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IA-1. Institutional background

1.1. Private information cycle

In a buyout, a company is acquired using a relatively small portion of equity and a large

portion of outside debt �nancing. In a typical transaction, the fund buys the majority control

of a mature �rm (not necessarily publicly traded). In contrast, venture funds typically invest

in young or emerging companies often through convertible debt or preferred shares, and

usually do not seek to obtain a majority control. In both cases, however, the fund managers

(general partners [GPs]), tend to closely monitor and exert in�uence on the acquired company

activities, normally through active membership on the board of directors (Gompers and

Lerner, 1999; Kaplan and Strömberg, 2009; Metrick and Yasuda, 2010).

The company is one of many investments that the fund's GPs undertake which, in turn, is

a small portion of candidates that get screened during the approximately �ve-year investment

period. Unlike for portfolio investors in public companies, the information set of the fund's

GPs is not be limited by standard disclosure requirements even if the fund have yet to become

a stake holder. On a con�dential basis, GPs are free to request any data about the company

business that the management may possess. GPs tend to specialize in certain industries and

types of businesses. Thus, the signals about the business fundamentals complement each

other across deals.

Both, buyout and venture, would target a total life of about 10 to 13 years from the

investment period start date. The holding durations tend to be 4 to 7 years with some exits

occurring earlier [later] than 2 [10] years after the original investment. For investments that

do not go bankrupt, the exit routes are either IPO or an acquisition. The latter can be further

broken-down by the type of acquirer: (i) another PE fund or a group of investors or (ii) an

operating �rm, possible private too, that is strategically interested in the production capacity

of the target's assets. The IPO route typically fetches the highest return on investment, yet

other exit routes (except bankruptcy) are on average pro�table as well (e.g., see Braun et al.,

2017; Degeorge et al., 2016). As with the timing of divestment, the route is also chosen solely

by GPs. The important contractual feature is that (after withholding their performance fees)

GPs are obligated to pass the divestment proceeds to LPs (rather than reinvest).

Before the investment period concludes, buyout and venture GPs would normally attempt

to raise a new fund. The interval between fund starts would be 2 to 5 years with the average

being 3.5 years for both buyout and venture funds (e.g., Barber and Yasuda, 2017). There

are, of course, numerous reasons for GPs (and LPs) to want the lives of the funds to overlap.

One of the consequences of this practice is a continuous �ow of information about similar

company fundamentals, on the one hand, and investor portfolio demands, on the other.
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These largely non-public information �ows that GPs regularly participate in both, buyout

and venture, can be summarized via the following chart.

Private Equity Information Cycle

1.2. Theoretical predictions

To accommodate the salient features of the institutional settings described above, I will

model the GPs' divestment decisions as the optimal stopping time problem under uncer-

tainty, as studied in Miao and Wang (2011). This framework distinguishes expected utility

maximization with regards to well-measured risk from the situations in which agents are

unsure about the likelihoods of the future state of the world. Furthermore, the set of these

likelihoods is subject to updating itself, which is a natural way to incorporate changes in

the GPs' medium- to long-term outlook changes about the value of their funds' assets they

already run (as well as are yet to raise). In the real-option literature, this is also referred

to as ambiguity about future (a.k.a, Knightian uncertainty in reference to Knight, 1921).

Speci�cally, I will assume that GPs are expected utility maximizers at the horizon of about

one year, and are ambiguity-averse at longer horizons.

Naturally, a GP seeks to maximize the utility of its wealth, which derives from the current

and future (potentially inde�nite) stream of fees. As such, the following Bellman equation

characterizes her wealth process:

Wt(f) = u(ft) + αEq[Wt+1(f)] , (IA-1)

where u(·) is a time-separable utility function; α ∈ (0, 1) is the subjective discount factor for

time lapse; Eq is the conditional expectation operator with the probability measure q ∈ Pt,
a set of the one-step-ahead conditional probabilities given the information at date t (Epstein

and Schneider, 2003); and f = (ft)t≥1 is the fee stream that is observable but stochastic.

For a given period t, say a year, de�ne ft as a sum of fees from funds j run the GP:

ft =
∑

j f
(j)
t · I{j=1; t} , (IA-2)

where f
(j)
t are dollar-measured fees from the fund j = 1, 2, 3, ... run by the GP, and I{j=1; t}

IA-3



is an indicator for whether fund j has been raised before period t.

Without loss of generality, assume that a fund can hold only one asset, only exits it in

whole, and the management fees cease after the exit. Accordingly, the fee contribution from

fund j can be written as follows:

f
(j)
t =


0 �if has already resolved before period t

m
(j)
t �management fees if continues beyond t

m
(j)
t + C ·max

{
0, V

(j)
t −C

(j)
t

}
�the payout if exits during t

(IA-3)

, where C is the contractual carry rate; V
(j)
t is the value of the fund assets if sold during

period t; and C
(j)
t is period t's cost basis for the carry computation. Note that normally C

(j)
t

increases in the cumulative management fees paid up to the period t, and a positive hurdle

rate also pushes it further up.

The above de�nition for the fee process underscores that GPs' exit decisions are irre-

versible with respect to the carry claims on fund j's assets. It is therefore subject to the

optimal stopping time toolbox that supports quite general assumptions about the underlying

probability space and the state process (i.e., f in our case), as explained in Dixit et al. (1994)

and Miao and Wang (2011), reproduction of which I omit from this appendix. The GP's

optimal stopping time problem can thus be written as:

max

{ ∫
Wt(f

′)Pt(df ′; f) ,

u
( ∫

f ′tQ(df ′; f)
)

+ α
∫
Wt+1(f ′)Pt(dx′; f)

}
(A): value if stays through t

(B): value if exits in t
(IA-4)

, in which the following notation is obeyed:∫
g(x′)P(dx′;x) = min

q(·;x)∈P(x)

∫
g(x′)q(dx′;x) for any function g(x) . (IA-5)

In words, the GP stands to receive the continuation value, subject to the level of ambiguity

implied by Pt if she decides to stay. Otherwise, she removes the fraction of her wealth deriving
from the current fund's fee stream from being exposed to the most adverse likelihood scenario

(as given by the probability density Pt(f) that results in the in�mum expectation of Wt),

even though it will remain exposed to some residual risk (as given by the density Q(f)),

since V
(j)
t can �uctuate during the period.

