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Internet Appendix

A. Simulation Methodology

Equation (5) implies that the error terms of regressions (1) to (3) must also be related. Deducting the

conditional time t expectation from each side of Equation (4) yields

rt+1 − Et[rt+1] ≈ k0 − k0 − k1 (dpt+1 − Et [dpt+1]) + ∆dt+1 − Et [∆dt+1] + dpt − dpt(C.1)

⇔ ut+1 ≈ wt+1 − k1vt+1.(C.2)

Under the null of no return predictability, the data are generated by

rt+1 = µr + wt+1 − k1vt+1(C.3)

∆dt+1 = µd + (k1ρ− 1)dpt + wt+1(C.4)

pdt+1 = α+ ρ dpt + vt+1.(C.5)

Analogously, under the null of no dividend-growth predictability, the data are generated by

rt+1 = µr − (k1ρ− 1)dpt + ut+1(C.6)

∆dt+1 = µd + ut+1 + k1vt+1(C.7)

pdt+1 = α+ ρ dpt + vt+1.(C.8)

The simulated data are generated using the parameter estimates from the actual data but imposing the null.

E.g. µr in (C.3) is given by µ̂r = 1
T−1

∑T−1
t=1 rt+1.

32 The simulated error terms are drawn from a multivariate

normal distribution, the covariance matrix of which is estimated under the respective null hypotheses. Using

bootstrapped residuals according to the procedure in Goyal and Welch (2008) instead does not alter the

32Using instead ρ = 0.99 or ρ = 0.975 for all portfolios gives qualitatively similar, albeit more extreme
rejections of either null hypothesis (not tabulated).
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results qualitatively. Results are also robust to using a vector autoregression (VAR) specification (both not

tabulated). I simulate 10,000 data sets, each consisting of a dividend-price ratio, return and dividend-growth

time series.

B. Weighted Regressions

Rather than inferring long-run coefficients by imposing the structure of the vector autoregression (1)

to (3), one can run direct regressions of weighted returns and dividend growth:

K∑

j=1

kj−1
1 rt+j = µK

r + βK
r dpt + ut+1(C.9)

K∑

j=1

kj−1
1 ∆dt+j = µK

d + βK
d dpt + wt+1(C.10)

kj1dpt+j = αK + βK
dp dpt + vt+1.(C.11)

It holds that βK
r − βK

d + βK
dp ≈ 1. The coefficients with horizon K are plotted in Figure C.1 below. While

these results should be treated with caution due to the even shorter sample (in order to have the same

measure of k1, I only go from 1980 to 2009 in terms of formation periods), the results from Section III are

confirmed: Dominance of dividend-growth predictability in the low IO portfolio, somewhat mixed results for

portfolios 2 and 3, and overwhelming dominance of return predictability in portfolio 4. The left figure is

somewhat at odds with the characterization of the low IO dividend yield as a fairly low persistence AR(1)

process. This is due to the cumulative weighted 4-year return. Specifically, this result is driven by two years,

1984 and 1988.The stocks that constituted the low IO portfolio in 1984 had fairly low valuations. Four years

later, these stocks (that are not to be confused with the stocks in the low IO portfolio in 1988) had huge

dividend growth, as opposed to low dividend growth as would be expected from low valuations. One reason

for this is the October 1987 crash. For a thorough discussion of this effect, see Chen (2009). This massively

drove down the estimate for β4
d . If they did not predict dividend growth, the low valuations in 1984 were

supposed to predict high returns in 1988. However, stocks did not do particularly well that year. In particular,

the stocks that had made up the low IO portfolio in 1984 actually had very low returns of about -7%, leading
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Figure C.1: Multi-period coefficients, direct estimate
Multi-period regression coefficients as in Equations C.9 to C.11 for different horizons K. Dashed lines

are 10% confidence intervals. The formation period sample is from 1980 to 2009.
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to no increase in β4
r and consequently to an estimate of a very persistent dp transition over four years. For

horizons with K > 4, the general picture of fairly low dp persistence resumes.

