $M , &N , and HM  are consistent when 4  correctly includes all of the selection 
variables. The validity of Heckman’s procedure also heavily relies on the distributional assumptions 
of the two errors, A! and (!. For example, the deviation from the normality assumption of A! 	may 
negatively affect the performance of the Heckman’s procedure. Since H	captures the covariance 
between A! and (! and a nonzero correlation implies selection bias, we can test whether selection 
is exogenous (or equivalently MCAR) by testing whether HM = 0. For more extensions of Heckman’s 
procedure, see Wooldridge (2002, Chapter 17).  
 

 
Multiple Imputation  
 

Multiple imputation (MI) is essentially an iterative version of stochastic imputation, which 
aims at explicitly modeling the uncertainty/variability ignored by the deterministic imputation 
procedures. Instead of imputing in a single value, multiple imputation uses the (joint) distribution 
of the observed data to estimate the parameters of interest multiple times to capture the 
uncertainty/variability in this imputation procedure. A general multiple imputation procedure 
consists of three steps: 

Step 1. Imputation: Impute the missing data with their estimates and create a complete sample. 
Repeat this process multiple times. 

Step 2. Estimation: For each complete sample, estimate the parameters of interest. 

Step 3. Pooling: Combine the parameter estimates obtained from each completed data set. 
 

The imputation method should be chosen depending on the type of variables with missing 
observations and the pattern of missingness. For example, MI with multivariate normal regressions 
can be applied to impute one or more continuous variables of arbitrary missing-value patterns; MI 
with chained equations employs a separate conditional distribution for each imputed variable and 
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is often used to impute a variable with finite and discrete support (e.g., binary, multinomial, or 
count variable). We illustrate the MI with multivariate normal regressions (MI_MVN). As all MI 
methods, MI with multivariate normal regressions analyses the data in three steps: imputation, 
estimation, and pooling. We discuss the three steps in turn. 

First, MI_MVN imputes the missing observations using data augmentation. In this case, 
we assume that the variable containing missing observations " is related with a set of (completely) 
observed variables 4 by: 

"! = O′4! + Q! ,				* = 1,… ,-, 
where Q!~-(0, D4-).	Denote S! = ("! , 4!). Data augmentation in this case is essentially an iterative 
Markov chain Monte Carlo (MCMC) procedure that iterates between two (sub-)steps, a 
replacement step and posterior step.  

• Replacement step: We replace the missing values of "! with draws from the conditional 
posterior distribution of "! given observed variables and the values of model parameters 
in this iteration. Particularly, for each iteration T, we can replace the missing observations 
by: 

"!
(5)	~	/<"!U4! , O(51,), D4

(51,)=,   for   * ∈ {*|1! = 1}. 
 

• Posterior step: We draw the new values of model parameters from their conditional 
posterior distribution given the observed data and imputed data from the previous 
replacement step.  

 
D4
(5)	~	/<D4	U4! , "!

(5)=,  and   O(5)	~	/<OU4! , "!
(5), D4

(5)=, 
 

where "!
(5) is the imputed value from iteration T if it is missing and the original value if 

non-missing.  
The conditional posterior distributions above are jointly determined from the prior distribution for 
the model parameter /(O, D4) , e.g., uniform, Jeffreys, or ridge, and the assumed normal 
distribution of the data. These two steps (replacement and posterior) are iterated until a specified 
number of iterations or there is numerical convergence.   

Second, we estimate the regression of interest (IA1) with the imputed (pseudo-complete) 
data set using various approaches, e.g., OLS, HS. Since the imputation is conducted for multiple 
times, D times, we obtain multiple estimates for the same regression parameter &. 

Third, we combine/pool the estimates (coefficients and standard errors) across all imputed 
datasets and obtain a single statistic for each parameter. The final estimated slope coefficient &N is 
simply an arithmetic mean of the corresponding estimate obtained from each of the imputed data. 
The variance of &N is obtained by the total variance formula and is written by the average estimated 
variance of coefficient estimates across D imputed datasets plus the sample variance of coefficient 
estimates based on D imputations.  

