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A Results and their Proofs

This section contains the proofs of our results, which consider the more general case

of arbitrary sizes si for the banks. When the formulation of the statement is different from

that in the case si = 1, we restate the result.

A.A Proof of Lemma IV.1

Using P [D = 1] = q, we compute

Γi(y1, . . . , yM) =
1

η
logE

[
exp

(
ηD
(
ωi +

∑
n6=i

yn
(
1A{

i
1yn>0 + 1A{

n
1yn<0

)))]

=
1

η
log

(
1− q + qE

[
exp

(
ηωi + η

∑
n6=i

yn
(
1A{

i |D=11yn>0 + 1A{
n|D=11yn<0

)))])

=
1

η
log

(
1− q + qeηωiE

[
exp

(
η1A{

i |D=1

∑
n6=i: yn>0

yn

)] ∏
n6=i: yn<0

E
[

exp
(
η1A{

n|D=1yn
)])

.

Using that pi = P [Ai|D = 1], we obtain

Γi(y1, . . . , yM) =
1

η
log

(
1− q + qeηωi

(
(1− pi)eη

∑
n: yn>0 yn + pi

) ∏
n6=i: yn<0

(
(1− pn)eηyn + pn

))
,

which can be brought into the form Γi(y1, . . . , yM) written in the statement of Lemma IV.1.

To show the additional properties of Γi(y1, . . . , yM), we first note that the function

Ξ given by

Ξ(y) =
1

η
log
(
1− q + qeηy

)
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is strictly increasing and strictly convex. Indeed, we can calculate

Ξ′(y) =
qeηy

1− q + qeηy
> 0, Ξ′′(y) =

(1− q)qηeηy

(1− q + qeηy)2
> 0.

Next, we consider

f(y, p) =
1

η
log
(
(1− p)eηy + p

)
for p > 0 and calculate

fy(y, p) =
(1− p)eηy

(1− p)eηy + p
> 0,(13)

fyy(y, p) = η
((1− p)eηy + p)((1− p)eηy)− ((1− p)eηy)2

((1− p)eηy + p)2
= η

p(1− p)eηy

((1− p)eηy + p)2
> 0.

These inequalities show that the function y 7→ f(y, p) is strictly increasing and strictly

convex for p > 0. Because f(y, p) either equals y (if p = 0) or is strictly increasing and

strictly convex (if p > 0), we see that Γi(y1, . . . , yM) is strictly increasing, and the

statements on convexity of Γi(y1, . . . , yM) now follow from the fact that convexity is

maintained under sums and compositions with a convex, nondecreasing function.

Finally, to prove (3), let y1 < y2, y3 ∈
(
0, y2−y1

2

]
and p1 ≥ p2. We first note that (3)

is equivalent to

(
(1− p1)eηy1 + p1

)(
(1− p2)eηy2 + p2

)
>
(
(1− p1)eη(y1+y3) + p1

)(
(1− p2)eη(y2−y3) + p2

)
,
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which can be further simplified to

(1− p1)p2eηy1 + (1− p2)p1eηy2 > (1− p1)p2eη(y1+y3) + (1− p2)p1eη(y2−y3).

This inequality follows from

(14) aex1 + bex2 > aex1+x3 + bex2−x3

for all a ≤ b, x1 < x2 and x3 ∈
(
0, x2−x1

2

]
by choosing

a = (1− p1)p2, b = (1− p2)p1, x1 = ηy1, x2 = ηy2, x3 = ηy3,

where we note that p1 ≥ p2, y1 < y2, and y3 ∈
(
0, y2−y1

2

]
imply a ≤ b, x1 < x2, and

x3 ∈
(
0, x2−x1

2

]
. The inequality (14) can be seen from the convexity of the exponential

function or checked directly by calculating the partial derivative

∂

∂z
(aex1+z + bex2−z) = aex1+z − bex2−z ≤ bex1+z − bex2−z < 0

for all z ∈
[
0, x2−x1

2

)
.
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A.B Results of Section IV.B and their Proofs

Theorem A.1 (Theorem IV.3). Feasible contracts (γi,n)i,n=1,...,M are a market equilibrium

if and only if they solve the optimization problem

(15) minimize
M∑
i=1

siΓ
i(γis) over γ subject to γi,n = −γn,i and −k ≤ γi,n ≤ k,

where γis := (γi,1s1, . . . , γi,MsM).

Proof. The Lagrangian function corresponding to (15) is

M∑
i=1

siΓ
i(γis)−

M∑
i,n=1

sisnαi,n(γi,n + γn,i)−
M∑

i,n=1

sisnβi,n(k − γi,n)−
M∑

i,n=1

sisnβi,n(k + γi,n).

The optimality conditions are

(16)
Γiyn(γis) = αi,n + αn,i − βi,n + βi,n, β

i,n
≥ 0, βi,n ≥ 0,

β
i,n

(k − γi,n) = 0, βi,n(k + γi,n) = 0.

All of them are satisfied for

β
n,i

= βi,n =
1

2
max

{
Γiyn(γis)− Γnyi(γns), 0

}
, αi,n + αn,i =

1

2

(
Γiyn(γis) + Γnyi(γns)

)

if γ satisfies (4) and γi,n = −γn,i. This means that if γ is a market equilibrium, it is a

solution to (15). Conversely, if γ is a solution to (15), then (16) implies

Γiyn(γis)(k
2 − γ2

i,n) = (αi,n + αn,i)(k
2 − γ2

i,n) = (αn,i + αi,n)(k2 − γ2
n,i) = Γnyi(γns)(k

2 − γ2
n,i).
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This equation shows that if γi,n 6= ±k, we need Γiyn(γis) = Γnyi(γns). In turn,

Γiyn(γis) 6= Γnyi(γns) implies γi,n = ±k. Consider the case Γiyn(γis) < Γnyi(γns) and assume

γi,n = −k, then γn,i = k; it follows from (16) that β
i,n

= 0, βn,i = 0 and

Γiyn(γis) = αi,n + αn,i + βi,n ≥ αi,n + αn,i ≥ αn,i + αi,n − βi,n = Γnyi(γns),

which is a contradiction to Γiyn(γis) < Γnyi(γns). Therefore, Γiyn(γis) < Γnyi(γns) implies

γi,n = k. By symmetry, Γiyn(γis) > Γnyi(γns) implies γi,n = −k. This shows that a solution

to (15) satisfies (4) and thus is a market equilibrium.