C. Priced and Unpriced Exposure to Liquidity Risk

Section IV.C.3 shows that CH, a proxy for liquidity risk, predicts returns for the high-IO portfolio but

not for the low-IO portfolio. The rationale behind this test is that if household direct investors care in the

exact same way about liquidity risks and are in just the same way affected by it, then one would expect that a

proxy for liquidity transformation risk also positively predicts returns on households’ directly-held stocks.

Unless, of course, low IO stocks simply have no innate exposure to time-varying risks independent of who

holds them. Expressed more formally, when there is an institutionally-held portfolio i and a household-held
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portfolio h where expected returns are governed by

Et[R
i
t+1] = αi + βi,jλ

i
j,t(C.12)

Et[R
h
t+1] = αh + βh,jλ

h
j,t,(C.13)

a lacking time variation in Et[R
h
t+1] is due to zero exposure, βh,j = 0 with time-varying identical market prices

of risk λh
j,t = λi

j,t �= 0 rather than λh
j,t = 0 in the applicable SDF.

Assume a monotonic relationship βj(x) between stock characteristics x and the exposure of a stock βj

to a (risk) factor j with market price λ·
j,t where βj(x) does not depend on stock ownership. Then, a stock

characteristic x that is linked to liquidity risk exposure (and hence predictability by CH) in the high-IO

portfolio should also be related to exposure (and predictability) in the low-IO portfolio. Varying βi,j or βh,j

by varying characteristic x would consequently elicit variation in predictability within both, portfolios h and i

– if the SDFs that price both portfolios are the same.

To test this, I divide portfolios of stocks with below and above 30% IO into terciles according to their

Amihud (2002) liquidity measure, ILLIQ. The relatively high cutoff point in IO ensures sufficiently large

portfolios. To have comparable levels and spreads of ILLIQ within the groups of stocks with below or above

30% IO despite its correlation with IO, I restrict the overall sample to stocks with ILLIQ between the 1/3 and

2/3 quantiles. Table C.2, Panel A shows that this yields portfolios that are comparable in terms of the

relevant characteristics such as the number of stocks or the spreads between and levels of ILLIQ and cash-flow

duration. The results of predictive regressions of the returns of those portfolios are presented in Table C.2,

Panel B. Start with the high-IO stocks in Panel B.2. In line with the findings of Scholes (2000); Coval and

Stafford (2007); Berger (2019) that institutions prefer to reduce their holdings in liquid stocks in the event of

outflows and similar to a recent finding by Ma, Xiao, and Zeng (2020) about treasuries, liquid stocks also have

higher exposure to liquidity transformation risk as proxied by ∆CH. Their slope coefficients are comparably

large. As liquidity goes down, so does the predictive power of ∆CH. This is also what one would expect for

low IO stocks – if they were indeed priced by the same SDF. Panel B.1 shows that this is not the case: The

slope coefficients of the predictive regressions are very similar across ILLIQ terciles within the portfolio with
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IO< 30%. This is in line with the notion that risk proxided by CH is not priced in low IO portfolios, i.e.

λh
j = const. = 0, rather than their exposure being constantly zero (βi,j = 0).

Table C.2: Priced and Unpriced Exposure

Panel A shows characteristics of the double-sorted portfolios. Panel B shows slope coefficients of the predictive

regression of year t+1 returns (normalized by sample means) on portfolios sorted into Amihud (2002) illiquidity

measure (ILLIQ) terciles within the low and high IO portfolios on changes in average mutual fund cash-holdings

(CH) at the end of year t. Returns are normalized by the sample mean as in Haddad and Muir (2021). Simulated

p−values p. computed in the exact same way as described in Table 5. CFD is Dechow et al. (2004) cash-flow

duration

Panel A: Portfolio characteristics

IO < 30% IO ≥ 30%

low ILLIQ 2 high ILLIQ low ILLIQ 2 high ILLIQ

ILLIQ ×103 e.w. 0.0159 0.0397 0.0856 0.0121 0.0246 0.0659
IO e.w. 0.16 0.15 0.13 0.53 0.50 0.47
CFD e.w. 17.53 17.50 17.10 16.16 15.72 15.17
Return v.w. % 11.14 14.78 16.26 13.82 15.27 16.79
number of stocks 254.11 254.96 255.00 201.68 201.00 202.39