A major advantage of multiple imputation over deterministic imputation is that the final 
statistics appropriately reflect the uncertainty caused by imputation. If the joint normality is a 
reasonable assumption and the specification of 4  is correct (i.e., MAR), MI_MVN produces 
consistent estimates. In practice, a safe strategy is to include all observables in 4  to better 
approximate the posterior distribution. 
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TABLE IA1 
Predictability of Unreported Innovation with Lasso 

 
Table IA1 presents the OLS regression results for predictability of unreported innovation using only Lasso 
variables. Columns (1)-(4) World present the results for all countries in the sample. Columns (5)-(7) present the 
results for the US only. Panel A presents the results for unreported R&D, and Panel B presents the results for 
non-USPTO patent seeking firms. Standard errors are double clustered at firm and time level. T-statistics are 
presented in brackets. Variable definitions are presented in the Appendix. *, **, and *** represent significance at 
the 10%, 5%, and 1% levels, respectively. Adj. R2 is the adjusted R2. 
 

Panel A. Unreported R&D 
 
  World US 
  (1) (2) (3) (4) (5) (6) (7) 
ln(TOTAL_ASSETS) -0.020*** -0.017*** -0.012*** -0.009*** 0.040*** 0.004* -0.014*** 

 (-10.20) (-8.31) (-7.86) (-3.54) (13.28) (1.73) (-4.40) 
STOCK_LIQUIDITY -0.007*** -0.007*** -0.005*** -0.001*** -0.008*** -0.003*** -0.001*** 

 (-8.92) (-9.99) (-14.33) (-3.47) (-13.50) (-6.23) (-3.27) 

PATENT_INTENSITY -604.300*** -1.310 13.370 38.122** -700.176*** -19.498*** -17.045* 

 (-17.42) (-0.11) (1.06) (2.02) (-21.33) (-3.08) (-1.77) 

Country FE   Yes     
Industry FE  Yes Yes   Yes  
Year FE Yes Yes Yes Yes Yes Yes Yes 
Firm FE    Yes   Yes 
N 300,634 300,634 300,634 328,734.0 77,982 77,982 76,944 
Adj. R2 0.13 0.23 0.38 0.80 0.23 0.53 0.93 
        
Panel B. Non-USPTO Patent Seeking Firms 
 
ln(TOTAL_ASSETS) -0.012*** -0.009*** -0.020*** -0.006*** -0.000 -0.023*** -0.013*** 
 (-11.62) (-9.41) (-19.28) (-6.88) (-0.08) (-9.67) (-4.03) 
STOCK_LIQUIDITY -0.006*** -0.007*** -0.004*** -0.001*** -0.007*** -0.005*** -0.001*** 
 (-20.77) (-21.86) (-17.74) (-5.11) (-14.73) (-12.24) (-3.55) 
PATENT_INTENSITY -0.000** -0.000** -0.000** -0.000 -0.000*** -0.000** 0.000 
 (-2.09) (-2.10) (-2.22) (-1.14) (-3.22) (-2.60) (1.01) 
R&D_STOCK -368.647*** -30.191** -25.181*** -4.871 -554.522*** -47.131*** -0.239 
 (-17.34) (-2.57) (-3.23) (-0.90) (-18.37) (-3.72) (-0.02) 
Country FE   Yes     
Industry FE  Yes Yes   Yes  
Year FE Yes Yes Yes Yes Yes Yes Yes 
Firm FE    Yes   Yes 
N  327,997   327,997   327,997   326,067   77,958   77,958   76,926  
R2 0.09 0.15 0.24 0.76 0.15 0.32 0.78 

 
 

.  
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TABLE IA2 
Simulation Based on the Empirical Distribution from Compustat Data 

 