Theorem A.2 (Theorem IV.4). There exists a market equilibrium (γi,n)i,n=1,...,M . The γi,n

are unique for pn > 0 and γi,n < 0, or pi > 0 and γi,n > 0. For every i, the value is the same

for
∑
γi,nsn where the sum is over n such that pn = 0 and γi,n < 0, or pi = 0 and γi,n > 0.

In particular, Γ(γns) are uniquely determined for a market equilibrium (γi,n)i,n=1,...,M .

Proof. We prove first the existence of a market equilibrium. To this end, we will apply

Kakutani’s fixed-point theorem (see, for example, Corollary 15.3 in Border (1985)). We fix

k, set S = [−k, k]M(M−1)/2, and define a mapping Φ : S → 2S as follows, where 2S denotes

the power set of S, i.e., the set of all subsets of S. Each element in S corresponds to the

lower triangular matrix of (γi,n)i,n=1,...,M , where we set the diagonal elements γii equal to

zero and the upper diagonal elements are defined by γi,n = −γn,i. Let Φ(γ) consist of all

(γ̃i,n)i,n=1,...,M that satisfy γ̃i,n = −γ̃n,i, −k ≤ γ̃i,n ≤ k, with the further restriction in the
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following three cases

γ̃i,n



= k if Γiyn(γis) < Γnyi(γns),

= γi,n if Γiyn(γis) = Γnyi(γns),

= 0 if Γiyn(γi) or Γnyi(γn) do not exist,

= −k if Γiyn(γis) > Γnyi(γns).

Note that these “if” conditions depend on γ and not on γ̃. We can see that Φ(γ) is

nonempty, compact and convex. To show that Φ has a closed graph, consider a sequence(
γ(m), γ̃(m)

)
converging to (γ, γ̃) with γ̃(m) ∈ Φ

(
γ(m)

)
for all m. Because γ̃(m) → γ̃ and

γ̃(m) ∈ Φ
(
γ(m)

)
, we have γ̃i,n = −γ̃n,i and −k ≤ γ̃i,n ≤ k. Moreover, if Γiyn(γis) < Γnyi(γns),

we have Γiyn
(
γ

(m)
i s

)
< Γnyi

(
γ

(m)
n s

)
for all m big enough, as γ(m) → γ. This yields γ̃

(m)
i,n = k

for all m big enough; hence, γ̃i,n = k. Similarly, Γiyn(γis) > Γnyi(γns) implies γ̃i,n = −k. The

condition is also satisfied for the last case Γiyn(γis) = Γnyi(γns), as we have already shown

−k ≤ γ̃i,n ≤ k. Therefore, there exists γ with Φ(γ) = γ by Kakutani’s fixed-point theorem;

hence, there is a market equilibrium.

To prove uniqueness, we first apply Theorem IV.3, which says that finding a market

equilibrium is equivalent to solving (15). We then write the objective function in (15) as

M∑
i=1

siΓ
i(γis) =

M∑
i=1

siΞ

(
ωi + f

( ∑
n:γi,nsn≥0

γi,nsn, pi

)
+

∑
n:γi,nsn<0

f(γi,nsn, pn)

)
,

where the function Ξ is given in Lemma IV.1. The uniqueness statements now follow from

the statements on convexity in Lemma IV.1.
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A.C Results of Section IV.C and their Proofs

Proposition A.3 (Proposition IV.5). Assume that at least one of the following conditions

holds:

(a)
∑

`:γi,`≥0 γi,`s` ≥ si max` γi,`, or

(b)
∑

`:γj,`≥0 γj,`s` ≥ sj max` γj,`.

We then have the following relations between initial and post-trade exposures:

1. If ωi ≥ ωj, pi ≤ pj, and si ≤ sj, then Ωi ≥ Ωj.

2. If ωi > ωj, pi ≥ pj, and si ≥ sj, then ωi − ωj > Ωi − Ωj.

Proof. Under conditional independence and for general sizes, the post-trade exposure is

given by

Ωi = ωi + f

( ∑
n:γi,n≥0

γi,nsn, pi

)
+

∑
n:γi,n<0

f(γi,nsn, pn).

We split the proof in several steps, starting with some preparation.

Claim 1a. For two banks i and j, we have

(C1a) Ωj > Ωi =⇒ γj,i ≤ 0.

Proof of Claim 1a. From Lemma IV.1, it follows that

Γjyi(γjs) =


Ξ′(Ωj)ηfy

(∑
n:γj,n≥0 γj,nsn, pj

)
if γj,i > 0,

Ξ′(Ωj)ηfy(γj,isi, pi) if γj,i < 0,
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with an analogous expression for Γiyj(γis). If γj,i > 0 (and thus γi,j < 0), we obtain

Γjyi(γjs) = Ξ′(Ωj)ηfy

( ∑
n:γj,n≥0

γj,nsn, pj

)

> Ξ′(Ωi)ηfy

( ∑
n:γj,n≥0

γj,nsn, pj

)

≥ Ξ′(Ωi)ηfy(γi,jsj, pj)

= Γiyj(γis)

by strict convexity of Ξ and convexity of f(., pj) from Lemma IV.1. However, this implies

γj,i = −k by (4) in contradiction to the assumption γj,i > 0.

Claim 1b. For two banks i and j, we have

(C1b) Ωj > Ωi =⇒ γj,n ≤ γi,n or γj,n = −k for all n with Ωn < Ωj.