Panel B: Regression Rt+1

R̄
= α+ b ·∆CHt

Panel A.1: IO < 30 Panel A.2: IO ≥ 30%
b b

low ILLIQ 0.0607 0.1254
p. 0.3605 p. 0.1715

2 0.0990 0.0327
p. 0.2665 p. 0.4043

high ILLIQ 0.0520 0.0166
p. 0.3673 p. 0.4520

D. Internet Appendix: Tables and Figures
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Table D.1: Predictive Regressions, no Reinvestment

Slope coefficients from the predictive regressions of log returns on log dividend growth on the dividend-price

ratio and dividend-price ratio autoregression for each of the four IO-sorted portfolios and the CRSP market

portfolio (Mkt.). The long-run coefficients are defined as βLR
r = βr

1−k1ρ
and βLR

d = βd

1−k1ρ
. The frequency

is yearly. Numbers in brackets are Newey and West (1987) (NW)-t-statistics with 10 lags. For long-run

coefficients, standard errors are computed according to the delta method using the NW covariance matrix of

residuals. *, ** and *** for one-period slope estimates indicate significance at the ten, five and one percent

level, respectively. Formation periods 1980 to 2012.

low IO 2 3 high IO

rt+1 βr -0.01 0.08∗∗∗ 0.11∗∗∗ 0.14∗∗∗

(-0.25) (3.15) (3.00) (2.97)

βLR
r -0.04 0.35∗∗ 0.92∗∗ 1.71∗∗

(-0.25) (2.39) (2.09) (2.12)

R2 0.00 0.08 0.12 0.10

∆dt+1 βd -0.28∗∗∗ -0.14∗∗ -0.01 0.06
(-2.81) (-2.21) (-0.36) (1.32)

βLR
d -1.04∗∗∗ -0.65∗∗ -0.08 0.71

(-3.64) (-2.23) (-0.19) (1.18)

R2 0.31 0.12 0.00 0.03

dpt+1 ρ 0.75∗∗∗ 0.80∗∗∗ 0.90∗∗∗ 0.94∗∗∗

(7.52) (3.00) (21.95) (13.45)
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Table D.2: Simulation Inference, Excess Returns and Dividend Growth

Slope coefficients and long-run slope coefficients from the predictive regressions of log excess returns on log

excess dividend growth on the dividend-price ratio and dividend-price ratio autoregression as defined in (1)

to (3) for each of the four IO-sorted portfolios and simulated inference based on 10,000 simulations, yearly

regression. The long-run coefficients are defined as βLR
r = βr

1−k1ρ
and βLR

d = βd

1−k1ρ
. p. denotes the estimated

probability of observing a more extreme estimate then in the data under the respective nulls Hr
0 and Hd

0 . Qp

denotes the p-quantile of the simulated distribution. The rows labeled “p. joint hyp.” show the estimated

probability of the event βLR
r ≤ β̂LR

r ∧ βLR
d ≤ β̂LR

d occuring given that the respective null hypothesis is true. *,

** and *** indicate that the respective probability is below 10, 5 or 1 percent, respectively. The autocorrelation

coefficients of dp in the respective portfolios are 0.86, 0.80, 0.92 and 0.91.