As shown in Miao and Wang (2011), a stopping problem like (IA-4) has a unique solution

f ∗, such that whenever ft crosses this threshold from below, the agent prefers payout B

over A, even though the choice does not absolve the risk completely. In our settings, this

corresponds to GPs' choice to exit the current fund and, by doing so, cash-in its carry. The

analysis in Miao and Wang (2011) suggests however, that an analytical solution to the choice

problem (IA-4) is most likely not feasible. Therefore below I seek to merely characterize the
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probable changes to GPs' choice under certain relevant scenarios.

Assume fτ < f ∗ for τ < t, so that GP did not exit the current fund in the previous

periods. First, suppose that the update in Pt from Pt−1 was such that in�mum expected

wealth increased from the previous period.ia1 In this scenario, the prediction about the GP

choice is ambiguous. On the one hand, the value increase in (A) can exceed that of (B). This

can happen because α < 1, and the moneyness of the current fund carry decreases over time

(i.e., due to past management fees and/or hurdle). On the other hand, the density Q(f),

which governs the payout from the current fund (conditional on exit), could have shifted

rightwards enough that the sum of values from (B) choice exceeds that of (A). In other

words, the change in Q(f) could have been more favorable than that in Pt(f).

Suppose instead that the update in Pt from Pt−1 was such that in�mum expected wealth

decreased from the previous period. This corresponds to the GP developing a more negative

medium- to long-term outlook. In this scenario, the decrease in value of (A) will be larger that

that in (B), so long as the current fund is in the carry�i.e.,
∫
f ′tQ(df ′; f) >

∑
jm

(j)
t I{j=1; t}.

This is so because the change in Q(f) cannot be more adverse than that of Pt(f), which

returns the in�mum by construction. Meanwhile, if the (immediately expected) carry is zero,

the GP stands nothing to gain from exiting during period t since collecting the management

fee from the current funds involves no risk even under Pt(f).ia2

The diagram in section IV.A.1 of the main text summarizes these scenario analysis.

1.3. Which PE exits are informative?

IPO versus non-IPO

Consider a hypothetical seven-year old buyout fund that has yet to liquidate most of its

investments. Suppose the GP anticipates that the industry-wide cash �ows will be notably

below market expectations in the near term but healthy in the long run. Assume there is

another fund approaching the end of its investment period that has yet to deploy its capital.

GPs of the second fund may agree to buy the holdings of the �rst at prices close to publicly

traded comparables. They may in fact do so while fully sharing the belief about an upcoming

downturn and yet still be taking the �rst-best action from their LPs' perspective.ia3 Hence,

the exits by the �rst fund would be informative of industry return expectations even absent

an IPO. Likewise, corporate buyers may have investment horizons di�erent from that of the

seller. Thus, exits through trade-sale can be as informative about GPs' expectations as sales

ia1That is,
∫
W (f ′)Pt(df

′; f) >
∫
W (f ′)Pt−1(df ′; f)

ia2This conclusion assumes that the exit decision per se does not e�ect the fundraising success probability
however, as embedded in Pt(f).
ia3Just the wealth transfer from outside creditors who overestimate the collateral value may exceed the

second fund overpayment. The portfolio company improvement may yet to be fully realized by the �rst fund.
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through an IPO.

Finite life considerations

Continue with the example fund that is beyond the phase when new or considerable

follow-on investments are permitted. Assume that it has performed well enough for GPs to

have a substantial performance fee to harvest in that fund. If the fund investment value

deteriorates at the end of the fund contractual term (e.g., 10-12 years), the carried interest

may vanish as well. By rushing to sell the fund holdings, not only do GPs secure performance

fees, but they also lock-in a relatively high performance rank among peer funds, which can

help attract investors in future funds.

In contrast, there are few bene�ts to GPs from premature divestments before the industry

downturn if the performance to-date has been poor. Asset liquidation would amount to

suboptimal early-exercise of an option (to earn carry and improve performance rank) and

reduce asset management fees.ia4 Therefore, it is possible that skilled GPs facing such a

survival risk would likely seek to retain fund assets ahead of the turbulent times for the

same reason that option-holders want the underlying asset volatility to increase. However,

since such an asset-hoarding may tarnish GPs' reputation with investors and adversely a�ect

future fundraising, one would expect it to be limited to GPs that face immediate survival

risk only (i.e., were unable to raise a follow-on fund).

It is important to note that, because hedge fund (as well as mutual fund) managers

typically operate open-end funds, it is costlier for them to keep low exposure to the market

in the anticipation of the downturn over the next several quarters than for PE GPs. Lack

of competitive returns reported for several quarters (while the market run continues) can

result in capital out�ow due to redemptions from dissatis�ed fund investors precisely when

the manager would want to maximize capital deployment ahead of the market rebound.

The �nite life feature of PE funds is critical for the formation of incentives to reveal

the timing signal through exits. A manager endowed with an in�nite-life investment vehicle

might rather view the expected downturn as an opportunity to acquire desired long-term

exposures at attractive prices.ia5

When do PE exits convey less information?

Suppose that our hypothetical fund has performed very well but already divested its

best deals (i.e., those yielding the highest performance fees). The remaining holdings in the

fund's portfolio would then likely comprise the deals that failed to payout well. Provided

ia4Some funds have the basis for asset management fees switching from committed to invested capital after
the investment period elapses.
ia5�You'd be making a terrible mistake if your stay out of a game you think is going to be very good over

time because you think you can pick a better time to enter...� (Warrent Bu�et, CNBC 2/27/17)
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that the fraction of this residual in the total distributions to-date is small, its option value

(which increases in the assets' idiosyncratic risk as well) may still dominate any expected

loss of value to the fund's carry amount due to the likely deterioration in the industry-wide

factors.

Thus, as the value of the residual fund assets reduces in front of the amount of carry

already cashed-in, the incentive for GPs to reveal a negative market-timing signal diminishes.

