## Internet Appendix to:

# Institutional Investors, Households and the Time-Variation in Expected Stock Returns 

Rüdiger Weber*

[^0]
## Internet Appendix

## A. Simulation Methodology

Equation (5) implies that the error terms of regressions (1) to (3) must also be related. Deducting the conditional time $t$ expectation from each side of Equation (4) yields

$$
\begin{align*}
r_{t+1}-E_{t}\left[r_{t+1}\right] & \approx k_{0}-k_{0}-k_{1}\left(d p_{t+1}-E_{t}\left[d p_{t+1}\right]\right)+\Delta d_{t+1}-E_{t}\left[\Delta d_{t+1}\right]+d p_{t}-d p_{t}  \tag{C.1}\\
\Leftrightarrow u_{t+1} & \approx w_{t+1}-k_{1} v_{t+1} \tag{C.2}
\end{align*}
$$

Under the null of no return predictability, the data are generated by

$$
\begin{align*}
r_{t+1} & =\mu_{r}+w_{t+1}-k_{1} v_{t+1}  \tag{C.3}\\
\Delta d_{t+1} & =\mu_{d}+\left(k_{1} \rho-1\right) d p_{t}+w_{t+1}  \tag{C.4}\\
p d_{t+1} & =\alpha+\rho d p_{t}+v_{t+1} \tag{C.5}
\end{align*}
$$

Analogously, under the null of no dividend-growth predictability, the data are generated by

$$
\begin{align*}
r_{t+1} & =\mu_{r}-\left(k_{1} \rho-1\right) d p_{t}+u_{t+1}  \tag{C.6}\\
\Delta d_{t+1} & =\mu_{d}+u_{t+1}+k_{1} v_{t+1} \\
p d_{t+1} & =\alpha+\rho d p_{t}+v_{t+1}
\end{align*}
$$

The simulated data are generated using the parameter estimates from the actual data but imposing the null.
E.g. $\mu_{r}$ in (C.3) is given by $\hat{\mu}_{r}=\frac{1}{T-1} \sum_{t=1}^{T-1} r_{t+1} .{ }^{32}$ The simulated error terms are drawn from a multivariate normal distribution, the covariance matrix of which is estimated under the respective null hypotheses. Using bootstrapped residuals according to the procedure in Goyal and Welch (2008) instead does not alter the

[^1]results qualitatively. Results are also robust to using a vector autoregression (VAR) specification (both not tabulated). I simulate 10,000 data sets, each consisting of a dividend-price ratio, return and dividend-growth time series.

## B. Weighted Regressions

Rather than inferring long-run coefficients by imposing the structure of the vector autoregression (1) to (3), one can run direct regressions of weighted returns and dividend growth:

$$
\begin{align*}
\sum_{j=1}^{K} k_{1}^{j-1} r_{t+j} & =\mu_{r}^{K}+\beta_{r}^{K} d p_{t}+u_{t+1}  \tag{C.9}\\
\sum_{j=1}^{K} k_{1}^{j-1} \Delta d_{t+j} & =\mu_{d}^{K}+\beta_{d}^{K} d p_{t}+w_{t+1}  \tag{C.10}\\
k_{1}^{j} d p_{t+j} & =\alpha^{K}+\beta_{d p}^{K} d p_{t}+v_{t+1} . \tag{C.11}
\end{align*}
$$

It holds that $\beta_{r}^{K}-\beta_{d}^{K}+\beta_{d p}^{K} \approx 1$. The coefficients with horizon $K$ are plotted in Figure C. 1 below. While these results should be treated with caution due to the even shorter sample (in order to have the same measure of $k_{1}$, I only go from 1980 to 2009 in terms of formation periods), the results from Section III are confirmed: Dominance of dividend-growth predictability in the low IO portfolio, somewhat mixed results for portfolios 2 and 3, and overwhelming dominance of return predictability in portfolio 4 . The left figure is somewhat at odds with the characterization of the low IO dividend yield as a fairly low persistence $\operatorname{AR}(1)$ process. This is due to the cumulative weighted 4 -year return. Specifically, this result is driven by two years, 1984 and 1988.The stocks that constituted the low IO portfolio in 1984 had fairly low valuations. Four years later, these stocks (that are not to be confused with the stocks in the low IO portfolio in 1988) had huge dividend growth, as opposed to low dividend growth as would be expected from low valuations. One reason for this is the October 1987 crash. For a thorough discussion of this effect, see Chen (2009). This massively drove down the estimate for $\beta_{d}^{4}$. If they did not predict dividend growth, the low valuations in 1984 were supposed to predict high returns in 1988. However, stocks did not do particularly well that year. In particular, the stocks that had made up the low IO portfolio in 1984 actually had very low returns of about $-7 \%$, leading

## Figure C.1: Multi-period coefficients, direct estimate

Multi-period regression coefficients as in Equations C. 9 to C. 11 for different horizons K. Dashed lines are $10 \%$ confidence intervals. The formation period sample is from 1980 to 2009.

to no increase in $\beta_{r}^{4}$ and consequently to an estimate of a very persistent $d p$ transition over four years. For horizons with $K>4$, the general picture of fairly low $d p$ persistence resumes.

