Benchmark Discrepancies and Mutual Fund Performance Evaluation Internet Appendix

Table of Contents

Figures

A.1: Distribution of Benchmark Mismatch
A.2: Percentage of funds with different prospectus and AS benchmarks by quarter
A.3: Distribution of Active Gap

Tables

A.1: Most common differences between the prospectus and AS benchmarks
A.2: Benchmark returns and Benchmark Mismatch - Robustness tests
A.3: Predictors of the difference between AS and prospectus benchmark returns
A.4: Comparison of the Sensoy (2009) and Benchmark Mismatch procedures - Ranges of Benchmark Mismatch
A.5: Comparison of tracking error procedures and the Benchmark Mismatch procedure
A.6: Factor exposure differences between the AS and prospectus benchmarks - Including a constant in the model
A.7: Factor exposure differences between the AS and prospectus benchmarks - Individual factor exposures
A.8: Factor exposure differences between the AS and prospectus benchmarks - Replacing CPZ7 with Carhart (1997)

Figure A.1: Distribution of Benchmark Mismatch
This figure shows a cumulative density function (CDF) of Benchmark Mismatch for all fund-month observations where the prospectus benchmark does not match the AS benchmark.

Figure A.2: Percentage of funds with different prospectus and AS benchmarks by quarter
This figure shows (i) the percentage of funds in each quarter with different prospectus and AS benchmarks and (ii) the percentage of funds in each quarter with different prospectus and AS benchmarks and Benchmark Mismatch greater than 60%.

Figure A.3: Distribution of Active Gap
This figure shows a cumulative density function (CDF) of Active Gap for all fund-month observations where the prospectus benchmark does not match the AS benchmark.

Table A.1: Most common differences between the prospectus and AS benchmarks
This table shows the most common differences between the prospectus benchmark and the AS benchmark. Panel A shows the ten most common benchmark differences for all fund-months with Benchmark Mismatch greater than zero and less than or equal to 60%. Panel B shows the ten most common benchmark differences for all fund-months with Benchmark Mismatch greater than 60%. For each benchmark difference listed, the percentage of that sample with that benchmark difference is reported. The median Active Gap and the mean Benchmark Mismatch are also provided for each benchmark difference.

Panel A: $0<$ Benchmark Mismatch $\leq 60 \%$

Prospectus Benchmark	AS Benchmark	Percentage of Differences	Active Gap	Benchmark Mismatch
S\&P 500	S\&P 500 Growth	20.7%	3.0%	32.9%
Russell 1000 Growth	S\&P 500 Growth	15.4%	1.8%	29.8%
Russell 1000 Value	S\&P 500 Value	10.2%	2.1%	32.8%
S\&P 500	Russell 1000 Growth	8.5%	4.0%	43.1%
S\&P 500	S\&P 500 Value	6.2%	1.9%	34.7%
S\&P 500	Russell 1000 Value	5.4%	3.0%	44.6%
Russell 1000 Value	S\&P 500	4.4%	3.5%	44.5%
Russell 3000 Growth	Russell 1000 Growth	2.9%	0.9%	7.9%
Russell 2000	Russell 2000 Growth	2.8%	2.3%	43.0%
Russell Midcap	Russell Midcap Growth	2.1%	2.6%	44.1%

Panel B: Benchmark Mismatch > 60\%

Prospectus Benchmark	AS Benchmark	Percentage of Differences	Active Gap	Benchmark Mismatch
Russell 2000 Value	S\&P 600 Value	10.9%	2.1%	69.1%
Russell 2000	S\&P 600 Growth	10.2%	4.0%	77.3%
Russell 2000 Growth	S\&P 600 Growth	10.0%	1.8%	69.4%
Russell Midcap Growth	S\&P 400 Growth	4.8%	1.6%	76.8%
Russell 2000	S\&P 600 Value	4.0%	2.6%	75.8%
S\&P 500	Russell Midcap Growth	3.8%	6.4%	90.6%
Russell 2000 Value	S\&P 400 Value	3.4%	3.1%	88.2%
Russell 2000 Growth	S\&P 400 Growth	3.4%	2.5%	91.0%
Russell 2000	S\&P 400 Growth	2.9%	3.6%	92.3%
Russell Midcap	S\&P 400 Growth	2.7%	5.1%	83.3%