Meanwhile, a low pace of distributions over the remainder of the fund's life is also consistent

with a scenario when GPs have been expecting improvements in the comparable valuations

during that period (i.e., may contain a positive market-timing signal). As industry-wide

returns improve (yet remain small in front of the assets' idiosyncratic returns), the exit

choice will be increasingly driven by positive realizations of the idiosyncratic risks, which, by

de�nition, are uncorrelated across assets. Hence, the remaining exits would be less clustered

in time, all else being equal. Equivalently, there will be fewer distributions per unit of time.

Similarly, the divestments undertaken earlier in the fund's life, while the residual exposure

of GP's carried interest has remained high (or very little carry accrued yet), should contain

relatively less of the market-timing consideration.

Potential power drains

GPs might be too diversi�ed or could hedge their undesired exposures elsewhere. How-

ever, �nance professionals are often legally prohibited to undertake any personal investing

activities potentially jeopardizing best actions in the interests of clients or their employers.

There is little systematic evidence on how strong and common such clauses are but GP risk-

aversion combined with basis risk could also limit these hedging activities. It is also likely

that I measure skill and incentives with error (e.g., see subsection below). If anything, these

should prevent me from �nding signi�cant predictability in my primary tests.

1.4. Net IRR as proxy for In-The-Money carry

In my data, I do not observe the amount of carry interest that GPs have `at risk' to

losing due to the dip in the market valuations. Instead, I use net of fees cash �ows to infer

whether the carry amount has been greater than zero at the time when fund is close to fully

resolved. This approach results in a measurement error for the case when fund terms allow

GPs to receive carry distribution before distribution to LPs exceeded the capital called by

the fund.ia6 The measurement error will be in the direction of underestimation of carry paid,

especially when carry is determined on a deal-by-deal basis.

ia6In the latter case, IRR less or equal [greater] to the Hurdle rate guarantees zero [positive] carry cash-in
by GPs, since Hurdle rate is used to grow the net capital invested.
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However, because the key coe�cient of interest is on the interaction of the in-the-money

carry proxy and the fraction of recent distributions to the total-to-date (i.e. Rush), the

measurement error gets mitigated markedly�even for the deal-by-deal basis, high values

of Rush insure that the proportional amount of carry has been harvested right before the

hypothesized dip in the public benchmark is measured. Nonetheless, it is likely what causes

the lack of power in the fuzzy RDD tests (reported in Table A.6 of the main text) in which

I compare funds with net IRR just above the Hurdle rate to those with net IRR just below.

IA-2. Simulation-based estimator

2.1. Setup

In this section I provide additional details about the simulations-based method used to

obtain results reported in section IV.B of the main text, as well as section IA-3.3.4 of this

appendix.

The method involves three steps. First, I estimate an auxiliary model of expected Sub-

ResTime�time to quarter when fund NAVs dropped below 15% or 20% of total-distributions

to date�and Rush�the fraction of distributions over the past 6 quarters relatively to the

funds total to-date�for all funds in the sample as functions of: (i) vintage-by-industry �xed

e�ects; (ii) fund size, PME-to-date, IRR-rank-to-date; (iii) GPs follow-on fund start dates

and investments activity where available.ia7 It is insightful to think about this auxiliary model

as simply a density-mass �lter for possible SubResTime�Rush combinations. To insure that

simulated values have economically meaningful support, I take log of the stopping-time and

probit of Rush. I treat the equation for ln(SubResT ime) and the equation for Φ−1(Rush) as

two linear Seemingly Unrelated Regressions as per Zellner (1962) but the �nal results are es-

sentially unchanged if I allow simultaneity in SubResT ime and Rush and use IV-estimates of

the expected values (unreported, available upon request).ia8 I utilize the pseudo-panel struc-

ture of Rush and SubResTime observations per fund where the pattern of fund distribution

permits so.ia9

Table B.I of Appendix B in the main text reports the results of this estimation. For

ia7The sample industry-vintage universe is rather sparse before 1990 (relatively few funds to begin with) and
post 2003 (as relatively few funds reach the stopping-time threshold). Whenever the industry-vintage bucket
includes fewer than nine funds, I (i) consolidate �Energy� and �Materials� into �Industrials�, �Consumer
Staples� into �Consumer Discretionary� and (if still fewer than nine funds) (ii) consolidate vintages into
triennial groups to allow for better estimations precision.
ia8Note that under the null hypothesis, SubResTime and Rush do not predict public equity returns, and

thus possible simultaneity and variable omissions are not a�ecting the validity of inference in main model

(described below).
ia9Namely, when a fund reaches 15% and 20% threshold of residual NAV to total distributions-to-date in

di�erent quarters.
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both equations Vintage-by-Industry FE provide the biggest portion of explained variation.

Nonetheless, all other variables signi�cantly explain ln(SubResT ime) and have signs consis-

tent with the economic intuition. Speci�cally, fund log-size is positively related to how long

it takes to resolve it, while superior performance, as measured by PME and IRR-tercile, as-

sociates with shorter durations. Unsurprisingly, the duration of existing funds also correlates

with the fundraising success by GPs, as the loadings on Follow-on Raised - and Follow-on

within six quarters-dummies suggest, while positive loading on the fraction of capital called

by the next fund may speak about the GPs' economic optimism (or asset-hoarding). The

same set of covariates has less success in explaining Φ−1(Rush) with R2 being only 0.132.ia10

Fewer explanatory variables are signi�cant statistically, although the signs of all coe�cients

are economically intuitive still. The �tted values from these equations represent the projec-

tions of fund �xed e�ects on the set of above described covariates. I will use these projections

in place of cohort �xed e�ects in estimating the main model (described below). The better

the �t, the smaller the covariance matrix of stopping-times and Rush residuals that I will

use to parametrize the simulations. Therefore, I do not include fund type indicators among

other covariates that add more noise than explanatory power. Besides the �tted values, I

also obtain the covariance matrix of the residuals for both equations.