Hr
0 : βr = 0, ρ = ρ̂ Hd

0 : βd = 0, ρ = ρ̂

Portfolio est. p. Q0.05 Q0.95 p. Q0.05 Q0.95

1: low IO βr -0.05 0.8716 -0.08 0.18 0.0057 0.04 0.34
βLR
r -0.32 0.8896 -0.55 0.61 0.0045∗∗∗ 0.19 1.73

βd -0.20 0.5350 -0.41 -0.06 0.1267 -0.28 0.09
βLR
d -1.33 0.8941 -1.54 -0.39 0.0043∗∗∗ -0.81 0.72

p. joint hyp. 0.8894 0.0043∗∗∗

2 βr 0.03 0.3044 -0.10 0.11 0.0115∗∗ 0.09 0.35
βLR
r 0.14 0.2443 -0.37 0.36 0.0214∗∗ 0.23 1.64

βd -0.19 0.1944 -0.58 -0.12 0.2311 -0.37 0.11
βLR
d -0.87 0.2600 -1.37 -0.63 0.0194∗∗ -0.76 0.63

p. joint hyp. 0.2437 0.0194∗∗

3 βr 0.09 0.2859 -0.07 0.23 0.2194 0.03 0.33
βLR
r 0.81 0.0524∗ -0.72 0.82 0.5069 0.20 1.67

βd -0.02 0.0408∗ -0.32 -0.03 0.5750 -0.21 0.07
βLR
d -0.19 0.0540∗ -1.73 -0.18 0.5060 -0.80 0.68

p. joint hyp. 0.0520∗ 0.5023

4: high IO βr 0.08 0.3941 -0.11 0.33 0.2399 -0.01 0.42
βLR
r 0.75 0.2091 -1.30 1.29 0.3693 -0.08 2.02

βd -0.03 0.1665 -0.30 0.05 0.4305 -0.19 0.15
βLR
d -0.26 0.2140 -2.30 0.29 0.3604 -1.08 1.03

p. joint hyp. 0.2087 0.3602
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Table D.3: Predictive Regressions, Quartile Portfolios

Slope coefficients and long-run slope coefficients from the predictive regressions of log returns on log dividend
growth on the dividend-price ratio and dividend-price ratio autoregression as defined in (1) to (3) for each
of the four IO quartile portfolios. The long-run coefficients are defined as βLR

r = βr

1−k1ρ
and βLR

d = βd

1−k1ρ
.

The frequency is yearly. Numbers in brackets are Newey and West (1987) (NW)-t-statistics with 10 lags. For
long-run coefficients, standard errors are computed according to the delta method using the NW covariance
matrix of residuals. *, ** and *** for one-period slope estimates indicate significance at the ten, five and one
percent level, respectively. “NW t-stat” in Panel D denotes the t-statistic computed with Newey and West
(1987) standard errors with three lags. Formation periods 1980 to 2012.

1st quartile 2 3 4th quartile
Panel A: Raw returns and dividend growth

rt+1 βr 0.06∗∗ 0.07∗∗∗ 0.12∗∗ 0.07∗∗

(2.08) (4.01) (2.43) (2.19)

βLR
r 0.26∗∗∗ 0.53∗∗∗ 0.85∗∗∗ 0.94∗∗∗

(1.62) (1.77) (2.31) (1.64)

R2 2.55% 6.48% 12.86% 5.14%

∆dt+1 βd -0.17 -0.06∗ -0.02 -0.01
(-1.45) (-1.32) (-0.70) (-0.24)

βLR
d -0.76∗∗∗ -0.47∗∗∗ -0.16 -0.09

(-1.40) (-2.39) (-1.38) (-0.16)

R2 4.44% 4.68% 0.92% 0.04%

Panel B: Excess returns and excess dividend growth

rt+1 − rf,t+1 βr 0.02 0.04∗∗ 0.08 0.03
(0.52) (2.21) (1.37) (0.7)

βLR
r 0.08 0.28∗∗ 0.55∗∗∗ 0.36

(0.43) (1.00) (1.42) (0.58)

R2 0.22% 1.92% 5.32% 0.7%

∆dt+1 − rf,t+1 βd -0.22∗ -0.09∗∗ -0.07∗∗ -0.05
(-1.80) (-2.38) (-2.26) (-1.49)

βLR
d -0.95∗∗∗ -0.72∗∗∗ -0.46∗∗∗ -0.67∗∗

(-1.67) (-1.79) (-1.74) (-1.05)