Table A.2: Benchmark returns and Benchmark Mismatch - Robustness tests
This table shows robustness tests associated with Table 3 in the paper, which shows the average difference in annualized return between the AS benchmark and the prospectus benchmark for fundmonths in which those benchmarks are different. Each panel shows results separately for fundmonths in which Benchmark Mismatch is greater than or less than 60%. Panel A shows results by style, as defined by the prospectus benchmark. Panel B shows results using only funds with Russell indexes as prospectus benchmarks and using only Russell indexes as AS benchmarks. Panel C shows results after independently sorting funds into quintiles each month based on the difference between their tracking error with respect to their prospectus benchmark and their tracking error with respect to their current AS benchmark (both measured over the previous 36 months).
Panel A: Effect of Benchmark Mismatch by Style

	$0<\mathrm{BM} \leq 60$	$\mathrm{BM}>60$	High - Low
All	0.11\%	1.46\%	1.35\%
	[0.51]	[3.08]	[2.99]
Large Cap	0.12\%	3.05\%	2.93\%
	[0.54]	[2.78]	[2.48]
Small/Mid Cap	0.00\%	1.10\%	1.11\%
	[0.00]	[1.89]	[1.63]
Growth	0.52\%	1.73\%	1.21\%
	[0.90]	[1.97]	[1.66]
Value	-0.32\%	0.95\%	1.26\%
	[-0.83]	[1.35]	[2.17]
Blend	0.09\%	1.63\%	1.54\%
	[0.34]	[3.18]	[3.09]
Panel B: Russell Benchmarks Only			
	$0<\mathrm{BM} \leq 60$	$\mathrm{BM}>60$	High - Low
All	0.10\%	0.89\%	0.79\%
	[0.36]	[1.79]	[2.36]
Panel C: Impact of Tracking Error Differential			
	$0<\mathrm{BM} \leq 60$	$\mathrm{BM}>60$	High - Low
All	0.09\%	1.54\%	1.44\%
	[0.42]	[3.19]	[3.17]
Low TE Diff	0.12\%	1.60\%	1.48\%
	[0.33]	[2.37]	[2.44]
2	0.15\%	1.43\%	1.28\%
	[0.53]	[2.02]	[1.86]
3	-0.13\%	1.14\%	1.27\%
	[-0.55]	[2.05]	[2.38]
4	0.19\%	1.58\%	1.39\%
	[0.88]	[2.94]	[2.84]
High TE Diff	0.15\%	1.72\%	1.57\%
	[0.39]	[3.19]	[3.03]

Table A.3: Predictors of the difference between AS and prospectus benchmark returns
This table shows results from the following model:

$$
R_{A S, i, t}-R_{P, i, t}=\alpha+\beta * \text { Active Share }_{i, t}+\delta * \text { Mismatch }_{i, t}+\gamma * \text { Chars }_{i, t}+F E+\varepsilon_{i, t}
$$

where $R_{A S, i, t}$ is the annualized return on fund i 's AS benchmark in month t and $R_{P, i, t}$ is the annualized return on fund i 's prospectus benchmark in month t. Active Share ${ }_{i, t}$ is a vector of information about fund i 's active share at the start of month t. It includes the fund's prospectus benchmark active share and a dummy variable equal to one if the prospectus benchmark active share is among the top 20% at the start of the month. Mismatch ${ }_{i, t}$ is a vector of information about fund i 's mismatch status at the start of month t. It includes Benchmark Mismatch, Active Gap, and a dummy variable equal to one if Benchmark Mismatch is among the top 20% at the start of the month. Chars $i_{i, t}$ is a vector of characteristics for fund i available as of the start of month t. It includes the natural log of assets, natural \log of age, expense ratio, turnover ratio, the number of equity positions, and the percentage of fund assets held within institutional share classes. The characteristics are included in all presented models, but the coefficients associated with the characteristics are suppressed in the table. FE represents style and year-month fixed effects. The model is estimated using the sample of fund-months with different prospectus and AS benchmarks. t-statistics are reported in brackets below each coefficient and are calculated using standard errors independently double clustered by fund and year-month.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Prospectus Active Share	0.072			0.046	0.058		0.040
	[3.07]			[2.47]	[2.69]		[2.20]
Benchmark Mismatch		0.039		0.029		0.045	0.031
		[3.26]		[2.86]		[2.92]	[2.55]
Active Gap			0.050	-0.007			
			[1.36]	[-0.21]			
Top 20\% AS Dummy					0.914		0.591
					[3.67]		[2.62]
Top 20\% BM Dummy						-0.405	-0.423
						[-0.60]	[-0.63]
Characteristic Controls	Yes						
Fixed Effects	Yes						
Observations	151,232	151,232	151,232	151,232	151,232	151,232	151,232