## C. Priced and Unpriced Exposure to Liquidity Risk

Section IV.C. 3 shows that CH, a proxy for liquidity risk, predicts returns for the high-IO portfolio but not for the low-IO portfolio. The rationale behind this test is that if household direct investors care in the exact same way about liquidity risks and are in just the same way affected by it, then one would expect that a proxy for liquidity transformation risk also positively predicts returns on households' directly-held stocks. Unless, of course, low IO stocks simply have no innate exposure to time-varying risks independent of who holds them. Expressed more formally, when there is an institutionally-held portfolio $i$ and a household-held
portfolio $h$ where expected returns are governed by

$$
\begin{align*}
& E_{t}\left[R_{t+1}^{i}\right]=\alpha_{i}+\beta_{i, j} \lambda_{j, t}^{i}  \tag{C.12}\\
& E_{t}\left[R_{t+1}^{h}\right]=\alpha_{h}+\beta_{h, j} \lambda_{j, t}^{h} \tag{C.13}
\end{align*}
$$

a lacking time variation in $E_{t}\left[R_{t+1}^{h}\right]$ is due to zero exposure, $\beta_{h, j}=0$ with time-varying identical market prices of risk $\lambda_{j, t}^{h}=\lambda_{j, t}^{i} \neq 0$ rather than $\lambda_{j, t}^{h}=0$ in the applicable SDF.

Assume a monotonic relationship $\beta_{j}(x)$ between stock characteristics $x$ and the exposure of a stock $\beta_{j}$ to a (risk) factor $j$ with market price $\lambda_{j, t}$ where $\beta_{j}(x)$ does not depend on stock ownership. Then, a stock characteristic $x$ that is linked to liquidity risk exposure (and hence predictability by CH ) in the high-IO portfolio should also be related to exposure (and predictability) in the low-IO portfolio. Varying $\beta_{i, j}$ or $\beta_{h, j}$ by varying characteristic $x$ would consequently elicit variation in predictability within both, portfolios $h$ and $i$ - if the SDFs that price both portfolios are the same.

To test this, I divide portfolios of stocks with below and above $30 \%$ IO into terciles according to their Amihud (2002) liquidity measure, ILLIQ. The relatively high cutoff point in IO ensures sufficiently large portfolios. To have comparable levels and spreads of ILLIQ within the groups of stocks with below or above $30 \%$ IO despite its correlation with IO, I restrict the overall sample to stocks with ILLIQ between the $1 / 3$ and $2 / 3$ quantiles. Table C.2, Panel $A$ shows that this yields portfolios that are comparable in terms of the relevant characteristics such as the number of stocks or the spreads between and levels of ILLIQ and cash-flow duration. The results of predictive regressions of the returns of those portfolios are presented in Table C.2, Panel B. Start with the high-IO stocks in Panel B.2. In line with the findings of Scholes (2000); Coval and Stafford (2007); Berger (2019) that institutions prefer to reduce their holdings in liquid stocks in the event of outflows and similar to a recent finding by Ma, Xiao, and Zeng (2020) about treasuries, liquid stocks also have higher exposure to liquidity transformation risk as proxied by $\Delta \mathrm{CH}$. Their slope coefficients are comparably large. As liquidity goes down, so does the predictive power of $\Delta \mathrm{CH}$. This is also what one would expect for low IO stocks - if they were indeed priced by the same SDF. Panel $B .1$ shows that this is not the case: The slope coefficients of the predictive regressions are very similar across ILLIQ terciles within the portfolio with
$\mathrm{IO}<30 \%$. This is in line with the notion that risk proxided by CH is not priced in low IO portfolios, i.e.
$\lambda_{j}^{h}=$ const. $=0$, rather than their exposure being constantly zero $\left(\beta_{i, j}=0\right)$.

## Table C.2: Priced and Unpriced Exposure

Panel $A$ shows characteristics of the double-sorted portfolios. Panel $B$ shows slope coefficients of the predictive regression of year $t+1$ returns (normalized by sample means) on portfolios sorted into Amihud (2002) illiquidity measure (ILLIQ) terciles within the low and high IO portfolios on changes in average mutual fund cash-holdings (CH) at the end of year $t$. Returns are normalized by the sample mean as in Haddad and Muir (2021). Simulated $p$-values $p$. computed in the exact same way as described in Table 5. CFD is Dechow et al. (2004) cash-flow duration

Panel A: Portfolio characteristics

|  | IO < 30\% |  |  | IO $\geq 30 \%$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | low ILLIQ | 2 | high ILLIQ | low ILLIQ | 2 | high ILLIQ |
| ILLIQ $\times 10^{3}$ e.w. | 0.0159 | 0.0397 | 0.0856 | 0.0121 | 0.0246 | 0.0659 |
| IO e.w. | 0.16 | 0.15 | 0.13 | 0.53 | 0.50 | 0.47 |
| CFD e.w. | 17.53 | 17.50 | 17.10 | 16.16 | 15.72 | 15.17 |
| Return v.w. \% | 11.14 | 14.78 | 16.26 | 13.82 | 15.27 | 16.79 |
| number of stocks | 254.11 | 254.96 | 255.00 | 201.68 | 201.00 | 202.39 |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Panel $B:$ Regression $\frac{R_{t+1}}{R}=\alpha+b \cdot \Delta C H_{t}$ |  |  |
|  | Panel $A .1: \mathrm{IO}<30$ |  | Panel $A .2: \mathrm{IO} \geq 30 \%$ |
| low ILLIQ | 0 | $b .0607$ |  |
|  | $p .0 .3605$ |  | 0.1254 |
| 2 | 0.0990 |  | 0.0 .1715 |
|  | $p .0 .2665$ |  | 0.0327 |
| high ILLIQ | 0.0520 |  | 0.4043 |

## D. Internet Appendix: Tables and Figures

## Table D.1: Predictive Regressions, no Reinvestment

Slope coefficients from the predictive regressions of log returns on $\log$ dividend growth on the dividend-price ratio and dividend-price ratio autoregression for each of the four IO-sorted portfolios and the CRSP market portfolio (Mkt.). The long-run coefficients are defined as $\beta_{r}^{L R}=\frac{\beta_{r}}{1-k_{1} \rho}$ and $\beta_{d}^{L R}=\frac{\beta_{d}}{1-k_{1} \rho}$. The frequency is yearly. Numbers in brackets are Newey and West (1987) (NW)-t-statistics with 10 lags. For long-run coefficients, standard errors are computed according to the delta method using the NW covariance matrix of residuals. ${ }^{*},{ }^{* *}$ and ${ }^{* * *}$ for one-period slope estimates indicate significance at the ten, five and one percent level, respectively. Formation periods 1980 to 2012.