Proof of Claim 1b. We distinguish the following three cases:

• If Ωn ∈ (Ωi,Ωj), we have γj,n ≤ 0 and γi,n ≥ 0 by (C1a) so that γj,n ≤ γi,n holds.

• If Ωn < Ωi, we have γj,n ≤ 0 and γi,n ≤ 0 by (C1a); thus,

Γjyn(γjs) = Ξ′(Ωj)ηfy(γj,nsn, pn),(17)

Γiyn(γis) = Ξ′(Ωi)ηfy(γi,nsn, pn),(18)

Γnyj(γns) = Ξ′(Ωn)ηfy

( ∑
`:γn,`≥0

γn,`s`, pn

)
= Γnyi(γns).(19)
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Assume that γj,n 6= −k, which implies

Γjyn(γjs) = Γnyj(γns) = Γnyi(γns) ≤ Γiyn(γis)

by (4) and (19); thus,

1 <
Ξ′(Ωj)

Ξ′(Ωi)
≤ fy(γi,nsn, pn)

fy(γj,nsn, pn)

by (17) and (18). This is only possible if γj,n < γi,n.

• If Ωn = Ωi, we argue as in the first item if γi,n ≥ 0, or as in the second item if γi,n < 0.

Note that (C1b) holds regardless of the default probabilities of banks i and j. This is

because we are considering banks n with smaller post-trade exposures; thus, banks that are

sellers of protection by (C1a) so that the same counterparty risk pn applies to trades with i

and j.

Claim 1c. For two banks i and j, we have

(C1c)

Ωj > Ωi =⇒
fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy
(∑

`:γi,`≥0 γi,`s`, pi
) < fy(γn,jsj, pj)

fy(γn,isi, pi)
or γn,i = −k for all n with Ωn > Ωj.

Proof of Claim 1c. Ωn > Ωj implies γj,n ≥ 0 by (C1a), and thus Γjyn(γjs) ≤ Γnyj(γns). If

γn,i 6= −k, it follows that Γiyn(γis) ≥ Γnyi(γns); hence,

Γnyj(γns) ≥ Γjyn(γjs) = Ξ′(Ωj)ηfy

( ∑
`:γj,`≥0

γj,`s`, pj

)
> Ξ′(Ωi)ηfy

( ∑
`:γj,`≥0

γj,`s`, pj

)

= Γiyn(γis)
fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy
(∑

`:γi,`≥0 γi,`s`, pi
) ≥ Γnyi(γns)

fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy
(∑

`:γi,`≥0 γi,`s`, pi
) ,
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which shows (C1c), as Γnyi(γns) = Ξ′(Ωn)ηfy(γn,isi, pi) and Γnyj(γns) = Ξ′(Ωn)ηfy(γn,jsj, pj).

Claim 1d. For three banks i, j, and n, we have

(C1d) Ωi < Ωj = Ωn =⇒ γj,n ≤ γi,n or (C1c) holds.

Proof of Claim 1d. If γj,n ≤ 0, we obtain γj,n ≤ γi,n, as γi,n ≥ 0 by (C1a). If γj,n > 0, we

can argue as (C1c).

We can summarize (C1a)–(C1d) as

(C1) Ωj > Ωi =⇒


γj,n ≤ γi,n for all γj,n ≤ 0,

(C1c) holds for all γj,n > 0.

Claim 2. For two banks i and j, we have

(C2) ωi ≥ ωj, pj ≥ pi, sj ≥ si, and (a), (b) or (c) of the proposition holds =⇒ Ωi ≥ Ωj.

Proof of Claim 2. We prove the claim by contradiction and assume that Ωi < Ωj. This

implies γj,n ≤ γi,n for all γj,n ≤ 0 by (C1); hence,

f

( ∑
`:γj,`≥0

γj,`s`, pj

)
= Ωj − ωj −

∑
n:γj,n<0

f(γj,nsn, pn)

> Ωi − ωi −
∑

n:γi,n<0

f(γi,nsn, pn)

= f

( ∑
`:γi,`≥0

γi,`s`, pi

)
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≥ f

( ∑
`:γi,`≥0

γi,`s`, pj

)
,

using (8), pj ≥ pi, and that f(y, p) is decreasing in p for y ≥ 0 because, using definition (2),

(20) fp(y, p) =
∂

∂p

1

η
log
(
(1− p)eηy + p

)
=

−eηy + 1

η((1− p)eηy + p)
< 0 for y ≥ 0.

This yields
∑

`:γj,`≥0 γj,`s` >
∑

`:γi,`≥0 γi,`s`, as y 7→ f(y, pj) is strictly increasing by

Lemma IV.1. This implies that there exists n with γj,n > γi,n ≥ 0; thus,

(21) γn,j < γn,i ≤ 0 and γn,jsj < γn,isi

because sj ≥ si by assumption. Moreover, γj,n > 0 implies Ωn ≥ Ωj by (C1a). On the other

hand, Ωi < Ωj implies by (C1c) and (C1d) that γn,i = −k (which stands in contradiction to

(21) because γn,j ≥ −k) or γj,n ≤ γi,n (also a contradiction to (21)) or

(22)
fy
(∑

`:γi,`≥0 γi,`s`, pi
)

fy(γn,isi, pi)
>
fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy(γn,jsj, pj)
.

We will show that (22) contradicts

(23) pj ≥ pi,
∑

`:γj,`≥0

γj,`s` >
∑

`:γi,`≥0

γi,`s` and γn,jsj < γn,isi

if one of the conditions (a)–(c) of the proposition holds.

11



As an auxiliary step, we next analyze the function p 7→ fy(y1,p)

fy(y2,p)
and show that

(24)
∂

∂p

fy(y1, p)

fy(y2, p)
≥ 0 for all p ∈ [0, 1) and y1 ≥ −y2 ≥ 0.

To show this, first note that if p = 0, then fy(y1, p) = fy(y2, p) = 1 so that ∂
∂p

fy(y1,p)

fy(y2,p)
= 0.