Table A.4: Comparison of the Sensoy (2009) and Benchmark Mismatch procedures - Ranges of Benchmark Mismatch
This table shows robustness tests associated with Table 5 in the paper, which shows differences in average annualized benchmark returns for fund-months identified as having a benchmark discrepancy using either the Benchmark Mismatch (BM) procedure or the Sensoy (2009) procedure (or both). Differences are reported between the prospectus benchmark and the AS benchmark and between the prospectus benchmark and the appropriate benchmark identified by the Sensoy procedure. "-" denotes that the two benchmarks are identical in that particular test. Panel A (B) shows results for funds without (with) a benchmark discrepancy according to Sensoy's procedure.

Panel A: Funds without a Sensoy Benchmark Discrepancy

	$\mathrm{BM}=0$	$0<\mathrm{BM} \leq 20$	$20<\mathrm{BM} \leq 40$	$40<\mathrm{BM} \leq 60$	$60<\mathrm{BM} \leq 80$	$\mathrm{BM}>80$
Prospectus - AS	-	-0.15%	-0.08%	0.60%	1.29%	1.04%
	Prospectus - Sensoy	-	$-0.94]$	$[-0.26]$	$[1.84]$	$[1.97]$

Panel B: Funds with a Sensoy Benchmark Discrepancy

	$\mathrm{BM}=0$	$0<\mathrm{BM} \leq 20$	$20<\mathrm{BM} \leq 40$	$40<\mathrm{BM} \leq 60$	$60<\mathrm{BM} \leq 80$	$\mathrm{BM}>80$
Prospectus - AS	-	0.04%	-0.03%	0.39%	1.00%	2.37%
		$[0.30]$	$[-0.06]$	$[1.04]$	$[2.10]$	$[3.25]$
Prospectus - Sensoy	0.16%	0.82%	-0.11%	0.50%	0.80%	2.26%
	$[0.33]$	$[1.13]$	$[-0.18]$	$[1.10]$	$[1.63]$	$[3.15]$

Table A.5: Comparison of tracking error procedures and the Benchmark Mismatch procedure
This table shows differences in average annualized benchmark returns for fund-months identified as having a benchmark discrepancy using either the Benchmark Mismatch procedure or a given tracking error procedure. The tracking error procedures are based on a comparison between a fund's tracking error with respect its prospectus benchmark and a fund's tracking error with respect to the benchmark that produces the lowest tracking error. Both measures of tracking error are calculated over the previous 36 months. The 'Median' procedure identifies a benchmark discrepancy whenever (i) the benchmark that produces the lowest tracking error is not the prospectus benchmark and (ii) the difference between those two benchmarks' tracking errors is above the 50th percentile among funds clearing the de minimis hurdle (0.1% per year) in that period. The 'Top Quintile' procedure is similar, except that it uses the 80th percentile instead of the 50th. Differences are reported between the prospectus benchmark and the AS benchmark and between the prospectus benchmark and the lowest tracking error benchmark. A "-" in a cell indicates that the two benchmarks are identical in that particular test. t-statistics are reported in brackets below each coefficient and are calculated using standard errors independently double clustered by fund and year-month.

Tracking Error Procedure		Median		Top Quintile	
Benchmark Discrepancy?	BM	Yes	No	Yes	No
	Tracking Error	No	Yes	No	Yes
	Prospectus	-0.08%	-0.76%	0.12%	-0.83%
		$[-0.16]$	$[-1.50]$	$[0.24]$	$[-1.12]$
Benchmark-Adjusted	AS	-1.31%	-	-1.30%	-
Return		$[-3.33]$		$[-3.66]$	-1.51%
	Tracking Error	-	-1.38%	-	$[-3.41]$
					1.23%
Differences	Prospectus - AS	1.23%			
				0.62%	-