Second, I randomly draw a sample of 100 bivariate normal shocks from a covariance

matrix that is itself randomly drawn from Wishart distribution parametrized by the the

covariance matrix of residuals estimated in the �rst step. In doing so, I allow for uncertainty

about the auxiliary model estimates and admit heteroskedasticity in the return-predicting

equation discussed in the third step. Adding same set of shocks to fund-threshold estimates

of expected ln(SubResT ime) and Φ−1(Rush) and reverting the functional transformations,

obtains the simulated values of stopping-time and Rush for each fund-threshold in the sam-

ple that re�ect (a) Industry-GPs-fund characteristics, (b) sample covariance of unpredicted

portion of stopping-time and Rush, and (c) random shocks drawn from a random mixture of

normal distributions. Although consistency of the third step will not depend on whether the

distribution of actual SubResT ime and Rush are close to the simulated ones, it is useful to

examine this question as it may a�ect inference. Figure IA-1 reports comparisons of univari-

ate distributions and bivariate relations of actual SubResT ime and Rush (Actual Funds) in

comparison to those of simulated funds for random draw. It appears that simulated bivariate

distributions tend to have more weight in tails which, if anything, is likely to upward-bias

the parameter variance estimates.

Applying the actual fund inception dates, for each fund-threshold-placebo exit I obtain

ia10This is consistent with the �ndings in Robinson and Sensoy (2016) that fund age and calendar time
(quarterly) �xed e�ects explain less than 8% of the aggregate PE cash-�ow variation.
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the months corresponding to the actual and simulated SubResT ime and match the 12-

month forward mean Industry return as well as the respective month and industry-month

covariates that control for Pseudo-timing alternative. These variables are CAY-ratio, VIX,

U.S. Treasury yields, corporate credit spreads, the industry index price-earnings and book-

to-market ratios. See section II and Table I and II in the main text for details and summary

statistics. The data end in October 2013, with the last actual fund stopping-month being

March 2013. If the stopping-month is later than June 2014, this placebo exit is truncated

so that the forward mean return is computed over at least 6 months. Hence, some of the

funds post 2004 vintage will tend to have slightly fewer than 100 placebo exits. The results

are robust to dropping these funds (available upon request).

Third, I compare how subsequent Industry Returns associate with Rush of actual funds of

interest (denoted by Informed -dummy) as opposed to that in simulated exits corresponding

to these funds (main model):

E[IndustryReturn1:12
ij ] = αInformedijRushij + α0Informedij + α1Rushij + λj.

The panel subscript j denotes a given actual fund (Informedij = 1) and its simulated

exits(Informedij = 0) corresponding to this fund. I then study di�erent groups of actual

funds, subsetting the control group accordingly each time (rather than re-simulating it).

To insure that α estimates are robust to the simulation starting point (seed value) and

yet to keep the procedure computationally attractive, I repeat the second and third steps

1,000 times. Each time I randomly choose simulation seeds for shocks and the covariance

matrix draws which also alleviates the autocorrelation problem in pseudo-random number

generators. Hence, I obtain independent estimates of main model from 1,000 samples of

identical data for actual funds augmented with di�erent simulated pseudo exits (henceforth

independent simulation).

2.2. Statistical properties

My three-step estimation is quivalent to the following just-identi�ed Simulated Method

of Moments :

E
[
Z1j

(
SubResT imej − f(GP-fund characteristics; θt)

)]
= 0

E
[
Z2j

(
Rushj − g(GP-fund characteristics; θr)

)]
= 0

E
[
Z3ji

(
IndRet(θt,r,Σ)−αααInformedRush(θt,r,Σ) + α0Informed+ α1Rush(θt,r,Σ) + FFE(j)

)]
= 0

E

[(
SubResT ime(θt,r,Σ)ji

Rush(θt,r,Σ)ji

)
⊥ FFE(j)

]
= 0

E

[(
SubResT ime(θt,r,Σ)ji

Rush(θt,r,Σ)ji

)(
SubResT ime(θt,r,Σ)ji

Rush(θt,r,Σ)ji

)′
⊥ FFE(j)−W2(Σ, 1)

]
= 0
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where the �rst two restrictions use only the sample data while the remainder involve simu-

lated data and:

(i) Z1j, Z2j and Z3ji denoting the sets of all covariates in the respective moment restriction;

(ii) FFE is a set of dummies denoting expected stopping month and Rush for each actual

fund j as per functions f(...) and g(...) evaluated at the parameters' values θt and θr respec-

tively;

(iii) W2(Σ, 1) � a draw from Wishart distribution with 1 degree of freedom, parametrized by

2x2 positive de�nite Σ, the covariance matrix of the sample fund residuals:
(
SubResT imej−

Ej[SubResT ime]
)
and

(
Rushj − Ej)[Rush]

)
;

(vi) SubResT ime(θt,r,Σ), Rush(θt,r,Σ) � simulated values of SubResTimeand Rush under

the parameters θt, θr and Σ;

(v) IndRet(θt,r,Σ) � mean Industry Return over 12 quarters following the month according

to SubResT ime(θt,r,Σ) and fund j inception month.

Although consistency of moment-based estimations does not depend on distributional

assumptions (provided the moment restrictions are valid), drawing shocks to SubResTime

and Rush from a randomly drawn covariance matrix is important for correct inference in

such situations. One way to think of this procedure is that it allows for error-term het-

eroskedasticity and clustering in main model, which is almost surely true in the population

of funds. Another motivation for these simulation parameter perturbations is that they al-

low for uncertainty in the covariance matrix estimates (Σ). Again, absence thereof would be

an unrealistically strong assumption. Similar intuition underlie imputations via the Gibbs

sampler and some Bayesian inference methods (Efron and Tibshirani, 1994).