R2 6.61% 9.79% 6.65% 2.12%

Panel C: Dividend-price ratio autoregression

dpt+1 ρ 0.79∗∗∗ 0.89∗∗∗ 0.88∗∗∗ 0.95∗∗∗

(5.46) (21.19) (18.77) (38.45)

Panel D: Descriptive statistics

IO mean, % 6.49 25.17 47.41 73.29

return mean, % 11.63 11.74 13.01 13.07
NW t-stat 6.19 4.94 4.32 4.88
std, % 19.76 15.36 17.72 18.10

div. growth mean, % 16.45 0.32 4.66 7.49
NW t-stat 1.07 0.13 2.48 2.84
std, % 88.85 14.66 12.90 21.24

PD-ratio mean 62 44 40 65
std 24 24 20 36
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Table D.4: Simulation Inference, Quarterly Frequency

Slope coefficients and long-run slope coefficients from the predictive regressions of log returns on log dividend

growth on the dividend-price ratio and dividend-price ratio autoregression as defined in (1) to (3) for each of

the four IO-sorted portfolios and simulated inference based on 10,000 simulations, quarterly regression. The

long-run coefficients are defined as βLR
r = βr

1−k1ρ
and βLR

d = βd

1−k1ρ
. p. denotes the estimated probability of

observing a more extreme estimate then in the data under the respective nulls Hr
0 and Hd

0 . Qp denotes the

p-quantile of the simulated distribution. The rows labeled “p. joint hyp.” show the estimated probability of

the event βLR
r ≤ β̂LR

r ∧ βLR
d ≤ β̂LR

d occuring given that the respective null hypothesis is true. *, ** and ***

indicate that the respective probability is below 10, 5 or 1 percent.

Hr
0 : βr = 0, ρ = ρ̂ Hd

0 : βd = 0, ρ = ρ̂
Portfolio est. p. Q0.05 Q0.95 p. Q0.05 Q0.95

1: low IO βr 0.01 0.1983 -0.02 0.03 0.0000∗∗∗ 0.10 0.15
βLR
r 0.12 0.1301 -0.17 0.16 0.0000∗∗∗ 0.52 1.44

βd -0.11 0.2091 -0.23 -0.08 0.0481∗ -0.11 0.04
βLR
d -0.89 0.1525 -1.16 -0.84 0.0000∗∗∗ -0.48 0.44

p. joint hyp. 0.1301 0.0000∗∗∗

2 βr 0.03 0.0100∗∗ -0.02 0.02 0.0000∗∗∗ 0.11 0.16
βLR
r 0.25 0.0011∗∗∗ -0.13 0.13 0.0000∗∗∗ 0.54 1.44

βd -0.10 0.0870∗ -0.24 -0.09 0.0673∗ -0.11 0.04
βLR
d -0.75 0.0013∗∗∗ -1.13 -0.87 0.0000∗∗∗ -0.46 0.44

p. joint hyp. 0.0011∗∗∗ 0.0000∗∗∗

3 βr 0.04 0.0490∗∗ -0.02 0.04 0.0039∗∗∗ 0.05 0.11
βLR
r 0.48 0.0049∗∗∗ -0.29 0.31 0.0584∗ 0.46 1.46

βd -0.04 0.0174∗∗ -0.16 -0.05 0.2375 -0.08 0.03
βLR
d -0.52 0.0051∗∗∗ -1.29 -0.69 0.0580∗ -0.54 0.46

p. joint hyp. 0.0049∗∗∗ 0.0580∗∗∗

4: high IO βr 0.05 0.0661∗ -0.03 0.05 0.0432 0.05 0.12
βLR
r 0.62 0.0032∗∗∗ -0.37 0.40 0.1664 0.47 1.45

βd -0.03 0.0042∗∗∗ -0.15 -0.05 0.3039 -0.08 0.03
βLR
d -0.38 0.0034∗∗∗ -1.37 -0.60 0.1625 -0.53 0.45

p. joint hyp. 0.0032∗∗∗ 0.1625
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Table D.5: Predictive Regressions, Quartile Portfolios, Dividend Payers