Table A.6: Factor exposure differences between the AS and prospectus benchmarks Including a constant in the model
This table repeats Table 6, but includes a constant in the model:

$$
\text { Return }_{A S, t}-\text { Return }_{\text {pro }, t}=\alpha+\beta * \text { Factor }_{t}+\varepsilon_{t} .
$$

Panel A: Benchmark Return Difference by Style

Style:	All	Large	Sm-mid	Growth	Value	Blend
Prospectus	0.75%	1.28%	0.30%	0.87%	-0.41%	0.66%
	$[1.37]$	$[0.90]$	$[0.60]$	$[1.25]$	$[-0.60]$	$[1.09]$
AS	-0.66%	-1.21%	-0.71%	-0.50%	-1.18%	-1.05%
	$[-1.34]$	$[-2.00]$	$[-1.32]$	$[-0.61]$	$[-2.29]$	$[-2.08]$
Difference	1.41%	2.49%	1.01%	1.37%	0.77%	1.71%
	$[3.55]$	$[2.17]$	$[1.87]$	$[1.93]$	$[1.24]$	$[3.36]$

Panel B: Explanatory Power - CPZ7 Model

Style:	All	Large	Sm-mid	Growth	Value	Blend
R^{2}	21.8%	81.5%	46.0%	54.5%	40.2%	38.1%
Total Factor Return	0.38%	1.30%	0.24%	0.47%	-0.21%	0.64%
	$[2.07]$	$[1.26]$	$[0.66]$	$[0.90]$	$[-0.53]$	$[2.04]$

Panel C: Explanatory Power - CPZ7+ Model

Style:	All	Large	Sm-mid	Growth	Value	Blend
R^{2}	47.8%	85.5%	54.6%	63.5%	65.5%	54.2%
Total Factor Return	1.19%	1.69%	1.11%	1.23%	0.81%	1.41%
	$[4.31]$	$[1.60]$	$[2.79]$	$[2.17]$	$[1.61]$	$[3.77]$

Table A.7: Factor exposure differences between the AS and prospectus benchmarks Individual factor exposures
This table shows the individual factor exposures from the model in Table 6. Panel A (B) shows the exposures from using the CPZ7 (CPZ7+) model.

Panel A: CPZ7						
Style:	All	Large	Sm-mid	Growth	Value	Blend
S5RF	-0.01	0.02	-0.01	-0.03	0.00	0.00
	$[-1.05]$	$[1.20]$	$[-0.82]$	$[-3.03]$	$[0.03]$	$[0.04]$
RMS5	0.10	0.66	-0.06	0.05	0.03	0.20
	$[3.84]$	$[10.92]$	$[-1.94]$	$[1.38]$	$[0.73]$	$[7.74]$
R2RM	-0.11	0.17	-0.20	-0.11	-0.10	-0.07
	$[-6.20]$	$[5.49]$	$[-8.36]$	$[-4.73]$	$[-3.83]$	$[-3.41]$
S5VS5G	-0.02	-0.01	-0.01	0.02	-0.10	-0.04
	$[-0.95]$	$[-0.45]$	$[-0.49]$	$[0.53]$	$[-2.84]$	$[-1.71]$
RMVRMG	-0.02	0.04	-0.07	0.03	0.02	-0.09
	$[-0.90]$	$[0.50]$	$[-2.64]$	$[1.03]$	$[0.48]$	$[-4.02]$
R2VR2G	0.02	-0.14	0.07	0.13	-0.15	0.04
	$[0.79]$	$[-2.17]$	$[2.81]$	$[3.57]$	$[-3.49]$	$[1.56]$
UMD	0.02	0.02	0.03	0.05	-0.02	0.03
	$[2.23]$	$[1.49]$	$[2.17]$	$[3.42]$	$[-1.64]$	$[2.48]$

