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Abstract

This internet appendix accompanies the paper “Crowding and Tail Risk in Momentum

Returns.” It contains the literature review in Section IA.A, details on the model’s derivation and

solution in Sections IA.B to IA.D, and further simulation results in Section IA.E.

IA.A. Existing Literature

Our paper is related to the empirical and theoretical literature on momentum. Momentum

was initially documented for US stock returns (Levy, 1967; Jegadeesh and Titman, 1993) and has

since been documented for stock returns in most countries (Rouwenhorst, 1998) and across asset

classes (Asness, Moskowitz, and Pedersen, 2013). Besides its very high average returns, momentum

carries significant downside risk or negative skewness in the form of occasional large crashes (Daniel
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and Moskowitz, 2016). Existing research also shows that institutional investors are momentum

traders, i.e., tilt their portfolios towards momentum stocks (Grinblatt et al., 1995; Lewellen, 2011;

Edelen et al., 2016; Baltzer et al., 2019). Our paper contributes to this literature by directly

examining whether uncertain institutional participation in the momentum strategy is the source of

higher-moment return characteristics.

A recent empirical literature examining the time series properties of momentum finds

results broadly consistent with an over-reaction explanation of the effect. The premium is stronger

in periods of bull markets (Cooper et al., 2004), high liquidity (Avramov, Cheng, and Hameed,

2016), and high sentiment (Antoniou, Doukas, and Subrahmanyam, 2013). Hillert, Jacobs, and

Müller (2014)’s finding that momentum is more pronounced in firms with more media coverage also

supports an over-reaction interpretation, as does the evidence in Edelen et al. (2016) regarding

institutional purchases in the portfolio-formation period.

On the other hand, the momentum premium is stronger in stocks experiencing frequent but

small price changes that are less likely to attract attention (Da et al., 2014) or those characterized

by small trades of investors under-reacting to past returns (Hvidkjaer, 2006). Also there is recent

evidence that momentum is somehow explained by improvements in firm fundamentals (Novy-Marx,

2015; Sotes-Paladino, Wang, and Yao, 2016; DeMiguel, Martín-Utrera, Nogales, and Uppal, 2020).

This evidence suggests momentum investors exploit under-reaction and as such (exogenous

increases in) crowding should reduce its premium.

The related theoretical literature on momentum offers theories based on institutional

investors and fund flows (Vayanos and Woolley, 2013) or behavioral biases such as over-reaction /

self-attribution (see, e.g., Barberis, Shleifer, and Vishny, 1998; Daniel, Hirshleifer, and

Subrahmanyam, 1998) or information externalities and gradual diffusion of information (see, e.g.,

Stein, 1987; Hong and Stein, 1999; Andrei and Cujean, 2017). Our work is most closely related to
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the latter branch of the literature.

Our model builds on the information externality that the actions of unanticipated

momentum investors impose on their peers. Thus, it is closest in development to Stein (2009), but

follows in a long line of research relating to arbitrageur information coordination and externalities.

This literature dates to Stein (1987) who characterizes the externality, and Scharfstein and Stein

(1990) and Froot, Scharfstein, and Stein (1992) who relate it to herding behavior. Hong and Stein

(1999) relate the externality to persistence and reversal patterns in returns. A related branch of the

literature identifies the positive feedback trading of momentum investors as a source of destabilizing

noise in prices, e.g., De Long, Shleifer, Summers, and Waldmann (1990a,b).

More recently, Kondor and Zawadowski (2019) study whether the presence of more

arbitrageurs improves welfare in a model of capital reallocation. Trades in the model can become

crowded due to imperfect information, but arbitrageurs can also devote resources to learn about the

number of earlier entrants. They find that if the number of arbitrageurs is high enough, more

arbitrageurs do not change capital allocations, but decrease welfare due to costly learning.