| $r_{t+1}$ |  | low IO | 2 | 3 | high IO |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\beta_{r}$ | $\begin{gathered} -0.01 \\ (-0.25) \end{gathered}$ | $\begin{aligned} & 0.08^{* * *} \\ & (3.15) \end{aligned}$ | $\begin{gathered} 0.11^{* * *} \\ (3.00) \end{gathered}$ | $\underset{(2.97)}{0.14^{* * *}}$ |
|  | $\beta_{r}^{L R}$ | $\begin{gathered} -0.04 \\ (-0.25) \end{gathered}$ | $\begin{aligned} & 0.35^{* *} \\ & (2.39) \end{aligned}$ | $\begin{aligned} & 0.92^{* *} \\ & (2.09) \end{aligned}$ | $\begin{aligned} & 1.71^{* *} \\ & (2.12) \end{aligned}$ |
|  | $R^{2}$ | 0.00 | 0.08 | 0.12 | 0.10 |
| $\Delta d_{t+1}$ | $\beta_{d}$ | $\begin{gathered} -0.28^{* * *} \\ (-2.81) \end{gathered}$ | $\begin{gathered} -0.14^{* *} \\ (-2.21) \end{gathered}$ | $\begin{gathered} -0.01 \\ (-0.36) \end{gathered}$ | $\begin{gathered} 0.06 \\ (1.32) \end{gathered}$ |
|  | $\beta_{d}^{L R}$ | $\underset{(-3.64)}{-1.04^{* * *}}$ | $\begin{aligned} & -0.65^{* *} \\ & (-2.23) \end{aligned}$ | $\begin{gathered} -0.08 \\ (-0.19) \end{gathered}$ | $\begin{gathered} 0.71 \\ (1.18) \end{gathered}$ |
|  | $R^{2}$ | 0.31 | 0.12 | 0.00 | 0.03 |
| $d p_{t+1}$ | $\rho$ | $\begin{gathered} 0.75^{* * *} \\ (7.52) \end{gathered}$ | $\begin{gathered} 0.80^{* * *} \\ (3.00) \end{gathered}$ | $\begin{aligned} & 0.90^{* * *} \\ & (21.95) \end{aligned}$ | $\begin{aligned} & 0.94^{* * *} \\ & (13.45) \end{aligned}$ |

## Table D.2: Simulation Inference, Excess Returns and Dividend Growth

Slope coefficients and long-run slope coefficients from the predictive regressions of log excess returns on log excess dividend growth on the dividend-price ratio and dividend-price ratio autoregression as defined in (1) to (3) for each of the four IO-sorted portfolios and simulated inference based on 10,000 simulations, yearly regression. The long-run coefficients are defined as $\beta_{r}^{L R}=\frac{\beta_{r}}{1-k_{1} \rho}$ and $\beta_{d}^{L R}=\frac{\beta_{d}}{1-k_{1} \rho} \cdot p$. denotes the estimated probability of observing a more extreme estimate then in the data under the respective nulls $H_{0}^{r}$ and $H_{0}^{d}$. $Q_{p}$ denotes the p-quantile of the simulated distribution. The rows labeled " $p$. joint hyp." show the estimated probability of the event $\beta_{r}^{L R} \leq \hat{\beta}_{r}^{L R} \wedge \beta_{d}^{L R} \leq \hat{\beta}_{d}^{L R}$ occuring given that the respective null hypothesis is true. ${ }^{*}$, ${ }^{* *}$ and ${ }^{* * *}$ indicate that the respective probability is below 10,5 or 1 percent, respectively. The autocorrelation coefficients of $d p$ in the respective portfolios are $0.86,0.80,0.92$ and 0.91 .