Panel B: CPZ7+					Bll	Large
Style:	Sm-mid	Growth	Value	Blend		
S5RF	0.01	0.04	0.00	-0.03	0.04	0.02
	$[0.68]$	$[2.80]$	$[-0.10]$	$[-2.47]$	$[3.42]$	$[1.68]$
RMS5	0.12	0.67	-0.03	0.07	0.04	0.22
	$[5.14]$	$[12.75]$	$[-0.84]$	$[1.96]$	$[1.44]$	$[8.60]$
R2RM	-0.07	0.22	-0.17	-0.07	-0.03	-0.04
	$[-4.00]$	$[8.85]$	$[-6.80]$	$[-2.93]$	$[-1.79]$	$[-1.65]$
S5VS5G	0.05	0.08	0.02	0.07	0.03	0.04
	$[2.22]$	$[2.38]$	$[0.69]$	$[2.13]$	$[1.00]$	$[1.61]$
RMVRMG	-0.10	-0.02	-0.12	-0.04	-0.08	-0.18
	$[-4.61]$	$[-0.33]$	$[-4.44]$	$[-1.27]$	$[-2.26]$	$[-7.27]$
R2VR2G	-0.01	-0.13	0.03	0.07	-0.15	0.02
	$[-0.35]$	$[-2.01]$	$[0.92]$	$[1.88]$	$[-4.99]$	$[0.76]$
UMD	0.01	0.01	0.03	0.05	-0.04	0.00
	$[1.00]$	$[0.65]$	$[1.66]$	$[2.95]$	$[-2.95]$	$[0.11]$
RMW	0.13	0.11	0.10	0.19	0.15	0.12
	$[4.53]$	$[1.72]$	$[2.45]$	$[3.57]$	$[3.87]$	$[3.60]$
CMA	-0.01	-0.02	-0.04	-0.02	0.03	0.00
	$[-0.22]$	$[-0.66]$	$[-1.33]$	$[-0.51]$	$[0.98]$	$[-0.12]$
MGMT	-0.01	-0.04	0.06	0.03	-0.07	0.00
	$[-0.21]$	$[-1.28]$	$[1.93]$	$[0.79]$	$[-3.03]$	$[-0.06]$
PERF	-0.01	0.02	-0.02	-0.03	0.03	0.02
	$[-0.35]$	$[0.85]$	$[-1.15]$	$[-1.14]$	$[1.38]$	$[1.37]$
QMJ	0.06	0.06	0.04	0.01	0.12	0.05
	$[1.98]$	$[1.76]$	$[1.31]$	$[0.29]$	$[3.41]$	$[1.37]$
BAB	0.02	-0.02	0.01	0.02	0.00	0.01
	$[2.02]$	$[-1.03]$	$[0.77]$	$[1.71]$	$[-0.23]$	$[1.38]$
LIQ	0.00	0.01	0.02	-0.01	0.00	-0.02
	$[-0.69]$	$[1.64]$	$[2.02]$	$[-1.14]$	$[0.51]$	$[-2.45]$

Table A.8: Factor exposure differences between the AS and prospectus benchmarks Replacing CPZ7 with Carhart (1997)
This table repeats Table 6, but uses the Carhart (1997) factors as the base model, rather than the CPZ7 factors.

Panel A: Benchmark Return Difference by Style

Style:	All	Large	Sm-mid	Growth	Value	Blend
Prospectus	0.75%	1.38%	0.23%	0.91%	-0.57%	0.66%
	$[1.38]$	$[0.97]$	$[0.47]$	$[1.32]$	$[-0.84]$	$[1.09]$
AS	-0.65%	-1.10%	-0.75%	-0.46%	-1.27%	-1.07%
	$[-1.33]$	$[-1.83]$	$[-1.41]$	$[-0.56]$	$[-2.55]$	$[-2.14]$
Difference	1.40%	2.48%	0.98%	1.37%	0.70%	1.74%
	$[3.57]$	$[2.18]$	$[1.83]$	$[1.91]$	$[1.05]$	$[3.41]$

Panel B: Explanatory Power - Carhart Model

Style:	All	Large	Sm-mid	Growth	Value	Blend
R^{2}	9.1%	61.8%	38.1%	50.6%	46.3%	17.0%
Total Factor Return	0.03%	1.61%	-0.30%	0.08%	-0.43%	0.31%
	$[0.26]$	$[1.80]$	$[-0.91]$	$[0.15]$	$[-0.94]$	$[1.45]$

Panel C: Explanatory Power - Carhart+ Model

Style:	All	Large	Sm-mid	Growth	Value	Blend
R^{2}	29.0%	67.8%	45.7%	62.4%	63.5%	27.7%
Total Factor Return	0.55%	1.57%	0.31%	1.02%	-0.06%	0.57%
	$[2.59]$	$[1.66]$	$[0.85]$	$[1.80]$	$[-0.11]$	$[2.09]$