Slope coefficients and long-run slope coefficients from the predictive regressions of log returns on

log dividend growth on the dividend-price ratio and dividend-price ratio autoregression as defined

in (1) to (3) for each of the four IO quartile portfolios, restricted to stocks that paid dividends in

the formation period. The long-run coefficients are defined as βLR
r = βr

1−k1ρ
and βLR

d = βd
1−k1ρ

. The

frequency is yearly. “t.s.” indicates moments computed along the time-series dimension at portfolio

level, “e.w.” and “v.w.” denote time-series moments of cross sectional means computed equally (value-

) weighted. “std.” denotes usual standard deviations. AC(1) denotes the first order autocorrelation

coefficient. Numbers in brackets are Newey and West (1987) (NW)-t-statistics with 10 lags. For long-

run coefficients, standard errors are computed according to the delta method using the NW covariance

matrix of residuals. *, ** and *** for one-period slope estimates indicate significance at the ten, five

and one percent level, respectively. Formation periods 1980 to 2012.

Panel A: Descriptive statistics

IO ew. mean 0.1105 0.3357 0.5394 0.7488
return t.s. mean 0.1311 0.1214 0.1262 0.1336

std. 0.1461 0.1597 0.1608 0.1773
AC(1) -0.1757 0.0029 0.0346 -0.1263

div. growth t.s. mean -0.0418 -0.0022 0.0731 0.0475
std. 0.2001 0.1265 0.1488 0.1821

AC(1) -0.2918 -0.2211 -0.1621 -0.3631

D/P t.s. mean 0.0394 0.0403 0.0319 0.0255
std. 0.0143 0.0176 0.0129 0.0107

Panel B: Predictive regression slope coefficients

1st quartile 2 3 4th quartile

rt+1 βr 0.04 0.14∗∗∗ 0.11∗∗ 0.11∗∗∗
(1.82) (5.80) (2.65) (3.49)

βLR
r 0.18 0.71∗∗∗ 0.87∗ 1.21∗

(0.68) (2.60) (1.73) (1.88)

R2 0.88% 14.4% 8.33% 6.45%

∆dt+1 βd −0.19 −0.06 −0.02 0.02
(-1.24) (-1.30) (-0.03) (0.67)

βLR
d −0.83∗ −0.30 −0.14 0.20

(-1.80) (-1.26) (-0.41) (0.32)

R2 7.4% 3.39% 0.29% 0.16%

dpt+1 ρ 0.8044∗∗∗ 0.8369∗∗∗ 0.8941∗∗∗ 0.9303∗∗∗
(5.42) (13.65) (16.98) (17.80)
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Figure D.1: Share of Variation, Two- and Three-Year Predictive Regressions

Share of variation due to either dividend growth or returns as computed with long-run coefficients

βLR
r = βr

1−k1ρ
and |βLR

d | = |βr|
1−k1ρ

, respectively, for each of the four IO-sorted portfolios with two (left)

and three (right) year horizons.
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Figure D.2: Share of Return and Dividend Growth Variation for Alternative Sorts
Share of variation due to either dividend growth or returns as computed with long-run coefficients

βLR
r = βr

1−k1ρ
and |βLR

d | = |βr|
1−k1ρ

, respectively, for each of the portfolios split along the median for

the 13(f) subcategories and by S&P 500 index inclusion, respectively. Missing observations for a

subcategory are treated as having zero holdings by that subcategory.
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Table D.6: Predictive Regressions Using the Earnings-Price Ratio

Slope estimates of predictive regressions of log earnings growth log and returns on the log earnings-price ratio

ep for each of the four portfolios. Number is parentheses are Newey-West t-statistics. R2 is given in %. The

sample period is 1980 to 2013. Stocks with negative earnings are discarded for the computation of EP to ensure

defined log values.