Now assume that p > 0. We use (13) and

fyp(y, p) =
∂

∂p

(1− p)eηy

(1− p)eηy + p
=

((1− p)eηy + p)(−eηy)− ((1− p)eηy)(−eηy + 1)

((1− p)eηy + p)2

=
−eηy

((1− p)eηy + p)2

to deduce that

∂

∂p

fy(y1, p)

fy(y2, p)
=
fy(y2, p)fyp(y1, p)− fyp(y2, p)fy(y1, p)

(fy(y2, p))2

=

(1−p)eηy2
(1−p)eηy2+p

−eηy1
((1−p)eηy1+p)2

− −eηy2
((1−p)eηy2+p)2

(1−p)eηy1
(1−p)eηy1+p

(fy(y2, p))2

=
−eηy1

(
(1− p)eηy2

)(
(1− p)eηy2 + p

)
((1− p)eηy1 + p)2((1− p)eηy2 + p)2(fy(y2, p))2

−
−eηy2

(
(1− p)eηy1

)(
(1− p)eηy1 + p

)
((1− p)eηy1 + p)2((1− p)eηy2 + p)2(fy(y2, p))2

=
eη(y1+y2)

((1− p)eηy1 + p)2((1− p)eηy2 + p)2(fy(y2, p))2

×
(

(1− p)eηy1
(
1− p+ pe−ηy1

)
−
(
(1− p)eηy2

)(
1− p+ pe−ηy2

))
.

From this, we obtain ∂
∂p

fy(y1,p)

fy(y2,p)
≥ 0 because

(1− p)eηy1
(
1− p+ pe−ηy1

)
−
(
(1− p)eηy2

)(
1− p+ pe−ηy2

)
= (1− p)2

(
eηy1 − eηy2

)
≥ 0,
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using y1 ≥ y2. This concludes the proof of (24).

We now consider each of the two conditions (a) and (b) of the proposition.

Condition (a). We apply (24) choosing p = pi, y1 =
∑

`:γi,`≥0 γi,`s`, and y2 = γn,isi.

This implies

fy
(∑

`:γi,`≥0 γi,`s`, pi
)

fy(γn,isi, pi)
≤
fy
(∑

`:γi,`≥0 γi,`s`, pj
)

fy(γn,isi, pj)
≤
fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy(γn,jsj, pj)
,

where we use (23) and the convexity of y 7→ f(y, pj) for the second inequality.

Condition (b). This time, we apply (24) choosing p = pj, y1 =
∑

`:γj,`≥0 γj,`s`, and

y2 = γn,jsj. We obtain

fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy(γn,jsj, pj)
≥
fy
(∑

`:γj,`≥0 γj,`s`, pi
)

fy(γn,jsj, pi)
≥
fy
(∑

`:γi,`≥0 γi,`s`, pi
)

fy(γn,isi, pi)
,

where we again use (23) and the convexity of y 7→ f(y, pi) for the second inequality.

Under each of the two conditions (a) and (b), we obtain a contradiction to (22).

Hence, Ωi < Ωj cannot hold, which concludes the proof of (C2).

Claim 3. For two banks i and j, we have

ωi > ωj, pj ≤ pi, sj ≤ si =⇒ Ωi − ωi < Ωj − ωj.

Proof of Claim 3. We proceed similarly to the proof of (C2). We prove the claim by

contradiction and assume that Ωi − ωi ≥ Ωj − ωj. This implies Ωi > Ωj; hence, γi,n ≤ γj,n
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for all γi,n ≤ 0 by (C1) and γi,j ≤ 0 ≤ γj,i by (C1a), and thus

f

( ∑
`:γj,`≥0

γj,`s`, pj

)
= Ωj − ωj −

∑
n:γj,n<0

f(γj,nsn, pn)

< Ωi − ωi −
∑

n:γi,n<0

f(γi,nsn, pn)

= f

( ∑
`:γi,`≥0

γi,`s`, pi

)

≤ f

( ∑
`:γi,`≥0

γi,`s`, pj

)

using pj ≤ pi and (20), which yields
∑

`:γj,`≥0 γj,`s` <
∑

`:γi,`≥0 γi,`s` because y 7→ f(y, pj) is

strictly increasing by Lemma IV.1. We conclude the proof in the same way as the proof of

(C2) after (21), with i and j interchanged.

Theorem A.4 (Theorem IV.6). Assume that the trade size limit is not binding and that

there are at least two safe banks. Then

1. There exists the following relation between banks’ creditworthiness, initial exposures

and post-trade exposures:

(a) All safe banks have the same post-trade exposure, say, Ω̄.

(b) Risky banks with initial exposure above some level α also have the same

post-trade exposure Ω̄. The level α is greater than Ω̄ and depends only on the

distribution of initial exposures and sizes, but not on the banks’ default

probabilities.

(c) Risky banks with initial exposure below α will have post-trade exposures strictly

smaller than Ω̄.
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2. Risky banks with initial exposure above α trade as follows:

(a) They do not trade between each other.

(b) They do not sell protection.

(c) Their purchases depend only on their initial exposure, but not on their default

probabilities.

3. Risky banks with initial exposure below α trade as follows:

(a) Any two risky banks i and n with initial exposure below α do not trade between

each other if their exposures Ω̃i and Ω̃n after trading with other banks but before

trading between themselves satisfy Ω̃i ≤ Ω̃n and

(25)
Ξ′(Ω̃n)

Ξ′(Ω̃i)
≤
fy
(∑

` 6=n:γi,`≥0 γi,`s`, pi
)

1− pi
.

(b) They do not purchase protection from safe banks or risky banks with initial

exposures above α.

(c) If all banks have the same size, then they sell the same amount of protection to

each safe bank and risky bank with initial exposure above α.

Proof. To prove the first part, we define k̄1 by

(26) k̄1 = inf
{
k > 0 : Ωi = Ωj for all i, j with pi = pj = 0

}
.