| Portfolio |  | est. | $H_{0}^{r}: \beta_{r}=0, \rho=\hat{\rho}$ |  |  | $H_{0}^{d}: \beta_{d}=0, \rho=\hat{\rho}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $p$. | $Q_{0.05}$ | $Q_{0.95}$ | $p$. | $Q_{0.05}$ | $Q_{0.95}$ |
| 1: low IO | $\beta_{r}$ | -0.05 | 0.8716 | -0.08 | 0.18 | 0.0057 | 0.04 | 0.34 |
|  | $\beta_{r}^{L R}$ | -0.32 | 0.8896 | -0.55 | 0.61 | $0.0045^{* * *}$ | 0.19 | 1.73 |
|  | $\beta_{d}$ | -0.20 | 0.5350 | -0.41 | -0.06 | 0.1267 | -0.28 | 0.09 |
|  | $\beta_{d}^{L R}$ | -1.33 | 0.8941 | -1.54 | -0.39 | $0.0043^{* * *}$ | -0.81 | 0.72 |
|  | $p$. joint hyp. |  | 0.8894 |  |  | $0.0043^{* * *}$ |  |  |
| 2 | $\stackrel{\beta_{r}}{\beta_{r}^{L R}}$ | 0.03 | $\begin{aligned} & 0.3044 \\ & 0.2443 \end{aligned}$ | $\begin{aligned} & -0.10 \\ & -0.37 \end{aligned}$ | $\begin{aligned} & 0.11 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.0115^{* *} \\ & 0.0214^{* *} \end{aligned}$ | $\begin{aligned} & 0.09 \\ & 0.23 \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 1.64 \end{aligned}$ |
|  |  | 0.14 |  |  |  |  |  |  |
|  | $\begin{gathered} \beta_{d} \\ \beta_{d}^{L R} \end{gathered}$ <br> p. joint hyp. | $\begin{aligned} & -0.19 \\ & -0.87 \end{aligned}$ | $\begin{aligned} & 0.1944 \\ & 0.2600 \\ & 0.2437 \end{aligned}$ | $\begin{aligned} & -0.58 \\ & -1.37 \end{aligned}$ | $\begin{aligned} & -0.12 \\ & -0.63 \end{aligned}$ | $\begin{aligned} & 0.2311 \\ & 0.0194^{* *} \end{aligned}$ | $\begin{aligned} & -0.37 \\ & -0.76 \end{aligned}$ | $\begin{aligned} & 0.11 \\ & 0.63 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 0.0194** |  |  |
| 3 | $\stackrel{\beta_{r}}{\beta_{r}^{L R}}$ | $\begin{aligned} & 0.09 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 0.2859 \\ & 0.0524^{*} \end{aligned}$ | $\begin{aligned} & -0.07 \\ & -0.72 \end{aligned}$ | $\begin{aligned} & 0.23 \\ & 0.82 \end{aligned}$ | $\begin{aligned} & 0.2194 \\ & 0.5069 \end{aligned}$ | $\begin{aligned} & 0.03 \\ & 0.20 \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 1.67 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |
|  | $\beta_{d}$ | -0.02 | 0.0408* | -0.32 | -0.03 | 0.5750 | -0.21 | 0.07 |
|  | $\beta_{d}^{L R}$ | -0.19 | 0.0540* | -1.73 | -0.18 | 0.5060 | -0.80 | 0.68 |
|  | p. joint hyp. |  | 0.0520* |  |  | 0.5023 |  |  |
| 4: high IO | $\stackrel{\beta_{r}}{\beta_{r}^{L R}}$ | $\begin{aligned} & 0.08 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 0.3941 \\ & 0.2091 \end{aligned}$ | $\begin{aligned} & -0.11 \\ & -1.30 \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 1.29 \end{aligned}$ | $\begin{aligned} & 0.2399 \\ & 0.3693 \end{aligned}$ | $\begin{aligned} & -0.01 \\ & -0.08 \end{aligned}$ | $\begin{aligned} & 0.42 \\ & 2.02 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |
|  | $\begin{gathered} \beta_{d} \\ \beta_{d}^{L R} \\ p . \text { joint hyp. } \end{gathered}$ | $\begin{aligned} & -0.03 \\ & -0.26 \end{aligned}$ | $\begin{aligned} & 0.1665 \\ & 0.2140 \end{aligned}$ | $\begin{aligned} & -0.30 \\ & -2.30 \end{aligned}$ | $\begin{aligned} & 0.05 \\ & 0.29 \end{aligned}$ | $\begin{aligned} & 0.4305 \\ & 0.3604 \end{aligned}$ | $\begin{aligned} & -0.19 \\ & -1.08 \end{aligned}$ | $\begin{aligned} & 0.15 \\ & 1.03 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |
|  |  |  | 0.2087 |  |  | 0.3602 |  |  |

## Table D.3: Predictive Regressions, Quartile Portfolios

Slope coefficients and long-run slope coefficients from the predictive regressions of log returns on log dividend growth on the dividend-price ratio and dividend-price ratio autoregression as defined in (1) to (3) for each of the four IO quartile portfolios. The long-run coefficients are defined as $\beta_{r}^{L R}=\frac{\beta_{r}}{1-k_{1} \rho}$ and $\beta_{d}^{L R}=\frac{\beta_{d}}{1-k_{1} \rho}$. The frequency is yearly. Numbers in brackets are Newey and West (1987) (NW)-t-statistics with 10 lags. For long-run coefficients, standard errors are computed according to the delta method using the NW covariance matrix of residuals. ${ }^{*},{ }^{* *}$ and ${ }^{* * *}$ for one-period slope estimates indicate significance at the ten, five and one percent level, respectively. "NW $t$-stat" in Panel $D$ denotes the $t$-statistic computed with Newey and West (1987) standard errors with three lags. Formation periods 1980 to 2012.

|  | $1^{s t}$ quartile |  |  |  | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Panel $A:$ | Raw returns and dividend growth | $4^{\text {th }}$ quartile |  |  |
| $r_{t+1}$ | $\beta_{r}$ | $0.06^{* *}$ | $0.07^{* * *}$ | $0.12^{* *}$ | $0.07^{* *}$ |
|  |  | $(2.08)$ | $(4.01)$ | $(2.43)$ | $(2.19)$ |
|  | $\beta_{r}^{L R}$ | $0.26^{* * *}$ | $0.53^{* * *}$ | $0.85^{* * *}$ | $0.94^{* * *}$ |
|  |  | $(1.62)$ | $(1.77)$ | $(2.31)$ | $(1.64)$ |
|  | $R^{2}$ | $2.55 \%$ | $6.48 \%$ | $12.86 \%$ | $5.14 \%$ |
| $\Delta d_{t+1}$ | $\beta_{d}$ | -0.17 | $-0.06^{*}$ | -0.02 | -0.01 |
|  |  | $(-1.45)$ | $(-1.32)$ | $(-0.70)$ | $(-0.24)$ |
|  | $\beta_{d}^{L R}$ | $-0.76^{* * *}$ | $-0.47^{* * *}$ | -0.16 | -0.09 |
|  | $(-1.40)$ | $(-2.39)$ | $(-1.38)$ | $(-0.16)$ |  |
|  | $R^{2}$ | $4.44 \%$ | $4.68 \%$ | $0.92 \%$ | $0.04 \%$ |