The point estimates [con�dence intervals] for α that I report in Tables V and VI and in

Figures B1 and B2 in the main text are based on equally weighted means of αs [ ˆavar(α)s]

over 1,000 independent simulation.ia11 In essence, I run Fama and MacBeth (1973) procedure

which is asymptotically equivalent and typically as e�cient as panel least-squares methods

(Skoulakis, 2008). While the aggregation of point estimates is standard, my choice for

the variance re�ects the fact that α-estimates across our independent simulation must be

perfectly correlated asymptotically.ia12,ia13

Besides α and the asymptotic variance-based con�dence interval, Figure B1 in the main

text plots the range for αs across independent simulations. This range indicates how sensitive

the estimates are to the seed value choice when we draw at most 100 random exits for

ia11Each avar(α)s estimate is robust to error clustering at exit quarter.
ia12A GLS version of Ferson and Harvey (1999) yields almost identical point estimates in the cases I reviewed
(untabulated).
ia13This variance estimator can also be viewed as obtained through a parametric bootstrap, e.g. see Efron
and Tibshirani (1994).
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each fund. In both Panels, A and B, top-left(right) charts report results for the baseline

model with stopping-time de�ned as crossing 15 (20)% threshold of NAV/(total distributions

to-date), while bottom-left (right)�for the baseline model augmented with Pseudo-timing

controls and 15 (20)% threshold. Panel A investigates how robust the estimates are to

exclusion of selected vintage years. Panel B�dummies-out selected exit years.

To examine the consequences of the parameter-dependence of the null hypothesis in main

model, Panel A of Figure B2 in the main text plots α estimates over independent simulations

when actual fund stopping month and Rush are replaced with their expectations estimated

in the �rst step. These expected values indicate the location of the density masses for the

simulated funds. Clearly, they are always zero statistically and, if anything, tend to be

slightly negative. As with expected stopping month and Rush, I can compute coe�cient and

variance estimates for each one of the 100 bivariate draws. Panel B plots the fraction of

simulated funds that have t-statistic lower than that of the actual funds by each independent

simulation. We can see that these random rejection rates are consistent with (two-sided) 5%

con�dence level for the 15% threshold case as per asymptotic variance estimates in Table V

of the main text, but somewhat higher for the 20% threshold case where, in which with

asymptotic variance estimate we reject the null at 10% level.

2.3. Alternative approaches

Another viable econometric strategy to compare market returns following actual fund

exits and rush from those under a random exit assumption would borrow tools from the sur-

vival analysis. In fact, a discrete time hazard-rate model would imply a very similar dataset

(spanning the plausible range of stopping-times for each fund) to the one I use to estimate

the main model but the observation weights would be governed by a parametric distribu-

tion (e.g. logistic) instead of a mixture of normals that my simulations imply, although the

interpretation of coe�cients would be less intuitive.ia14

However, neither is such a discrete hazard-rate model more robust to functional form

misspeci�cation or variables omissions, nor is it less restrictive as it comes to the parameter

variance estimation. Moreover, non-linear MLEs are prone to the incidental parameter

problem with large set of �xed e�ects (Wooldridge, 2002). Finally, bypassing an auxiliary

model of my approach would not be possible with a hazard-rate model still because the

values of hypothetical Rush are not known. Essentially, for each quarter we observe a rolling

window sum of distributions to the total sum of distributions to-date, conditional the actual

�stopping quarter�. What we need to observe is that amount conditional on �stopping� in

ia14The dummy Informed and mean Industry Return would have to switch sides since the dependent variable
needs to be binary.
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that particular quarter.

Figure IA-1

Actual fund exits versus simulated

This �gure reports comparisons of SubResTime (labeled as 'E�ective Life (Qtrs)' on the chart) and Rush

('Rush-to-Exit (Pct)') for actual funds in comparison to a random draw of simulated funds. See section IA-
2.2.1 for details. Panel A reports kernel density estimates of SubResTime and Rush with solid (dashed) line
being a separate estimate over the actual (simulated) values on the left- and right-hand charts respectively.
Panel B plots local polynomial regressions estimates of SubResTime and Rush relations for actual and
simulated values on the left- and right-hand charts respectively.

Panel A: Univariate Distributions

Panel B: Bivariate Relations
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IA-3. Additional results and robustness

Figure IA-2 reports cash �ow schedules against the time series of public benchmark for

hypothetical funds and reports the corresponding values of Timing Track Records (TTRs)

which are de�ned as:
∑T

t=0 Dt·exp{r1:T ·(1−t/T )}∑T
0 Ct·exp{r1:T ·(1−t/T )} /

∑T
t=0 Dt·exp{rt+1:T }∑T
0 Ct·exp{rt+1:T }

, where t = 0 is fund inception,

rt+1:T is continuously compounded return on public benchmark between date t and the

fund's resolution, while Dt[Ct] is the fund's distribution [capital call] at end of period t.

Figure IA-3 describes the fund sample distributions across vintage years and the annu-

alized returns cross-sectional variation in the industry sector returns that correspond to the

fund specialization.

Figure IA-4 depicts cross sectional variation in capital calls and distributions over time

separately for buyout and venture funds. It follows from Panel A that, for example by the

30th month since inception, a quarter of buyout funds would call 61% of its capital or less

while another quarter would be fully invested by that time. Meanwhile, from the right-hand

charts we learn that among almost fully resolved buyout funds, a quarter had about 40%

of total distributions completed 30 months before last while another quarter had over 80%

already distributed. Panel B shows that the dispersion is similarly wide for venture funds.

Figure IA-5 compares the sample fund distribution of TTRs computed against the broad

market returns measured by CRSP VW index (Panel A) with those computed against the

returns of S&P500 subindex corresponding to the GICS Industry sector focus (fund Industry)

as assigned by Burgiss, the PE fund data provider. It follows that the means and variances

are notably higher against the Industry returns for both venture and buyout funds.

Figure IA-6 reports additional event studies for Informed Rush (by exit year group, to

complement those in Figure 3 in the main text) and for Informed �No Rush� (i.e. Rush<

vintage median). It appears that when Informed and incentivized GPs procrastinate with

trimming remaining exposures as manifested by low values of Rush the industry share price

performance tends to improve. However, the returns do not become abnormally good as if

there were some short-lived distortions in the valuations caused by the `copycat' behavior of

some investors taking long positions in the industry. Rather, the returns become very close

to these around the control group exits, which, in turn, appear unchanged from before the

SubResTime.

Table IA-1 reports the results of the calendar time portfolio regressions for a long-short

strategy that trades on a signal derived from PE fund distributions and is rebalanced quar-

terly.