We can prove that 0 < k̄1 <∞ and that the infimum in (26) is attained along the same

lines as on page 2273 of Atkeson et al. (2015), restricting their arguments to the safe banks.
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We choose k̄ as the smallest number k ≥ k̄1 such that

(27) Ωi ≤ Ωj

for all i, j with pi > 0 and pj = 0. We next show that such a finite k̄ exists. If (27) holds

for k = k̄1, we set k̄ = k̄1. Moreover, (27) always holds for k big enough. To see this, let i

be such that pi > 0 and, working towards a contradiction, assume that

(28) Ωi > Ωj

for some j with pj = 0. From (C1a) and (C1) in the proof of Proposition IV.5 with pj = 0,

it follows that γi,j ≤ 0 and γi,n ≤ γj,n for all n; hence,

Γjyi(γjs) = Ξ′(Ωj)ηfy

( ∑
n:γj,n≥0

γj,nsn, pj

)
= Ξ′(Ωj)η

< Ξ′(Ωi)η = Ξ′(Ωi)ηfy(γi,jsj, pj) = Γiyj(γis)

using that fy(y, pj) = 1 because pj = 0, Ξ is strictly increasing and strictly convex, and

Ωi > Ωj. Then γi,j = −k follows from Γjyi(γjs) < Γiyj(γis) by (4), and thus

Ωj = ωj + f

( ∑
n:γj,n≥0

γj,nsn, pj

)
+

∑
n:γj,n<0

f(γj,nsn, pn)

≥ ksi + ωj + f

( ∑
n:γi,n≥0

γi,nsn, pi

)
+

∑
n:γi,n<0

f(γi,nsn, pn)

= ksi + ωj − ωi + Ωi.
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However, for k ≥ (ωi − ωj)/si, this gives Ωj ≥ Ωi in contradiction to (28). Hence, we have

that (27) holds for k big enough. By a compactness argument similar to page 2273 of

Atkeson et al. (2015), we deduce that (27) holds for k = k̄. By definition of k̄, for k < k̄,

there exist i and j with pj = 0 such that Ωi > Ωj.

We now consider k ≥ k̄ and

β(p, s) = max
i:pi=p,si=s

Ωi, ī(p, s) =


arg max
i:pi=p,si=s

Ωi if β(p, s) = Ωj for j with pj = 0,

∅ otherwise.

δ(p, s) = min
i∈ī(p,s)

ωi, δ(p, s) = max
{i:pi=p,si=s}\̄i(p,s)

ωi

for p ∈ {p1, . . . , pM} and s ∈ {s1, . . . , sM} where the minimum (and maximum) over an

empty set equals +∞ and −∞ by the usual convention. Several pj and sj for different j

can take the same values, and thus ī(p, s) can be a set with several entries because the

maximum does not need to be attained at a unique i. We can choose a function

ᾱ : (0, 1]× [0, 1]→ [0,∞) for all s such that δ(p, s) < ᾱ(p, s) ≤ δ(p, s) for all

p ∈ {p1, . . . , pM} and s ∈ {s1, . . . , sM}. Note that ᾱ(p, s) may depend here on both

arguments p and s, but in the next paragraph, we will show that ᾱ can be chosen

independently of p. From ᾱ(p, s) ≤ δ(p, s), it follows that A(ᾱ) defined by

A(ᾱ) = {i : ωi ≥ ᾱ(pi, si) or pi = 0}

contains all indices i with Ωi = Ωj for j with pj = 0. To show that A(ᾱ) contains only such
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indices i, assume that there exists i ∈ A(ᾱ) with Ωi < Ωj for j with pj = 0. This implies

ωi ≥ ᾱ(pi, si) > δ(pi, si);

hence, ωi > ω` for all ω` with Ω` < Ωj, which contradicts Ωi < Ωj. Therefore, all banks

i ∈ A(ᾱ) have the same post-trade exposure Ωi while banks i /∈ A(ᾱ) have a strictly smaller

post-trade exposure. Thus, we can set Ω̄ = Ωi for some i ∈ A(ᾱ).

We next show that ᾱ can be chosen independently of p, consider k ≥ k̄ and i with

pi > 0 and Ωi = Ωj for j with pj = 0. Because k ≥ k̄, it follows from (27) that Ωi ≥ Ω` for

all `. In the case Ωi > Ω`, we obtain γi,` ≤ 0 by (C1a). In the case Ωi = Ω`, we argue

similarly to the proof of (C1a) to show γi,` ≤ 0. Indeed, to derive a contradiction, we

assume that γi,` > 0 and Ωi = Ω`, which implies

Γiy`(γis) = Ξ′(Ωi)ηfy

( ∑
n:γi,n≥0

γi,nsn, pi

)

= Ξ′(Ω`)ηfy

( ∑
n:γi,n≥0

γi,nsn, pi

)

> Ξ′(Ω`)ηfy(γ`,isi, pi)

= Γ`yi(γ`s)

by strict convexity of f(., pi) from Lemma IV.1, using that pi > 0. However, this implies

γi,` = −k by (4) in contradiction to the assumption γi,` > 0. Hence, we have γi,` ≤ 0, and

the trading choices of bank i do not depend on pi. Using Lemma IV.1, we then deduce

that, for all `, Γ`(γ`s) does not depend on pi if γi,` ≤ 0, and thus the objective function
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∑M
`=1 s`Γ

`(γ`s) in (15) does not depend on pi in the optimum. Therefore, ᾱ can be chosen

independently of p. From γi,` ≤ 0 for all `, we also deduce that ᾱ ≥ Ω̄. This concludes the

proof of the first part of the theorem.

To prove part 2a of the theorem, we consider two risky banks i and n with ωi ≥ α

and ωn ≥ α. From part 1b of the theorem, we know that the banks’ post-trade exposures

are Ωi = Ωn = Ω̄. Working towards a contradiction, we assume that γi,n > 0 so that bank i

sells protection to bank n. We then have Γiyn(γi) = Γnyi(γn) by (4), which implies

Ξ′(Ωi)ηfy

( ∑
`:γi,`≥0

γi,`s`, pi

)
= Ξ′(Ωn)ηfy(γn,isn, pi).