Related empirical research includes Hanson and Sunderam (2014) who construct a measure

of the capital allocated to momentum and the valuation anomaly (book-to-market or B/M) using

short-interest. They find some evidence that an increase in arbitrage capital has reduced the

returns on B/M and momentum strategies. In addition, Lou and Polk (2013) proxy for momentum

capital with the residual return correlations in the short and long leg of the momentum strategy

and find that momentum profits are lower and crashes more likely in times of higher momentum

capital. Baltzer et al. (2019) classify institutions as a whole as momentum traders and find that, in

Germany, momentum trading peaked before the crash. While our analysis uses a different approach

and insights in proxying for momentum capital, our results on unanticipated momentum capital

and momentum returns are generally consistent with these findings, but we do not attribute
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momentum’s crashes to crowding. Finally, Huang (2015) proposes a momentum gap variable, which

is defined as the cross sectional dispersion of formation period returns. He shows that this measure

predicts momentum returns and crashes, and argues that this is consistent with Stein (2009)’s

crowded trade theory. Throughout our analysis, we control for momentum’s past volatility, which

has a correlation of 0.73 with the momentum gap measure. We also verify in Section IV.G that

momentum gap’s predictive power for crash risk is unrelated to various institutional measures of

momentum crowding. This corroborates our finding that momentum’s crashes are not explained by

crowding.

We go beyond the usual focus on first moments to study the determinants of the risk of

momentum. This relates our work to a recent strand of literature focusing on the predictability of

the moments of momentum. Barroso and Santa-Clara (2015) show that the volatility of momentum

is highly predictable and it is a useful variable to manage the risk of the strategy. Daniel and

Moskowitz (2016) argues the crash risk of momentum is due to the optionality effect of the losers

portfolio that resembles an out-of-the-money call option after extreme bear markets. Jacobs,

Regele, and Weber (2015) examine the expected skewness of momentum as a potential explanation

of its premium. They propose an enhanced momentum strategy but find that managing its risk

results in a performance hard to reconcile with a premium for skewness. Grobys, Ruotsalainen, and

Äijö (2018) find industry momentum has different risk properties from standard momentum but

shows similar gains from risk management. Our results address the question of whether investors

condition their exposure to momentum using this new-found predictability. Consistent with the

economic case for managing the risk of momentum, we find less crowding in momentum after

periods of high volatility.
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IA.B. Derivation of Equation (3)

First notice that solving equation (2) is equivalent to solving each of the following

(presuming γ > 1)

max
ς

K1−γ
type,2

1− γ · E
[
e(1−γ)(rf+log(1+ς(erp−rf−1)))] ⇔ min

ς
logE

[
e(1−γ) log(1+ς(erp−rf−1))] ,

where ς is the weight on the risky asset portfolio and rp its log return, and rf is the log risk-free

rate. Second, to solve for the fraction of wealth invested in the risky portfolio, we follow Section

2.1.1 in Campbell and Viceira (2002, Internet Appendix) and approximate the function

g (rp − rf ) = log (1 + ς (erp−rf − 1)) with a second-order Taylor expansion around 0:1

g (rp − rf ) � log (1) + ςe0

1 + ς (e0 − 1) (rp − f) + 1
2
ς
[
e0 (1 + ς

(
e0 − 1

))
− ςe2·0]

(1 + ς (e0 − 1))2 (rp − f)2

� ς (rp − f) + 1
2
(
ς − ς2

)
σ2,(IA.B.1)

where (rp − f)2 is replaced with its conditionally expectation σ2 as in Campbell and Viceira (2002,

Internet Appendix). Using equation (IA.B.1), we can rewrite the maximization problem to

min
ς

logE
[
exp

[1
2
(
ς − ς2

)
(1− γ)σ2

p

]
· exp [ς (1− γ) (rp − rf )]

]
⇔min

ς

1
2
(
ς − ς2

)
(1− γ)σ2

p + ς (1− γ) (µp − rf ) + 1
2 ς

2 (1− γ)2 σ2
p

⇔max
ς

ς

(
µp − rf + 1

2σ
2
p

)
− 1

2 ς
2γσ2

p,

1See also, e.g., Peress (2004), for the use of this approximate solution to the CRRA portfolio choice problem in a

noisy rational expectations setting.
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which has the solution

ς =
µp − rf + 1

2σ
2
p

γσ2
p

.

To proceed, we assume that log returns and arithmetic returns are similar such that

µp − rf + 1
2σ

2
p � e

µp−rf � µp − rf . We then determine µp and σ2
p for a portfolio that consists of the

market investment plus a long-short momentum investment. Because the momentum portfolio is

self-financing, feasible combinations of the market portfolio and the momentum portfolio are given

by the weight vector w′ =
[
1 wm

]
, i.e., hold the market portfolio plus a proportionate long-short

momentum overlay wm. The optimal risky portfolio wm solves the constrained optimization

min
w

w′Σw
2 , s.t. µ′w = r∗ − rf ,

where

w =

 1

wm

 , µ =

 r − rf

Etype [m+ ε]

 , Σ =

 σ2
χ 0

0 V artype [m+ ε]

 ,
and r∗ − rf is a target return premium that traces out the efficient frontier, and r is the required

return on the market portfolio. The solution is

(IA.B.2) wm = Etype [m+ ε] /V artype [m+ ε]
(r − rf )

/
σ2
χ

.