Table IA-2 reports results of a placebo analysis, in which I examine if clustering of fund

distributions at least a year away from SubResTime also results in predictability of industry

returns. The alternative explanation�that the inherent heterogeneity across funds makes
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their distribution patterns potentially incomparable�predicts α to be di�erent from zero

away from SubResTime as well.

3.1. Alternative derivation of TTR

TTR and money multiple decomposition. Denote ∆ := ln(MM)− ln(PME) with MM be-

ing the fund's money multiple and PME de�ned as per equation (1) in the main text for a

fund fully resolved as of t = T :

PME =

∑T
t=0 Dte

−tr̄∑T
t=0 Cte

−tr̄
, where r̄ = r1:T/T . (IA-6)

Because ln(MM) = ln(
∑T

t=0Dt)− ln(
∑T

t=0Ct), we can write:

∆ = ln
(∑T

t=0Dt

)
− ln

(∑T
t=0Ct

)
−
[
ln
(∑T

t=0Dte
−tr̄)− ln(∑T

t=0 Cte
−tr̄)]

= ln(
∑T

t=0Dt/
∑T

t=0Dte
−tr̄)− ln(

∑T
t=0 Ct/

∑T
t=0 Cte

−tr̄) . (IA-7)

Without loss of generality, assume that only one capital call has been made�in the

beginning, i.e. C0 > 0, Ct = 0 ∀t > 0, so that
∑T

t=0Ct/
∑T

t=0Cte
−tr̄ = 1.

∆ = r̄ · FundDuration so long as:∑T
t=0 Dt∑T

t=0Dte−tr̄
− 1 ' r̄ ·

∑T
t=0 t ·Dte

−tr̄∑T
t=0 Dte−tr̄

⇐⇒
T∑
t=0

Dt −
T∑
t=0

Dte
−tr̄ '

T∑
t=0

tr̄ ·Dte
−tr̄ . (IA-8)

It therefore has to be that:
T∑
t=0

Dt(1− e−tr̄)−
T∑
t=0

tr̄ ·Dte
−tr̄ ' 0

→
T∑
t=0

Dt[1− (e−tr̄ + tr̄ · e−tr̄)] ' 0 . (IA-9)

Condition (IA-9) is true whenever 1+ tr̄ ' etr̄ and, since PME = PME ·TTR by de�nition,

equation (1) of main text is equivalent to equation (2) of the main text.

3.2. Robustness tests

Table IA-4 reports results of a multivariate analysis of the sample funds' TTR properties.

Panel A repeats the Table 2, whereas Panel B runs same tests but using TTRs and sequencing

against the overal market return (as opposed to the fund Industry in the main text). It

follows that the persistence and correlation with PME is weaker for the case with broad
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market index.

Table IA-3 expands the cross-sectional analysis of TTRs' properties from Table 2 of the

main text with additional controls in Panel A, and compares the realized TTRs with those

under randomly generated exit timing by the actual funds in Panel B.

Table IA-5 reports results of a multivariate analysis of the sample funds' excess TTR

properties, de�ned as a di�erence in each fund's TTR against the matched industry bench-

mark and the respective fund's TTR against the broad market. Panel A reports results for

Entry TTR, panel B reports results for Exit TTRs.

Table IA-7 reports predictive regressions of return by Informed Rush just as those in

Table 4 of the main text but using a dummy variable to denote Rush which is a fraction

of distributions (to LPs) over the last 6 quarters in the funds' total-to-date. Speci�cally,

Rush20 = 1 if Rush >= 0.2. Industry returns are of S&P500 subindex corresponding to the

GICS industry sector of the fund specialty. From this analysis, it follows that results are

very similar to those reported in the main text using continuous Rush and are not driven

by a non-representative minority of funds�(toDateTTR>1 × toDateIRR>Hurdle × Rush20)

=1 for 205 funds which is 22% of the sample.

Table IA-6 examines the robustness of the analysis in Table 4 to di�erent inferences

methods. I follow Conley (1999) to model the spatial correlation between the return intervals

arising from the proximity of SubResTime; I also cluster by vintage year as Kaplan and

Schoar (2005) and in two dimensions simultaneously.

Table IA-8 examines the robustnes of the analysis in Table 4 in Fuzzy RDD settings,

in which the distance of the fund IRR-to-date from the hurdle rates is used as a forcing

variable.

Table IA-9 additionally scrutinizes the potential for simultaneity between Rush and In-

formed indicator to drive the predictability of returns in the main tests. In this analysis, I

instrument both, IndustryReturn the Informed indicator. I continue using IndEPSsurprise as

the source of variation for IndustryReturn and use a propensity score to instrument Informed

indicator. The propensity score is determined by the performance of the current fund's peers

and the timing track record of the previous fund managed by the that GP. Therefore, the

remaining variation in Informed indicator (and that of Informed×IndustryReturn) is less
susceptible to the Grandstanding and Footprint-on-Firms concerns. More speci�cally, the

exclusion restrictions for the validity of this test are: (i) industry future earning surprises

do not a�ect the fund exits today except through GP's industry return outlook, and (ii)

strategy-by-vintage median �luck� does not a�ect the fund exits today except through the

odds that the fund carry is in-the-money. This analysis is reported in Table IA-9. It reveals

the negative and signi�cant interaction on Informed×IndustryReturn and, thus, supports
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the hypothesis that future industry returns cause Informed Rush.

3.3. Does Rush hurt holding period returns?

If holding period returns were sacri�ced, we would expect that the gains from company

selection and nurturing (as measured by holding period returns) to be negatively correlated

with those from buying (selling) near the industry troughs (peaks). Although the results

in Table IA-4 suggest that this correlation seems to be positive, they are prone to spurious

correlation due to fund risk misspeci�cation (see section II.A of the main text) and the overlap

in lives across several funds (Korteweg and Sorensen, 2017). Moreover, it is interesting to

examine holding period returns of funds in which GPs might have refrained from divesting

ahead of the market downturns. If their decisions �to not rush� were driven by the objective

to maximize the total return for LPs, we should expect that the average holding period

abnormal returns of their funds to be higher (so that those decisions could have been optimal

still).