Table IA2 provides the evaluation statistics, bias (relative bias over true parameter) and root mean squared error (RMSE) for the simulation based on the 
empirical distribution from Compustat (US) data, as described in Section VI.A of the paper. Bias presents the average of the absolute bias across all five 
variables and RMSE presents the average RMSE across the five variables. The empirical distribution is from the panel of 783 firms with non-missing 
information for all variables except R&D. The methods evaluated are listwise deletion (LD), imputation with zero (ImpZero), imputation with industry mean, 
two-digit SIC code (ImpMean), inverse probability weighting (IPW), Heckman selection procedure (HS), and multiple imputation (MI). The regressions for 
imputation with zero and industry mean include a dummy variable for the imputed observations. MI is spec uses all the variables in the regression and is 
estimated using MCMC with 200 iterations for convergence. We present results for three missingness mechanisms: missing completely at random (MCAR), 
missing at random (MAR), and missing not at random (MNAR). Panel A presents the results for the missingness regression which includes the lasso variables. 
Panel B presents the results with the MI specification in Panel A as well as includes the Lasso variables in the Sales growth regression. Panel C presents the 
Double Lasso results. Variable definitions are presented in the Appendix. We generate missingness R&D for 50 and 70% of the sample. We conduct 500 
simulations. 
 

   Missing 70%    Missing 50%  

  LD 
Imp. 
Zero 

Imp. 
Mean IPW HS MI    LD 

Imp. 
Zero 

Imp. 
Mean IPW HS MI  

                              
Panel A. Missingness Regression with Q, A, V, and PI 

MCAR Bias 0.80 0.24 0.22 3.69 3.67 0.11   0.63 0.16 0.13 3.42 3.36 0.05 
 RMSE 0.05 0.02 0.02 0.09 0.09 0.02   0.03 0.02 0.02 0.07 0.07 0.02 

MAR Bias 1.02 0.13 0.12 20.22 118.27 0.10   0.63 0.17 0.15 17.43 100.29 0.07 
 RMSE 0.07 0.02 0.02 0.53 2.94 0.02   0.04 0.02 0.02 0.45 2.87 0.02 

MNAR Bias 0.98 0.13 0.12 11.96 67.10 0.11   0.58 0.18 0.15 10.18 59.42 0.08 
 RMSE 0.07 0.02 0.02 0.26 2.27 0.02   0.03 0.02 0.02 0.25 2.05 0.02 

                              
Panel B. Missingness Regression with Q, A, V, and PI and Sales growth regression with V and PI 

                              
MCAR Bias 0.86 0.26 0.24 3.74 3.75 0.17   0.60 0.23 0.15 3.52 3.48 0.08 

 RMSE 0.05 0.02 0.02 0.09 0.09 0.02   0.04 0.02 0.02 0.07 0.08 0.02 
MAR Bias 1.10 0.25 0.23 18.96 100.69 0.09   0.61 0.18 0.17 16.26 98.45 0.06 

 RMSE 0.08 0.02 0.02 0.48 2.73 0.02   0.04 0.02 0.02 0.39 2.50 0.02 
MNAR Bias 0.99 0.13 0.11 11.49 61.56 0.14   0.60 0.17 0.14 9.93 52.77 0.05 

 RMSE 0.07 0.02 0.02 0.29 1.86 0.02   0.03 0.02 0.02 0.24 1.76 0.02 
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   Missing 70%    Missing 50%  

  LD 
Imp. 
Zero 

Imp. 
Mean IPW HS MI    LD 

Imp. 
Zero 

Imp. 
Mean IPW HS MI  

                              
Panel C. Double Lasso 

                              
MCAR Bias 0.77 0.24 0.22 3.77 3.74 0.08   0.60 0.21 0.19 3.59 3.47 0.09 

 RMSE 0.05 0.02 0.02 0.09 0.09 0.02   0.04 0.02 0.02 0.07 0.07 0.02 
MAR Bias 0.66 0.18 0.15 15.51 5.76 0.05   0.48 0.19 0.17 16.46 4.50 0.09 

 RMSE 0.03 0.02 0.02 0.45 0.40 0.02   0.02 0.02 0.02 0.43 0.35 0.02 
MNAR Bias 0.63 0.24 0.20 10.00 3.58 0.07   0.49 0.20 0.18 10.08 3.34 0.06 
  RMSE 0.03 0.02 0.02 0.29 0.24 0.02   0.02 0.02 0.02 0.25 0.18 0.02 
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TABLE IA3 
Simulation Based on Simulated Data 