Panel $B$ : Excess returns and excess dividend growth

| $r_{t+1}-r_{f, t+1}$ | $\beta_{r}$ | 0.02 | $0.04^{* *}$ | 0.08 | 0.03 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $(0.52)$ | $(2.21)$ | $(1.37)$ | $(0.7)$ |
|  | $\beta_{r}^{L R}$ | 0.08 | $0.28^{* *}$ | $0.55^{* * *}$ | 0.36 |
|  |  | $(0.43)$ | $(1.00)$ | $(1.42)$ | $(0.58)$ |
| $\Delta d_{t+1}-r_{f, t+1}$ | $\beta_{d}$ | $0.22 \%$ | $1.92 \%$ | $5.32 \%$ | $0.7 \%$ |
|  |  | $-0.22^{*}$ | $-0.09^{* *}$ | $-0.07^{* *}$ | -0.05 |
|  | $\beta_{d}^{L R}$ | $(-1.80)$ | $(-2.38)$ | $(-2.26)$ | $(-1.49)$ |
|  |  | $-0.95^{* * *}$ | $-0.72^{* * *}$ | $-0.46^{* * *}$ | $-0.67^{* *}$ |
|  | $R^{2}$ | $(-1.67)$ | $(-1.79)$ | $(-1.74)$ | $(-1.05)$ |
|  |  | $6.61 \%$ | $9.79 \%$ | $6.65 \%$ | $2.12 \%$ |


| Panel $C$ : Dividend-price ratio autoregression |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $d p_{t+1}$ | $\rho$ | $0.79^{* * *}$ | $0.89^{* * *}$ | $0.88^{* * *}$ | $0.95^{* * *}$ |
|  | $(5.46)$ | $(21.19)$ | $(18.77)$ | $(38.45)$ |  |

Panel $D$ : Descriptive statistics

| IO | mean, \% | 6.49 | 25.17 | 47.41 | 73.29 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| return | mean, \% | 11.63 | 11.74 | 13.01 | 13.07 |
|  | NW t-stat | 6.19 | 4.94 | 4.32 | 4.88 |
|  | std, \% | 19.76 | 15.36 | 17.72 | 18.10 |
| div. growth | mean, \% | 16.45 | 0.32 | 4.66 | 7.49 |
|  | NW t-stat | 1.07 | 0.13 | 2.48 | 2.84 |
|  | std, \% | 88.85 | 14.66 | 12.90 | 21.24 |
| PD-ratio | mean | 62 | 44 | 40 | 65 |
|  | std | 24 | 24 | 20 | 36 |

## Table D.4: Simulation Inference, Quarterly Frequency

Slope coefficients and long-run slope coefficients from the predictive regressions of log returns on log dividend growth on the dividend-price ratio and dividend-price ratio autoregression as defined in (1) to (3) for each of the four IO-sorted portfolios and simulated inference based on 10,000 simulations, quarterly regression. The long-run coefficients are defined as $\beta_{r}^{L R}=\frac{\beta_{r}}{1-k_{1} \rho}$ and $\beta_{d}^{L R}=\frac{\beta_{d}}{1-k_{1} \rho} . p$. denotes the estimated probability of observing a more extreme estimate then in the data under the respective nulls $H_{0}^{r}$ and $H_{0}^{d}$. $Q_{p}$ denotes the p-quantile of the simulated distribution. The rows labeled " $p$. joint hyp." show the estimated probability of the event $\beta_{r}^{L R} \leq \hat{\beta}_{r}^{L R} \wedge \beta_{d}^{L R} \leq \hat{\beta}_{d}^{L R}$ occuring given that the respective null hypothesis is true. *, ${ }^{* *}$ and ${ }^{* * *}$ indicate that the respective probability is below 10,5 or 1 percent.

| Portfolio |  | est. | $\begin{gathered} H_{0}^{r}: \beta_{r}=0, \rho=\hat{Q}_{0.05} \\ p . \end{gathered}$ |  |  | $\begin{gathered} H_{0}^{d}: \beta_{d}=0, \rho=\hat{Q}_{0.05} \\ p . \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1: low IO | $\begin{gathered} \beta_{r} \\ \beta_{r}^{L R} \\ \beta_{d} \\ \beta_{d}^{L R} \\ \text { p. joint hyp. } \end{gathered}$ | 0.01 | 0.1983 | -0.02 | 0.03 | $0.0000^{* * *}$ | 0.10 | 0.15 |
|  |  | 0.12 | 0.1301 | -0.17 | 0.16 | $0.0000{ }^{* * *}$ | 0.52 | 1.44 |
|  |  | -0.11 | 0.2091 | -0.23 | -0.08 | 0.0481* | -0.11 | 0.04 |
|  |  | -0.89 | 0.1525 | -1.16 | -0.84 | $0.0000{ }^{* * *}$ | -0.48 | 0.44 |
|  |  |  | 0.1301 |  |  | 0.0000 *** |  |  |
| 2 | $\begin{gathered} \beta_{r} \\ \beta_{r}^{L R} \\ \beta_{d} \\ \beta_{d}^{L R} \\ \text { p. joint hyp. } \end{gathered}$ | 0.03 | $0.0100^{* *}$ | -0.02 | 0.02 | $0.0000^{* * *}$ | 0.11 | 0.16 |
|  |  | 0.25 | $0.0011^{* * *}$ | -0.13 | 0.13 | $0.0000^{* * *}$ | 0.54 | 1.44 |
|  |  | -0.10 | 0.0870* | -0.24 | -0.09 | 0.0673* | -0.11 | 0.04 |
|  |  | -0.75 | $0.0013^{* * *}$ | -1.13 | -0.87 | $0.0000^{* * *}$ | -0.46 | 0.44 |
|  |  |  | $0.0011^{* * *}$ |  |  | $0.0000{ }^{* * *}$ |  |  |
| 3 | $\begin{gathered} \beta_{r} \\ \beta_{r}^{L R} \\ \beta_{d} \\ \beta_{d}^{L R} \\ p . \text { joint hyp. } \end{gathered}$ | 0.04 | 0.0490** | -0.02 | 0.04 | 0.0039*** | 0.05 | 0.11 |
|  |  | 0.48 | 0.0049*** | -0.29 | 0.31 | 0.0584* | 0.46 | 1.46 |
|  |  | -0.04 | $0.0174^{* *}$ | -0.16 | -0.05 | 0.2375 | -0.08 | 0.03 |
|  |  | -0.52 | $0.0051^{* * *}$ | -1.29 | -0.69 | 0.0580* | -0.54 | 0.46 |
|  |  |  | 0.0049*** |  |  | $0.0580^{* * *}$ |  |  |
| 4: high IO | $\begin{gathered} \beta_{r} \\ \beta_{r}^{L R} \\ \beta_{d} \\ \beta_{d}^{L R} \\ \text { p. joint hyp. } \end{gathered}$ | 0.05 | 0.0661 * | -0.03 | 0.05 | 0.0432 | 0.05 | 0.12 |
|  |  | 0.62 | 0.0032*** | -0.37 | 0.40 | 0.1664 | 0.47 | 1.45 |
|  |  | -0.03 | $0.0042^{* * *}$ | -0.15 | -0.05 | 0.3039 | -0.08 | 0.03 |
|  |  | -0.38 | $0.0034^{* * *}$ | -1.37 | -0.60 | 0.1625 | -0.53 | 0.45 |
|  |  |  | $0.0032^{* * *}$ |  |  | 0.1625 |  |  |