Utilizing funds' holding period abnormal performance as dependant variable in a model

used to predict industry returns in the main text (Table IV) and Table IA-7 of this appendix

yields the required tests. Table IA-10 reports the results. As before, Informed group is

represented by its constituents, to-date TTR > 1 and IRR > Hurdle and the interaction

thereof, whereas Rush is a ratio of the fund distributions over 6 quarters to the fund's total

to-date. To zoom at GPs' portfolio company selection and nurturing e�ects, I add industry

�xed e�ects to vintage year �xed e�ects while there is no purpose to condition on the risk-

premia covariates as of the stopping time in this case (dropping industry �xed e�ects leaves

the estimates largely unchanged).

The di�erences across speci�cations in Table IA-10 derive from the dependent variable

only. In speci�cations (1) and (2), it is Kaplan-Schoar PME at the latest available date

(henceforth, Last PME ) against the fund industry and the broad market, respectively. While

the funds that had neither performance in excess of the hurdle rate nor a good timing

track record (TTR > 1), indeed appear to attain lower lifetime PMEs when their exits

cluster signi�cantly towards the last few quarters of active operations (i.e., Rush ≈ 1), all

the interaction terms with Rush are positive. The cumulative e�ect on PME for Informed

Rush (reported in the bottom of the table) is actually positive, although not signi�cant

statistically. Thus, I conclude that there is no evidence of holding period returns' sacri�ce

by GPs exhibiting Informed Rush.

The signi�cantly negative coe�cient on TTR > 1 indicates that the �non-Rushing� In-

formed GPs who were not making any performance fees, have had signi�cantly lower holding

period returns for their investors than the control funds. This would be expected if those
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GPs were primarily concerned with keeping their option to earn performance fees alive (at

the cost of LPs' value maximization objective).ia15

In speci�cations (3) and (4), I focus on holding period returns speci�cally during the

periods of exits (i.e., while Rush is measured). Therefore, I de�ne the dependent variables

as a log of a ratio of last PME (industry and broad market, respectively) to the PME as of

the fund's �fth anniversary. The main-e�ect coe�cient is no longer even negative while the

interactions with just TTR> 1 and just IRR>Hurdle are much closer to zero, suggesting

that Rush relates to returns attained earlier during the funds' lives (motivating the inclusion

of PME-to-date in the conditioning set for the simulation-based estimations, see section IA-

2). The key result�the positive cumulative e�ect of Informed Rush�remains qualitatively

unchanged from speci�cations (1) and (2), showing no evidence of holding period performance

cannibalization from market timing of exits by Informed. However, the positive association

between Rush with holding period returns appears stronger economically and statistically

during the later periods of fund lives when most divestments occur.

3.4. Evidence on risk shifting

In this section, I test whether GP skills can also hurt LP interests through more successful

�asset-hoarding� ahead of high volatility periods.ia16 While LPs can also bene�t from the

option value of a distressed equity claim, it appears unlikely that such risk shifting by GPs

implements a �rst-best portfolio choice from their LP perspective. Instead of keeping the

assets in the fund, most LPs could obtain equivalent systematic and comparable idiosyncratic

volatility exposures while not footing the bill for the GP's call-option. To proceed with the

tests, I simply change the dependent variable in the baseline model used in the main text (i.e.

Table V) from future mean of Industry returns to past volatility, and rede�ne the Informed

funds group.

I estimate volatility as annualized standard deviation of monthly returns -6 to 0 and -12

to -8 quarters relative to the respective fund's stopping-time. The �rst window corresponds

to the period over which Rush is measured. Hence, it shall speak about how the fund

distributions' clustering associates with abnormal industry volatility. The second window is

even more interesting since high values of Rush imply that there were very few distributions

made before the Rush measurement window while the fund �xed e�ect projections ensure

that the volatility is abnormal relative to the fund inception date×industry and other fund-

ia15In the untabulated analysis, I also verify that funds run by informed GPs that appear to rush have
signi�cantly shorter life than the control group, whereas when Rush is near zero, the life is longer, albeit
insigni�cantly.
ia16Similar to management seeking to increase the riskiness of company assets when incentivized by distressed
equity as per Jensen and Meckling (1976), and Galai and Masulis (1976), among others.
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and �rm-level covariates (as per the auxiliary model in Table B.1 in the main text). The

results for the �rst window can be considered a placebo experiment that informs about

the di�erences in abnormal volatility within Informed Rush period, which (if present) may

confound our interpretation of the results for the {-12 to -8}-window .

The informed group now comprises funds that (a) have a positive track record of market

timing (TTR>1 ), and/or (b) where GPs face a survival risk beyond the term of the current

fund. I assume the survival risk to be determined by a combination of the following two

conditions: (i) whether net-of-fees IRR was in the bottom or top tercile among type×vintage
peers (Btm/Top), and (ii) whether a successor fund has been raised (NoNext/YesNext).ia17

To not engage more than three-level interaction terms, I de�ne three non-overlapping groups:

Btm|NoNext, Btm|YesNext, and Top|NoNext. In addition, to preclude a look-ahead bias and

unrealistic assumptions, I measure TTR and IRR as of the �fth anniversary of the respective

fund and constrain the sample to funds with actual stopping-times at least eight years from

inception. This ensures that the funds are not too young to make any distributions during

the {-12 to -8}-window, while the to-date performance signals are meaningful and yet not

overlapping with the volatility observation windows.

Arguably, Btm|NoNext-funds face the highest incentive to hoard the fund assets since

their GPs likely have no performance fees to collect from the current and future funds. The

trade-o� is less clear for Btm|YesNext-funds' GPs. On the one hand, the asset-hoarding

bene�ts the value of their out-of-the-money option to earn performance fees in the current

fund. On the other hand, such a behavior may tarnish their relationships with investors and

negatively a�ect the odds of successful fundraising in the future. Chung et al. (2012) show

that the present value of expected fees (performance-based and �xed) from the future funds

(yet to be raised) may exceed those from the current fund. Meanwhile, the examination of

the e�ects for Top|NoNext-funds completes the analysis by highlighting the role of current

performance with respect to the risk-shifting incentives. There should be zero e�ects insofar

performance fees in the current fund reduce GPs risk-appetite and/or high performance

signi�cantly increases the odds of fundraising success (Barber and Yasuda, 2017).