This equality cannot hold because Ξ′(Ωi) = Ξ′(Ωn) = Ξ′(Ω̄) and

fy

( ∑
`:γi,`≥0

γi,`s`, pi

)
> fy(γn,isn, pj).

Therefore, we deduce that γi,n > 0 leads to a contradiction and so does γi,n < 0 by

symmetry. Hence, we must have γi,n = 0, proving part 2a. Moreover, any bank i with

initial exposure ωi ≥ α will have a post-trade exposure Ω̄, which is strictly greater than the

post-trade exposure of any risky bank n that has initial exposure ωn < α. Therefore, bank

i does not sell to bank n by (C1a). Similarly to part 2a, we can show that bank i does not

sell to any safe bank, either, establishing part 2b. Consequently, the post-trade exposure of

banks with initial exposure greater than or equal to α does not depend on the banks’ own

default probabilities, and neither does their purchased quantities. This shows part 2c.

For part 3, we consider two banks i and n that satisfy (25) and have exposures
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Ω̃i ≤ Ω̃n after trading with other banks, but before trading between themselves. We deduce

γi,n ≥ 0 from (C1a). Working towards a contradiction, we assume that γi,n > 0. We then

have Γiyn(γi) = Γnyi(γn) by (4), which implies

Ξ′(Ωi)ηfy

( ∑
`:γi,`≥0

γi,`s`, pi

)
= Ξ′(Ωn)ηfy(γn,isn, pi)

so that

Ξ′(Ωi)ηfy

( ∑
6̀=n:γi,`≥0

γi,`s`, pi

)
< Ξ′(Ωn)ηfy(0, pi) = Ξ′(Ωn)η(1− pi),

which is a contradiction to

Ξ′(Ωn)

Ξ′(Ωi)
≤
fy
(∑

` 6=n:γi,`≥0 γi,`s`, pi
)

1− pi
.

which is implied by (25), γi,n > 0 and the convexity of Ξ by Lemma IV.1. This shows that

γi,n = 0 so that banks i and n do not trade with each other, proving part 3a. Moreover,

any bank i with initial exposure ωi < α will have a post-trade exposure smaller than Ω̄.

Hence, its post-trade exposure is strictly smaller than that of any bank n that has initial

exposure ωn ≥ α. Therefore, bank i does not buy from bank n by (C1a), proving part 3a.

Finally, we note that safe banks and risky banks with initial exposures above α have all the

same post-trade exposure Ω̄. Therefore, when traders of these banks meet traders of a

risky bank i with initial exposure ωi < α, they all have the same incentive compatibility

condition, namely, either they do not trade or

Ξ′(Ωi)ηfy

( ∑
`:γi,`≥0

γi,`s`, pi

)
= Ξ′(Ω̄)ηfy(γn,isn, pj),
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where n refers to any of the safe banks or risky banks with initial exposures above α. If all

sizes sn are equal, each bank n satisfies the same condition, thus each of them buys the

same amount from bank i, as stated in part 3c.

Proof of Corollary IV.8. Part 2b of Theorem A.4 implies that risky banks with initial

exposures above α only purchase protection, hence they are not intermediaries.

Next we consider a bank n with initial exposure below α and that satisfies

Ξ′(Ω̃n)

Ξ′(Ω̃i)
≤ fy(Γi,pi)

1−pi for any risky bank i with Ω̃i < Ω̃n, where Γi =
∑

`6=n:siγi,`≥0 γi,` is the sum

of contracts sold by bank i, and Ω̃i and Ω̃n are the exposures of banks i and n, respectively,

after trading with other banks but before trading between themselves. From part 3a of

Theorem A.4, we obtain γi,n = 0 so that bank i and n do not trade between themselves.

Moreover, part 3b of Theorem A.4 implies that bank n does not purchase protection from

safe banks or risky banks with initial exposures above α. Therefore, bank n only sells

protection, hence it is not an intermediary.

A.D Results of Section V and their Proofs

Lemma A.5 (Lemma V.1). For given s1, . . . , sM , the value of xi(p1, . . . , pM) is uniquely

determined.

Proof. For general si, (9) becomes

xi(p1, . . . , pM) = ωi +
∑
n 6=i

γi,nsnRi,n − Γi(γis).
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Using the definition (5) of Ri,n and (4), we can write

xi(p1, . . . , pM) = ωi − Γi(γis) +
∑

n:γi,n>0

γi,nsn
(
νΓnyi(γns) + (1− ν)Γiyn(γis)

)
+

∑
n:γi,n<0

γi,nsn
(
νΓiyn(γis) + (1− ν)Γnyi(γns)

)
= ωi − Γi(γis) + ν

∑
n:γi,n>0

γi,nsn
(
Γnyi(γns)− Γiyn(γis)

)
+ (1− ν)

∑
n:γi,n<0

γi,nsn
(
Γnyi(γns)− Γiyn(γis)

)
+
∑
n6=i

γi,nsnΓiyn(γis)

= ωi − Γi(γis) + νk
∑

n:γi,n>0

sn
(
Γnyi(γns)− Γiyn(γis)

)
− (1− ν)k

∑
n:γi,n<0

sn
(
Γnyi(γns)− Γiyn(γis)

)
+

∑
pn > 0, γi,n < 0, or

pi > 0, γi,n > 0

γi,nsnΓiyn(γis)

+ Γ
i
(γis)

∑
pn = 0, γi,n < 0, or

pi = 0, γi,n > 0

γi,nsn,

where

Γ
i
(y):=Γiyn(y) =

qeηωi+ηf(
∑
n:yn≥0 yn,pi)+η

∑
n:yn<0 f(yn,pn)

1− q + qeηωi+ηf(
∑
n:yn≥0 yn,pi)+η

∑
n:yn<0 f(yn,pn)

does not depend on the specific n for all n with pn = 0 and γi,n < 0, or pi = 0 and γi,n > 0.