## Table D.5: Predictive Regressions, Quartile Portfolios, Dividend Payers

Slope coefficients and long-run slope coefficients from the predictive regressions of log returns on $\log$ dividend growth on the dividend-price ratio and dividend-price ratio autoregression as defined in (1) to (3) for each of the four IO quartile portfolios, restricted to stocks that paid dividends in the formation period. The long-run coefficients are defined as $\beta_{r}^{L R}=\frac{\beta_{r}}{1-k_{1} \rho}$ and $\beta_{d}^{L R}=\frac{\beta_{d}}{1-k_{1} \rho}$. The frequency is yearly. "t.s." indicates moments computed along the time-series dimension at portfolio level, "e.w." and "v.w." denote time-series moments of cross sectional means computed equally (value) weighted. "std." denotes usual standard deviations. AC(1) denotes the first order autocorrelation coefficient. Numbers in brackets are Newey and West (1987) (NW)-t-statistics with 10 lags. For longrun coefficients, standard errors are computed according to the delta method using the NW covariance matrix of residuals. ${ }^{*},{ }^{* *}$ and ${ }^{* * *}$ for one-period slope estimates indicate significance at the ten, five and one percent level, respectively. Formation periods 1980 to 2012.

Panel A: Descriptive statistics

| IO return | ew. mean | 0.1105 | 0.3357 | 0.5394 | 0.7488 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { t.s. mean } \\ & \text { ATd.(1) } \end{aligned}$ | $\begin{array}{r} 0.1311 \\ 0.1461 \\ -0.1757 \end{array}$ | $\begin{aligned} & 0.1214 \\ & 0.1597 \\ & 0.0029 \end{aligned}$ | $\begin{aligned} & 0.1262 \\ & 0.1608 \\ & 0.0346 \end{aligned}$ | $\begin{gathered} 0.1336 \\ 0.1773 \\ -0.1263 \end{gathered}$ |
| div. growth | $\begin{aligned} & \text { t.s. mean } \\ & \text { std. } \end{aligned}$ | $\begin{array}{r} -0.0418 \\ 0.2001 \\ -0.2918 \end{array}$ | $\begin{gathered} -0.0022 \\ 0.1265 \\ -0.2211 \end{gathered}$ | $\begin{array}{r} 0.0731 \\ 0.1488 \\ -0.1621 \end{array}$ | $\begin{array}{r} 0.0475 \\ 0.1821 \\ -0.3631 \end{array}$ |
| D/P | t.s. mean std. | $\begin{aligned} & 0.0394 \\ & 0.0143 \end{aligned}$ | $\begin{aligned} & 0.0403 \\ & 0.0176 \end{aligned}$ | $\begin{aligned} & 0.0319 \\ & 0.0129 \end{aligned}$ | $\begin{aligned} & 0.0255 \\ & 0.0107 \end{aligned}$ |
|  | Panel $B$ : Predictive regression slope coefficients |  |  |  |  |
|  |  | $1^{\text {st }}$ quartile | 2 | 3 | $4^{\text {th }}$ quartile |
| $r_{t+1}$ | $\beta_{r}$ | $\begin{aligned} & 0.04 \\ & (1.82) \end{aligned}$ | $\begin{gathered} 0.11^{* * *} \\ (5.80) \end{gathered}$ | $\begin{gathered} 0.11^{* *} \\ (2.65) \end{gathered}$ | $\begin{gathered} 0.11^{* * *} \\ (3.49) \end{gathered}$ |
|  | $\beta_{r}^{L R}$ | $\begin{aligned} & 0.18 \\ & (0.68) \end{aligned}$ | $\underset{(2.60)}{0.71^{* * *}}$ | $\begin{aligned} & 0.87^{*} \\ & (1.73) \end{aligned}$ | $\begin{aligned} & 1.21^{*} \\ & (1.88) \end{aligned}$ |
|  | $R^{2}$ | 0.88\% | 14.4\% | 8.33\% | 6.45\% |
| $\Delta d_{t+1}$ | $\beta_{d}$ | $\begin{aligned} & -0.19 \\ & (-1.24) \end{aligned}$ | $\begin{aligned} & -0.06 \\ & (-1.30) \end{aligned}$ | $\underset{(-0.03)}{-0.02}$ | $\begin{gathered} 0.02 \\ (0.67) \end{gathered}$ |
|  | $\beta_{d}^{L R}$ | $\underset{(-1.80)}{-0.83^{*}}$ | $\begin{aligned} & -0.30 \\ & (-1.26) \end{aligned}$ | $\underset{(-0.41)}{-0.14}$ | $\begin{gathered} 0.20 \\ (0.32) \end{gathered}$ |
|  | $R^{2}$ | 7.4\% | 3.39\% | 0.29\% | 0.16\% |
| $d p_{t+1}$ | $\rho$ | $\begin{gathered} 0.8044^{* * *} \\ (5.42) \end{gathered}$ | $\begin{gathered} 0.8369^{* * *} \\ (13.65) \\ \hline \end{gathered}$ | $\begin{gathered} 0.8941^{* * *} \\ (16.98) \\ \hline \end{gathered}$ | $\begin{gathered} 0.9303^{* * *} \\ (17.80) \\ \hline \end{gathered}$ |