Using equation (IA.B.2), the parameters of the optimal risky portfolio are

µp − rf =
[
r − rf Etype [m+ ε]

]  1

wm

 = r − rf + wmEtype [m+ ε] , and(IA.B.3)

σ2
p = w′Σw = σ2

χ + w2
mV artype [m+ ε] =

σ2
χ

r − rf
(r − rf + wmEtype [m+ ε]) .(IA.B.4)
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Thus,

(IA.B.5) ς = r − rf
γσ2

χ

.

Combining Eqs. (IA.B.2) and (IA.B.5),

Demand = wmςKtype,2 = Etype [m+ ε]
γV artype [m+ ε]Ktype,2.

IA.C. Negative Market-clearing Price for Momentum Portfolio

In the case of kM > λ, the demand of momentum investors increases with a positive f faster

than the supply can keep up with, implying an increasingly large buying imbalance as f rises

(depicted in Figure IA.3, Plot C.1). This again suggests that momentum investors buy up to their

capacity, leading to a subsequent momentum crash.

However, when kM > λ there is also a (finite) negative value for f that clears the market.

While we discount this equilibrium as implausible, we note that even here the contrary pricing of

winner and loser stocks implies a substantial negative momentum return because the

formation-period ‘winners’ are actually the fundamental losers, and vice versa.

It is not clear how this f < 0 equilibrium could be found, because informed investors

presumably seed formation-period returns with buying of the momentum portfolio (and an initially

positive f). Nevertheless, it is a call auction and if they were to bizarrely trade contrary to their

private information, seeding a negative value for f , then they might induce momentum investors

into selling (buying) so much winner (loser) stock that their bizarre trade is preferred.
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IA.D. Probability Density Function Conditional on f

Below we derive the expression for p (δ|f). By the definition of conditional probability, we

have

p (δ|f) = p2(δ, f)
p1(f) ,

where numerical subscripts distinguish the functional form of each probability density function. To

solve for these densities, we exchange the primitive random variable kI with the observable random

variable f . Formally, let

F : (δ, kI , kM )→ f = 1
D

δkI + δE

1 + δV

σ2
ε

kM

 ,
which characterizes market clearing as in equation (4). We map the primitive random variables into


δ

kM

kI


→


δ

kM

F (δ, kM , kI)


.

Next, we need

| J | = det



∂δ
∂δ

∂δ
∂kM

∂δ
∂kI

∂kM
∂δ

∂kM
∂kM

∂kM
∂kI

∂F−1

∂δ
∂F−1

∂kM
∂F−1

∂kI


= D

δ
.
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Following a standard result (see, e.g., Theorem 2 in Section 4.4 of Rohatgi and Saleh, 2000), the

density is then given by

p3 (δ, kM , f) = g (δ)h
(
kM , F

−1
)
| J |

= g (δ)h

kM , 1
δ

fD − δE

1 + δV

σ2
ε

kM

 D

δ
,(IA.D.1)

where D is as in equation (4). Integrating kM and then δ out of equation (IA.D.1) gives

p2(δ, f) =g (δ)
δ

∫ 1

0
h

kM , 1
δ

fD − δE

1 + δV

σ2
ε

kM

DdkM ,
p1(f) =

∫ ∞
0

g (δ)
δ

∫ 1

0
h

kM , 1
δ

fD − δE

1 + δV

σ2
ε

kM

DdkMdδ.

We then obtain

p (δ|f) =

g(δ)
δ

∫ 1
0 h

(
kM ,

1
δ

(
fD − δE

1+ δV

σ2
ε

kM

))
DdkM

∫∞
0

g(δ)
δ

∫ 1
0 h

(
kM ,

1
δ

(
fD − δE

1+ δV

σ2
ε

kM

))
DdkMdδ

.

IA.E. Additional simulation results

This section of the internet appendix investigates the impact of changing the distributional

assumptions for δ and higher concentration parameters in the simulation analysis of Section III. It

also analyses the relation between expected momentum returns and unexpected momentum capital

in the different simulations.