This means that Γiyn is the same for all banks n that are (I) default-free protection sellers

to i, or (II) protection buyers from i, and i is default-free. All these pairwise transactions

do not bear any counterparty risk. Uniqueness of xi(p1, . . . , pM) now follows from

Theorem A.2.

Proof of Proposition V.3. We first note that the mapping pi 7→ xi(p1, . . . , pM) is

continuous. This follows from the Envelope theorem using that Γi and its partial
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derivatives are differentiable. For p−i = (pj)j 6=i, we define set-valued functions

ri(p−i) = arg max
pi∈[0,p̄i]

(
xi(p1, . . . , pM)− Ci(pi)

)
, r(p) =

(
r1(p−1), . . . , rM(p−M)

)

so that r is a mapping from [0, p̄1]× · · · × [0, p̄m] onto its power set. It has the following

properties:

• [0, p̄1]× · · · × [0, p̄m] is compact, convex, and nonempty.

• For each p, r(p) is nonempty because a continuous function over a compact set has

always a maximizer.

• r(p) is convex by assumption.

• It follows from Berge’s maximum theorem that r(p) has a closed graph.

Thanks to these properties, Kakutani’s fixed point theorem implies that there exists a fixed

point of the mapping r, which means that there exists an equilibrium.

Proof of Proposition V.4. Because the function

M∑
i=1

siΓ
i(γis, p) +

M∑
i=1

siCi(pi)

is continuous over the compact set [0, p̄1]× · · · × [0, p̄M ], it has a maximum, which shows

the statement of the proposition, using that the social planner’s optimization problem over

(γi,n)i,n=1,...,M conditional on the choice of the default probabilities has a solution by

Theorems IV.3 and IV.4.
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Theorem A.6 (Theorem V.5). The externality imposed by bank i on the system equals

(29) MSVi(p)−MPVi(p) =
∂Si
∂pi

(p) + k(1− ν)
∂Ti
∂pi

(p),

where

(30)

Si(p) :=
∑
n6=i

sn

(
γi,nΓnyi(γns, p) +

1

si
Γn(γns, p)

)
, Ti(p) :=

∑
n 6=i

sn
(
Γiyn(γis, p)− Γnyi(γns, p)

)
.

For small enough pi and large enough q, we have ∂Si
∂pi

(p) < 0 and ∂Ti
∂pi

(p) ≥ 0 with strict

inequality when the trade size limit is binding for at least one bilateral trading relationship.

Proof. 1. part: proof of (29).

For arbitrary bank sizes, marginal private and social values for bank i are given by

MSVi(p) =
M∑
n=1

sn
∂Γn

∂pi
(γns, p) + siC

′
i(pi),

MPVi(p) = si
∂Γi

∂pi
(γis, p)− si

∑
n 6=i

γi,nsn
∂Ri,n

∂pi
(γis, γns, p) + siC

′
i(pi)

so that its difference is

MSVi(p)−MPVi(p) =
∑
n 6=i

sn

(
siγi,n

∂Ri,n

∂pi
(γis, γns, p) +

∂Γn

∂pi
(γns, p)

)
.

If γi,n ≤ 0, then we obtain from (5) that

Ri,n(γis, γns, p) = νΓiyn(γis, p) + (1− ν)Γnyi(γns, p).
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We then have that ∂Γn

∂pi
(γns, p) = 0 and

∂Ri,n
∂pi

(γis, γns, p) = 0 because Γn(γns, p), Γiyn(γis, p),

and Ri,n(γis, γns, p) do not depend on pi for γi,n ≤ 0; if traders of bank i are buying CDSs

from bank n, the default probability of bank i does not affect the terms of trade between

traders of banks i and n. For γi,n > 0, we find

Ri,n(γis, γns, p) = νΓnyi(γns, p) + (1− ν)Γiyn(γis, p)

by (4) and (5) so that

MSVi(p)−MPVi(p) =
∑

n:γi,n>0

sn

(
siγi,n

∂Ri,n

∂pi
(γis, γns, p) +

∂Γn

∂pi
(γns, p)

)

=
∑

n:γi,n>0

sn

(
siγi,n

∂Γnyi
∂pi

(γns, p) +
∂Γn

∂pi
(γns, p)

)

+
∑

n:γi,n>0

snsiγi,n(1− ν)

(
∂Γiyn
∂pi

(γis, p)−
∂Γnyi
∂pi

(γns, p)

)

=
∂

∂pi

∑
n 6=i

sn
(
siγi,nΓnyi(γns, p) + Γn(γns, p)

)
+

∂

∂pi

∑
n6=i

snsik(1− ν)
(
Γiyn(γis, p)− Γnyi(γns, p)

)
,

using for the last equality that ∂Γn

∂pi
(γns, p) = 0,

∂Γnyi
∂pi

(γns, p) = 0 and
∂Γiyn
∂pi

(γis, p) = 0 for

γi,n ≤ 0 and Γiyn(γis, p) = Γnyi(γns, p) for γi,n ∈ (−k, k). Combining this with (30), we

conclude the proof of (29).