Figure D.1: Share of Variation, Two- and Three-Year Predictive Regressions
Share of variation due to either dividend growth or returns as computed with long-run coefficients $\beta_{r}^{L R}=\frac{\beta_{r}}{1-k_{1} \rho}$ and $\left|\beta_{d}^{L R}\right|=\frac{\left|\beta_{r}\right|}{1-k_{1} \rho}$, respectively, for each of the four IO-sorted portfolios with two (left) and three (right) year horizons.


Figure D.2: Share of Return and Dividend Growth Variation for Alternative Sorts
Share of variation due to either dividend growth or returns as computed with long-run coefficients $\beta_{r}^{L R}=\frac{\beta_{r}}{1-k_{1} \rho}$ and $\left|\beta_{d}^{L R}\right|=\frac{\left|\beta_{r}\right|}{1-k_{1} \rho}$, respectively, for each of the portfolios split along the median for the $13(\mathrm{f})$ subcategories and by S\&P 500 index inclusion, respectively. Missing observations for a subcategory are treated as having zero holdings by that subcategory.


## Table D.6: Predictive Regressions Using the Earnings-Price Ratio

Slope estimates of predictive regressions of log earnings growth $\log$ and returns on the $\log$ earnings-price ratio $e p$ for each of the four portfolios. Number is parentheses are Newey-West $t$-statistics. $\mathrm{R}^{2}$ is given in \%. The sample period is 1980 to 2013. Stocks with negative earnings are discarded for the computation of EP to ensure defined $\log$ values.

|  | Panel $A$ |  | Panel $B$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\Delta e_{t+1}=\alpha+\beta_{e} e p_{t}$ |  | $r_{t+1}=\mu+\beta_{r} e p_{t}$ |  |
|  | $\beta_{E}$ | $\mathrm{R}^{2}$ | $\beta_{r}$ | $\mathrm{R}^{2}$ |
| low IO | 0.13 | 1.81 | 0.04 | 0.86 |
|  | $(1.16)$ |  | $(0.81)$ |  |
| 2 | $0.18^{* *}$ | 1.55 | 0.06 | 1.24 |
| 3 | $(2.04)$ |  | $(1.31)$ |  |
|  | 0.10 | 0.62 | $0.10^{* *}$ | 5.30 |
| high IO | $(0.93)$ | -0.06 | 0.12 | $(2.25)$ <br> $(-0.49)$ |
|  |  | $0.21^{* * *}$ | 12.38 |  |

## Table D.7: Predictive Regressions using cay, the Market DP and SVIX

Slope estimates of predictive regressions of returns $R$ on predictor variables cay (from Martin Lettau's website), the market dividend price ratio (Mkt. DP) and the SVIX divided by the risk-free rate risk $\left(R_{f, t}^{-1} S V I X^{2}\right)$. The regression in Panel $C$ is on quarterly frequency with sample period 1996 to 2012 . $R_{f, t}^{-1} S V I X^{2}$ is from Ian Martin's website. For the other predictors it is 1980 to 2012. p. indicates the probability under the null of observing a slope coefficient larger than in the data. ${ }^{*}$, ${ }^{* *}$ and ${ }^{* * *}$ indicate that the respective probability is below 10,5 or 1 percent, respectively. It is computed using 5,000 artificial data sets generated under the null of no predictability:

$$
\begin{aligned}
Y_{t+1} & =\bar{Y}+\epsilon_{t+1}^{Y} \\
X_{t+1} & =\rho X_{t}+\epsilon_{t+1}^{X}
\end{aligned}
$$

where $\bar{Y}, \rho$ and $\operatorname{Cov}\left(\epsilon^{Y}, \epsilon^{r}\right)$ are as estimated from the data. $E\left[\epsilon^{Y}\right]=E\left[\epsilon^{x}\right]=0$.