Panel A Panel B

∆et+1 = α+ βe ept rt+1 = µ+ βr ept

βE R2 βr R2

low IO 0.13 1.81 0.04 0.86
(1.16) (0.81)

2 0.18∗∗ 1.55 0.06 1.24
(2.04) (1.31)

3 0.10 0.62 0.10∗∗ 5.30
(0.93) (2.25)

high IO -0.06 0.12 0.21∗∗∗ 12.38
(-0.49) (3.42)

Table D.7: Predictive Regressions using cay, the Market DP and SVIX

Slope estimates of predictive regressions of returns R on predictor variables cay (from Martin Lettau’s website),
the market dividend price ratio (Mkt. DP) and the SVIX divided by the risk-free rate risk (R−1

f,tSV IX2). The

regression in Panel C is on quarterly frequency with sample period 1996 to 2012. R−1
f,tSV IX2 is from Ian

Martin’s website. For the other predictors it is 1980 to 2012. p. indicates the probability under the null of
observing a slope coefficient larger than in the data. *, ** and *** indicate that the respective probability is
below 10, 5 or 1 percent, respectively. It is computed using 5,000 artificial data sets generated under the null
of no predictability:

Yt+1 = Ȳ + εYt+1

Xt+1 = ρXt + εXt+1,

where Ȳ , ρ and Cov(εY , εr) are as estimated from the data. E[εY ] = E[εx] = 0.

Panel A: Panel B: Panel C:

cay R2 Mkt. DP R2 R−1
f,tSV IX2 R2

β β β
low IO -6.1891 0.24 6.2077 0.5 0.6035 2.98

p. 0.6897 p. 0.4498 p. 0.1451

2 23.008 6.07 19.0961 4.69 0.4498 2.44
p. 0.0885 p. 0.3437 p. 0.1729

3 22.4524 6.39 18.0429 4.19 0.7278∗ 5.80
p. 0.1148 p. 0.464 p. 0.0677

high IO 20.5939 5.66 22.5351 6.54 0.6736 4.39
p. 0.1072 p. 0.3511 p. 0.1041
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Table D.8: Regression coefficients, high and low valuation

Slope coefficients from predictive regressions of returns on the dividend yield from Equation (1). The sample is
divided by above (high dp) or below (low dp) median dividend yield. Quarterly frequency. Numbers in brackets
are standard t−statistics computed under the assumption that the estimators for the respective βhigh

r and βlow
r

are uncorrelated. Formation periods Q1-1980 to Q2-2013.

βhigh
r βlow

r ∆βr

low IO 0.026 0.022 0.004
(0.60) (0.82) (0.42)

2 0.122 0.026 0.096
(2.90) (1.09) (11.71)

3 0.058 0.097 -0.040
(1.62) (2.35) (-4.20)

high IO 0.118 0.101 0.017
(2.30) (2.05) (1.37)

Table D.9: Predictive Regressions of Returns on the Average Degree of IO

Slope estimates b of predictive regressions of aggregate sample returns normalized by their sample mean on the
detrended average degree of institutional ownership in the overall sample. The sample period is 1981 to 2013.
p. indicates the probability of observing a slope coefficient smaller than in the data. It is computed using 5,000
artificial data sets generated under the null of no predictability:

Yt+1 = Ȳ + εYt+1

Xt+1 = ρXt + εXt+1,

where Ȳ , ρ and Cov(εY , εr) are as estimated from the data. E[εY ] = E[εx] = 0.

b R2

low IO -0.7640 0.0003
p. 0.5536

2 -0.9224 0.0008
p. 0.5525

3 0.2607 0.0001
p. 0.4527

high IO 0.6250 0.0005
p.0.4594

Mkt. 0.5694 0.0003
p. 0.4410
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Figure D.3: Share of Return and Dividend Growth Variation for Subsamples
Share of variation due to either dividend growth or returns as computed with long-run coefficients βLR

r = βr
1−k1ρ

and

|βLR
d | = |βr|

1−k1ρ
, excluding microcaps (stocks in bottom 20% of market capitalization) (upper left), prices below one dollar (upper

right), five dollars (mid left) or microcaps and prices below five dollars (mid right) or with quartile portfolios excluding microcaps

(bottom), respectively.
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