2. part: ∂Si
∂pi

(p) < 0 for small enough pi and large enough q.
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We recall from Lemma IV.1 that

Γn(y, p) =
1

η
log
(

1− q + qeηωn+ηf(
∑
`:y`≥0 y`,pn)+η

∑
`:y`<0 f(y`,p`)

)
=

1

η
log
(

1− q + a(1− pi)eηyi + apie
ηryi
)

for yi < 0, where we use the abbreviation a = qeηωn+ηf(
∑
`:y`≥0 y`,pn)+η

∑
` 6=i:y`<0 f(y`,p`) in this

proof. We compute

Γnpi(y, p) =
1

η

−aeηyi + a

1− q + a(1− pi)eηyi + api
=

1

η

1− eηyi

b+ (1− pi)eηyi + pi
,

using the abbreviation b = (1− q)/a. Next, we find

Γnyi,pi(y, p) =
(b+ (1− pi)eηyi + pi)(−eηyi)− (1− eηyi)(1− pi)eηyi

(b+ (1− pi)eηyi + pi)2

=
b(−eηyi)− pieηyi − (1− pi)e2ηyi − (1− pi)eηyi + (1− pi)e2ηyi

(b+ (1− pi)eηyi + pi)2

=
b(−eηyi)− eηyi

(b+ (1− pi)eηyi + pi)2
.(31)

For pi = 0, q = 1 and γi,n > 0, we obtain

∂

∂pi

(
siγi,nΓnyi(γns, p) + Γn(γns, p)

)∣∣∣∣
pi=0,q=1

=
(
siγi,nΓnyi,pi(γns, p) + Γnpi(γns, p)

)∣∣
pi=0,q=1

=

(
siγi,n

b(−e−ηsiγi,n)− e−ηsiγi,n

(b+ (1− pi)e−ηsiγi,n + pi)2
+

1

η

1− e−ηsiγi,n

b+ (1− pi)e−ηsiγi,n + pi

)∣∣∣∣
pi=0,q=1

=
−siγi,n
e−ηsiγi,n

+
1− e−ηsiγi,n

ηe−ηsiγi,n
<
−siγi,n
e−ηsiγi,n

+
ηsiγi,n
ηe−ηsiγi,n

= 0.

Using that γi,nΓnyi,pi(γns, p) = 0 and Γnpi(γns, p) = 0, we deduce ∂Si
∂pi

(p)
∣∣
pi=0,q=1

< 0 by the
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definition (30) of Si(p), which implies ∂Si
∂pi

(p) < 0 for small enough pi and large enough q by

continuity.

3. part: ∂Ti
∂pi

(p) ≥ 0 for small enough pi and large enough q with strict inequality

when the trade size limit is binding for at least one bilateral trading relationship.

We compare Γnyi,pi(γn, p) and Γiyn,pi(γi, p). We first note that Γnyi,pi(γn, p) = 0 and

Γiyn,pi(γi, p) = 0 for γn,i = −γi,n ≥ 0. For pi = 0 and q = 1, we obtain from (31) that

Γnyi,pi(y, p)
∣∣
pi=0,q=1

=
−beηyi − eηyi

(b+ (1− pi)eηyi + pi)2

∣∣∣∣
pi=0,q=1

= −e−ηyi

for yi < 0. A calculation similar to (31) gives

Γiyn,pi(y, p)
∣∣
pi=0,q=1

=
−b̃eη

∑
`:y`≥0 y` − eη

∑
`:y`≥0 y`

(b̃+ (1− pi)eη
∑
`:y`≥0 y` + pi)2

∣∣∣∣∣
pi=0,q=1

= −e−η
∑
`:y`≥0 y`

for yn > 0, where b̃ = (1− q)/
(
qeηωi+η

∑
`:y`<0 f(y`,p`)

)
. Therefore, for γn,i = −γi,n < 0, we

obtain

Γnyi,pi(γns, p)
∣∣
pi=0,q=1

< Γiyn,pi(γis, p)
∣∣
pi=0,q=1

and thus ∂Ti
∂pi

(p) > 0 in this case when k is binding for some bilateral trades.

Other than these four restrictions, we do not make any further adjustments. In

particular, our data set also includes settlement locations outside of the United States,

which allows for a more complete coverage of CDS trades and, importantly, guarantees

symmetry in the inclusion of CDS trades (the transactions of both buyers and sellers are

accounted for). The resulting set consists of CDS data for 81 banks.

Initial exposure. For each of these 81 banks, we compute its initial exposure by
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using 2011 data from the Federal Financial Institutions Examination Council (FFIEC)

form 031 (“call report”), as in Begenau, Piazzesi, and Schneider (2015). We compute the

initial exposure of each bank as the discounted valuation of its securities and loan portfolio,

including CDSs traded with nonbanks as explained above. For large banks that book their

assets mainly in holding companies, we use securities and loan portfolios at the bank

holding company level. We group the securities and loans into three categories and use a

specific discount factor for each group: less than 1 year (using the 6-month U.S. Treasury

rate to discount), 1 to five years (using the 2-year U.S. Treasury rate to discount), and

more than five years (using the 7-year U.S. Treasury rate to discount). Given the low

interest rate environment in 2011, the precise choice of the discounting date and rate does

not have a significant effect on our results. For foreign banks that do not report to the

FFIEC, we analyze individual annual reports from 2011 to find the maturity profile of their

securities and loans. Most of these annual reports are dated Dec. 31, 2011, making them

consistent with the domestic bank data. Some of them were released in March, June, or

October of 2011, in line with the respective country’s regulatory guidelines.

Default probabilities. The banks’ default probabilities are calculated using CDS

spread data from IHS Markit Ltd. (2018) via Wharton Research Data Services (WRDS).

Because the default probabilities that are relevant for the analysis are those around the

time of the transaction, we fix Jan. 3, 2011 as the proxy date for CDS transactions and use

the spread on this date to infer the default probability. We use the average 5-year spread

for Senior Unsecured Debt (Corporate/Financial) and Foreign Currency Sovereign Debt

(Government) (SNRFOR). We compute the default probabilities from the CDS spreads

applying standard techniques (credit triangle relation). For 19 among the 81 banks, CDS
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spread data were not available. For each of these banks, we instead use Moody’s credit

rating as of Jan. 2011 for its Senior Unsecured Debt, and relate the ratings to default

probabilities by using corporate default rates over the 1982–2010 period from Moody’s.

Intermediation volume. For each bank i, we compute the intermediation volume

as Ii = min{G+
i , G

−
i }, where G+

i =
∑

n6=i max{γi,n, 0} and G−i =
∑

n6=i max{−γi,n, 0},

following the definition in Section IV.C.
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