Table IA3 provides the evaluation statistics, bias (relative bias over true parameter) and root mean squared error (RMSE) for the simulation based on 
simulated data, as described in Section VI.C of the paper. The methods evaluated are listwise deletion (LD), imputation with zero (ImpZero), imputation 
with industry mean, two-digit SIC code (ImpMean), inverse probability weighting (IPW), Heckman selection (HS), and multiple imputation (MI). MI is 
estimated using MCMC with 200 iterations for convergence. The regressions for imputation with zero and industry mean include a dummy variable for 
the imputed observations. We present results for three missingness mechanisms: missing completely at random (MCAR) in Panel A, missing at random 
(MAR) in Panel B, and missing not at random (MNAR) in Panel C. We generate missingness in x1 for 50 and 70% of the sample. We conduct 500 
simulations. 

 

  Missing 70%  Missing 50% 

  LD 
Imp 
Zero 

Imp 
Mean IPW HS MI  LD 

Imp 
Zero 

Imp 
Mean IPW HS MI  

 

Panel A. MCAR 
Bias !! 0.00 -0.19 -0.19 0.00 0.00 -0.01  0.00 -0.13 -0.13 0.00 0.00 -0.01 
 !" 0.01 0.28 0.28 0.01 0.01 0.01  0.00 0.19 0.19 0.00 0.00 0.00 
               

RMSE !! 0.11 0.21 0.21 0.08 0.11 0.09  0.06 0.07 0.07 0.06 0.06 0.05 
 !" 0.11 0.29 0.29 0.08 0.11 0.09  0.06 0.10 0.10 0.07 0.06 0.05 
                  

Panel B. MAR 
Bias !! -0.15 -0.23 -0.23 -0.16 -0.08 -0.08  -0.11 -0.16 -0.16 -0.11 -0.09 -0.05 
 !" -0.12 0.12 0.12 -0.12 -0.08 -0.05  -0.08 0.04 0.04 -0.07 -0.06 -0.04 
               

RMSE !! 0.17 0.24 0.24 0.18 0.17 0.10  0.13 0.17 0.17 0.13 0.12 0.08 
 !" 0.15 0.13 0.13 0.15 0.16 0.09  0.07 0.06 0.06 0.07 0.07 0.05 
                  

Panel C. MNAR 
Bias !! -0.17 -0.28 -0.28 -0.19 -0.13 -0.10   -0.13 -0.19 -0.19 -0.13 -0.11 -0.05 
 !" -0.16 0.14 0.14 -0.15 -0.13 -0.08  -0.11 0.04 0.04 -0.11 -0.10 -0.07 
               

RMSE !! 0.19 0.29 0.29 0.20 0.17 0.12  0.14 0.20 0.20 0.14 0.13 0.07 
 !" 0.17 0.12 0.12 0.17 0.16 0.10   0.13 0.06 0.06 0.13 0.12 0.08 
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TABLE IA4 
Imputation Effect on Empirical Inference 

 
Table IA4 replicates the results in Fama and French (2002) using different imputation methods and two-
way fixed effects. We present the results of a contemporaneous regression with two-way fixed effects:  
!!
"!
= "# + "$ %!"! + "&

'(!
"!
+ ") *+!"!

+ ",$%%- + ". /*!"!
+ "0ln	(*-) + ,-.  “ImpZero” presents the result for the 

sample with imputation with zero and an indicator variable, “LD” presents the results for listwise deletion, 
“MI” presents the results for multiple imputation implemented using all the variables in the regression in 
the imputation, “MI Lasso” presents the results for multiple imputation implemented using all the variables 
in the regression and the Lasso variables stock liquidity and industry patent intensity in the imputation, 
“Pseudo RD” presents the result using pseudo R&D as an explanatory variable, and “Text-based 
Innovation” presents the results for the analyst coverage based innovation variable (Bellstam et al., 2020). 
The dependent variable is book leverage !!"!