First, we ask whether our results are robust to using a higher concentration parameter for

the Dirichlet distribution and a uniform distribution for δ instead of a log-normal distribution. In

particular, we let δ follow a uniform distribution on [0.06, 0.12], and let αi = 12. The results are

reported in Figure IA.1 and Table IA.1. In summary, the results are very similar to those in Section
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III. In the myopic beliefs case, momentum returns again have pronounced negative skewness, high

volatility and large excess kurtosis, and they are well behaved with low volatility, slightly positive

skewness, and no excess kurtosis in the rational beliefs case.

Second, we ask whether the beliefs specifications for unknown capital become more similar

to the known capital case when var(k) is very small. To achieve this, we set the concentration

parameters αi = 60 in the Dirichlet distribution, and leave the setting otherwise identical to the one

in the paper. The results in Figure IA.2 and Table IA.2 verify that crashes disappear in the myopic

beliefs case once capital uncertainty is negligible. Momentum returns in all four specifications are

now well behaved and have similar return characteristics.

Finally, we analyze the relation between unexpected momentum capital kM − EkM and

expected momentum returns m. To do this, we rank the simulation trials for the different

specifications in Figure 1, Figure IA.1, and Figure IA.2 into 100 bins according to kM − EkM , and

report the averages within each bin to approximate a conditional expectation. All nine subplots of

Figure IA.3 corresponding to different distributional and beliefs assumptions show that the residual

information m not incorporated into prices decreases with crowd size. Thus, the model supports

the negative relation between momentum capital and expected momentum returns we document

empirically.
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Table IA.1: Momentum returns in simulations—uniform distribution

The table reports unconditional return statistics for the simulations described in the caption of Figure IA.1. Panel A
contains the descriptive statistics of expected momentum returns across all simulations. Mean, stdev, skew, kurt,
min and max refer to average, standard deviation, skewness, kurtosis, minimum, and maximum, respectively. The
simulations are computed under the indicated belief specification, and the Dirichlet distribution has the concentration
parameters αi = 12, and δ follows a uniform distribution on [0.06, 0.12]. Optimal linear beliefs are chosen to maximize
the utility of a CRRA investor with γ = 2, and they are reported in the row λ−1. Profits are likewise the expected
portfolio returns of a γ = 2 investor, and certainty equivalents ‘cer(γ)’ are calculated for γ = 2, 4, 10, with portfolio
weights calculated as in (3). Realized momentum returns in Panel B are given by m+ ε where ε is randomly drawn
from a zero-mean normal distribution with standard deviation 0.125. Cer(γ) is an arithmetic return, and all other
statistics are based on log returns.

Belief known rational myopic optimal
spec. linear
λ−1 1.50 1.34

Panel A. Expected momentum returns m
mean 3.0% 3.0% 2.8% 3.5%
stdev 0.9% 1.4% 2.7% 1.4%
skew 0.5 0.3 -92.9 -0.1
kurt 3.1 2.9 17386.3 9.6
min 0.61% -2.04% -534.41% -35.57%
max 7.51% 8.56% 9.22% 9.38%

Panel B. Realized momentum returns m+ ε

profit 3.11% 2.78% 1.75% 1.99%
cer(2) 2.30% 2.16% -100.00% 1.85%
cer(5) 1.14% 1.07% -100.00% 0.92%
cer(10) 0.45% 0.43% -100.00% 0.37%
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Table IA.2: Momentum returns in simulations—very low var(k)

The table reports unconditional return statistics for the simulations described in the caption of Figure IA.2 and is
constructed in the same fashion as Table IA.1.

Belief known rational myopic optimal
spec. linear
λ−1 1.50 1.44

Panel A. Expected momentum returns m
mean 3.0% 3.0% 3.0% 3.3%
stdev 0.5% 0.7% 0.8% 0.7%
skew 0.4 0.3 0.2 0.3
kurt 3.4 3.3 3.3 3.3
min 1.39% 0.18% -0.39% 0.41%
max 6.13% 7.35% 7.12% 7.35%
Panel B. Realized momentum returns m+ ε

profit 3.02% 2.91% 2.90% 2.64%
cer(2) 2.29% 2.24% 2.15% 2.24%
cer(5) 1.14% 1.11% 1.07% 1.11%
cer(10) 0.45% 0.44% 0.43% 0.44%
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