|  | Panel $A$ : |  | Panel $B$ : |  | Panel $C$ : |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | cay | $\mathrm{R}^{2}$ | Mkt. DP | $\mathrm{R}^{2}$ | $R_{f, t}^{-1} S V I X^{2}$ | $\mathrm{R}^{2}$ |
| low IO | $\begin{gathered} \beta \\ -6.1891 \\ \hline \text { p.0.6897 } \end{gathered}$ | 0.24 | $\begin{gathered} \beta \\ 6.2077 \\ p .0 .4498 \end{gathered}$ | 0.5 | $\begin{gathered} \hline \hline \beta \\ 0.6035 \\ p .0 .1451 \end{gathered}$ | 2.98 |
| 2 | ${ }_{p}^{23.0088}$ | 6.07 | ${ }_{\text {p. }}^{19.09661}$ | 4.69 | ${ }_{p .0 .4498}^{0 .}$ | 2.44 |
| 3 | ${ }_{p}^{22.4524}$ | 6.39 | ${ }_{p}^{18.0429}$ | 4.19 | $\underset{p .72 .0677}{0.7278^{*}}$ | 5.80 |
| high IO | $\begin{gathered} 20.5939 \\ p .0 .1072 \end{gathered}$ | 5.66 | $\begin{aligned} & 22.5351 \\ & p .0 .3511 \\ & \hline \end{aligned}$ | 6.54 | $\begin{aligned} & 0.6736 \\ & \substack{0.1041} \end{aligned}$ | 4.39 |

## Table D.8: Regression coefficients, high and low valuation

Slope coefficients from predictive regressions of returns on the dividend yield from Equation (1). The sample is divided by above (high $d p$ ) or below (low $d p$ ) median dividend yield. Quarterly frequency. Numbers in brackets are standard $t$-statistics computed under the assumption that the estimators for the respective $\beta_{r}^{\text {high }}$ and $\beta_{r}^{\text {low }}$ are uncorrelated. Formation periods Q1-1980 to Q2-2013.

|  | $\beta_{r}^{\text {high }}$ | $\beta_{r}^{\text {low }}$ | $\Delta \beta_{r}$ |
| :---: | :---: | :---: | :---: |
| low IO | 0.026 | 0.022 | 0.004 |
|  | $(0.60)$ | $(0.82)$ | $(0.42)$ |
| 2 | 0.122 | 0.026 | 0.096 |
|  | $(2.90)$ | $(1.09)$ | $(11.71)$ |
| 3 | 0.058 | 0.097 | -0.040 |
|  | $(1.62)$ | $(2.35)$ | $(-4.20)$ |
| high IO | 0.118 | 0.101 | 0.017 |
|  | $(2.30)$ | $(2.05)$ | $(1.37)$ |

## Table D.9: Predictive Regressions of Returns on the Average Degree of IO

Slope estimates $b$ of predictive regressions of aggregate sample returns normalized by their sample mean on the detrended average degree of institutional ownership in the overall sample. The sample period is 1981 to 2013. p. indicates the probability of observing a slope coefficient smaller than in the data. It is computed using 5,000 artificial data sets generated under the null of no predictability:

$$
\begin{aligned}
Y_{t+1} & =\bar{Y}+\epsilon_{t+1}^{Y} \\
X_{t+1} & =\rho X_{t}+\epsilon_{t+1}^{X}
\end{aligned}
$$

where $\bar{Y}, \rho$ and $\operatorname{Cov}\left(\epsilon^{Y}, \epsilon^{r}\right)$ are as estimated from the data. $E\left[\epsilon^{Y}\right]=E\left[\epsilon^{x}\right]=0$.

|  | $b$ | $\mathrm{R}^{2}$ |
| :---: | :---: | :---: |
| low IO | -0.7640 | 0.0003 |
|  | p. 0.5536 |  |
| 2 | -0.9224 | 0.0008 |
|  | p. 0.5525 |  |
| 3 | 0.2607 | 0.0001 |
|  | p. 0.4527 |  |
| high IO | 0.6250 | 0.0005 |
|  | p.0.4594 |  |
| Mkt. | 0.5694 | 0.0003 |
|  | p. 0.4410 |  |

Figure D.3: Share of Return and Dividend Growth Variation for Subsamples
Share of variation due to either dividend growth or returns as computed with long-run coefficients $\beta_{r}^{L R}=\frac{\beta_{r}}{1-k_{1} \rho}$ and $\left|\beta_{d}^{L R}\right|=\frac{\left|\beta_{r}\right|}{1-k_{1} \rho}$, excluding microcaps (stocks in bottom $20 \%$ of market capitalization) (upper left), prices below one dollar (upper right), five dollars (mid left) or microcaps and prices below five dollars (mid right) or with quartile portfolios excluding microcaps (bottom), respectively.




## References

Aminud, Y. (2002): "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, 5, 31-56.

Berger, E. (2019): "Does stock mispricing drive firm policies? Mutual fund fire sales and selection bias," Working Paper.

Chen, L. (2009): "On the reversal of return and dividend growth predictability: A tale of two periods," Journal of Financial Economics, 92, 128 - 151.

Coval, J. and E. Stafford (2007): "Asset fire sales (and purchases) in equity markets," Journal of Financial Economics, 86, 479-512.

Dechow, P. M., R. G. Sloan, and M. T. Soliman (2004): "Implied Equity Duration: A New Measure of Equity Risk," Review of Accounting Studies, 18, 197-228.

Goyal, A. and I. Welch (2008): "A comprehensive look at the empirical performance of equity premium prediction," Review of Financial Studies, 21, 1455-1508.

Haddad, V. and T. Muir (2021): "Do Intermediaries Matter for Aggregate Asset Prices?" Working Paper 28692, National Bureau of Economic Research.

Ma, Y., K. Xiao, and Y. Zeng (2020): "Mutual fund liquidity transformation and reverse flight to liquidity,"

Newey, W. and K. West (1987): "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, 55, 703-708.

Scholes, M. S. (2000): "Crisis and risk management," American Economic Review, 90, 17-21.


[^0]:    * WU Vienna University of Economics and Business and VGSF, Welthandelsplatz 1, 1020 Vienna, Austria. E-mail: ruweber@wu.ac.at.

[^1]:    ${ }^{32}$ Using instead $\rho=0.99$ or $\rho=0.975$ for all portfolios gives qualitatively similar, albeit more extreme rejections of either null hypothesis (not tabulated).