 at time T.  #!"!
	 is the market to book ratio, $%!"!

		is earnings before 

interest and taxes as a proportion of total assets, &'!"!
  is depreciation as a proportion of total assets, (&!"!

  is 
the R&D expenses as a proportion of total assets, $%%-  is an indicator variable equal to 1 if R&D 
expenditure is missing and has been imputed with zero, and zero otherwise, Pseudo R&Dt is an indicator 
variable equal to 1 if a firm applies for a patent in PATSTAT and has no reported R&D, and zero otherwise, 
Text-based Innovationt is the firm analyst-based innovation measure from (Bellstam et al., 2020), and ln	(*-) is 
the natural logarithm of total assets. Non-dividend payers include firms that do not pay dividend in year T-
1. Panel A presents the results for the dividend paying firms and Panel B for the non-dividend paying firms. 
The sample period is 1965-1999. Standard errors are double clustered. 
 
Panel A. Dividend Payer Firms  
 

Variable Imp 
Zero LD MI MI 

Lasso 
Pseudo 
R&D 

Text-based 
Innovation 

  (1) (2) (3) (4) (5) (6) 
Intercept 0.305*** 0.344*** 0.366*** 0.368*** 0.300*** 0.246*** 
 

(22.62) (19.83) (56.52) (55.24) (22.13) (3.94) 
  

 

-0.001 -0.001 0.001 0.001 0.000 -0.006 

(-0.15) (-0.47) (0.40) (0.60) (-0.10) (-1.29) 
  

 

-0.158** -0.215** -0.184** -0.192 -0.157 -0.628 

(-1.99) (-2.66) (-2.07) (-2.17) (-1.99) (-3.91) 
  

 

-1.076*** -0.059 -1.057*** -1.048*** -1.049*** -0.797*** 

(-6.12) (-0.30) (-10.67) (-10.56) (-6.05) (-2.77) 
RDDt 0.070*** 

   
0.075*** 

 
 

(11.96) 
   

(12.35) 
 

  

 

-0.290*** -0.435*** 0.081*** 0.033 -0.290*** 
 

(-2.71) (-4.54) (3.91) (1.48) (-2.72) 
 

Pseudo R&Dt 
    

-0.098*** 
 

    
(-12.43) 

 

Text-based 
Innovationt 

     
-0.009*      
(-1.78) 

 

0.041*** 0.029*** 0.038*** 0.038*** 0.042*** 0.048*** 
 (29.95) (13.61) (96.36) (95.10) (30.14) (6.89) 
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Panel B. Non-dividend Payer Firms 
 

Variable Imp 
Zero LD MI MI 

Lasso 
Pseudo 
R&D 

Text-based 
Innovation 

  (1) (2) (3) (4) (5) (6) 
Intercept 0.325*** 0.394*** 0.376*** 0.381*** 0.323*** 0.242 
 

(4.70) (20.07) (6.74) (7.05) (4.66) (1.11) 
  

 

0.027 -0.004*** 0.028** 0.029*** 0.027 -0.008 

(1.32) (-3.24) (2.24) (2.30) (1.32) -1.40 
  

 

-0.517*** -0.301*** -0.139 -0.136 -0.517*** -0.404 

(-3.15) (-4.77) (-0.54) (-0.52) (-3.14) -1.56 
  

 

0.691 1.984*** 0.636* 0.651* 0.692 1.725* 

(1.29) (7.96) (1.66) (1.70) (1.29) 1.84 
RDDt 0.079*** 

   
0.082*** 

 
 

(4.61) 
   

(4.73) 
 

  

 

-0.702*** -0.335*** 0.955*** 0.962*** -0.701*** 
 

(-2.83) (-3.33) (3.45) (3.43) (-2.83) 
 

Pseudo R&Dt 
    

-0.134*** 
 

    
(-6.03) 

 

Text-based 
Innovationt 

     
-0.095***      
(-5.50) 

 

0.032*** 0.013** 0.022*** 0.024*** 0.033*** 0.042 
 (4.54) (2.60) (4.98) (5.35) (4.62) (1.60) 

 