Table IA-11 reports the results for the stopping time de�ned based on 15% NAV/�total

distributions to-date� threshold. All speci�cations include the projections of fund �xed e�ect

(see Appendix B in the main text) and the main terms of Rush and Informed. Speci�cations

(3) and (4) also include the levels of VIX index as the fund stopping-quarter and the -12 to

-8 quarters or -6 to 0 quarters, respectively, to better absorb heterogeneity across informed

ia17Clearly, an existence of a follow-on fund commitment from investors keeps the GPs �in-business� for the
next decade while the current fund performance is a signi�cant determinant of the fundraising odds as per
Barber and Yasuda (2017).
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funds and zoom at the industry-speci�c innovations to the volatility. Speci�cations (1) and

(3) show that the volatility during the Rush periods is neither abnormal (relative to the

hypothetical exits) nor meaningfully di�erent within Informed funds across the incentive

and skill dimensions. Therefore, the results for {-12 to -8} window shall provide us with a

clean test of risk shifting hypothesis.

Meanwhile, speci�cations (2) and (4) of Table IA-11 strongly support the hoarding hy-

pothesis. While the industry volatility associations with the divestment schedules continue

to be insigni�cant for funds that appear to have just timing skill but no incentive to risk-shift

(and vice versa), there is a singi�cant di�erence when both conditions are satis�ed. A posi-

tive and signi�cant coe�cient of TTR>1 × Btm|NoNext × Rush in speci�cation (2) suggests

that an inter-quartile (=0.3) increase in Rush by such funds associates with approximately

2.5 percentage points higher per annum volatility of the industry returns during the quarters

preceding the Rush. Since the fraction of distributions prior to the sixth quarter before the

stopping equals 1-Rush, it follows that these funds had distributed abnormally small frac-

tion of fund assets before the industry volatility became abnormally high. Controlling for

the systematic volatility levels within the window and at the fund resolution date (as per

speci�cation (4)) does not change the result.

The projections of fund �xed e�ects re�ect funds' inception dates. Therefore, the fund-

speci�c control-groups of hypothetical exits account for di�erences in the volatility paths

since fund inception (e.g., as of the �fth anniversary). Besides, negative but insigni�cant

from zero coe�cients of TTR>1 × Top|NoNext × Rush speak against the e�ects on TTR>1 ×
Btm|NoNext × Rush being driven by other factors (e.g., when many funds had no successor

by mid-life). Thus, we can conclude that Informed GPs who have incentives to �hoard�

fund assets are signi�cantly more likely to �drag� their fund assets through periods of high

turbulence in the industry.

Finally, the e�ectively zero coe�cients on TTR>1 × Yes|NoNext-terms indicate that,

skilled timers or not, poorly performing GPs that nonetheless have a successor fund already

do not exhibit such risk shifting behaviors. This suggests that expected �ows from future

funds do restrain managers from �destroying value�, consistent with the analysis in Chung

et al. (2012).
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Figure IA-2

Timing track records: examples

This �gure plots pair-wise comparisons of TTRs for eight hypothetical fund capital calls (CCallst) and
distribution (Distribt) schedules (#1�#8) and a common (mean-zero) market return (rt) schedule. The cash-
�ow schedules are from the LPs' perspective so that the negative values represent capital calls that sum to
$50 for all but fund #2. All are derived from the following value process�FundV aluet = FundV aluet−1(1+
rm,t)+CCallst−Distribt. As discussed in the main text, in this case the fund money-multiple equals TTR.
TTR measures the gross-return due to selling near the market peaks during the fund life-time and buying

near the troughs and de�ned as
∑T

t=0 Dt·exp{r1:T ·(1−t/T )}∑T
0 Ct·exp{r1:T ·(1−t/T )} /

∑T
t=0 Dt·exp{rt+1:T }∑T
0 Ct·exp{rt+1:T }

, where t = 0 is fund inception,

rt+1:T is continuously compounded return on public benchmark between date t and the fund's resolution,
while Dt[Ct] is the fund's distribution [capital call] at end of period t. Top-left panel demonstrates that
very di�erent schedules can be equally market-timing neutral. Top-right panel reviews the case of buying
at trough. Bottom-left panel demonstrates the e�ect of selling at peak whereas bottom-right panel shows
timing of entry and exit.
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Figure IA-3

Sample description

This �gure reports intertemporal distributions of Industry returns in Panel A and the sample private equity
funds in Panel B. Each observation in the box-plot of Panel A represents a 12-month return of S&P500 GICS
industry sector subindex. The increment between intervals is one month so that there are 12 observations
for each of the 10 industry sectors. Panel B plots total number of funds in the sample by vintage-year as well
as the number of funds with a positive track record of market timing in the past, as measured by TTR � the
gross-return due to selling near the Industry peaks during the fund life-time and buying near the troughs
(see �gure IA-2 for deni�tion). The sample is comprised of 349 (592) U.S.-focused buyout (venture) funds.

Panel A: Industry returns

Panel B: Funds by vintage and TTR group
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Figure IA-4

Private equity fund cash �ows: cross-section

This �gure reports the 5th, 25th, 75th, and 95th percentiles for the fraction of to-date capital calls (distri-
butions) in the total amount eventually to be called (distributed) by each fund during the �rst (last) 60
months of its operation. Panel A plots results for the buyout subsample. Panel B reports this analysis for
the venture subsample.

Panel A: Buyout

Panel B: Venture
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Figure IA-5

Timing track records: industry versus overall market

This �gure plots Timing Track Record (TTR) values for the sample private equity funds. TTR measures
the gross-return due to selling near the market peaks during the fund life-time and buying near the troughs

and de�ned as
∑T

t=0 Dt·exp{r1:T ·(1−t/T )}∑T
0 Ct·exp{r1:T ·(1−t/T )} /

∑T
t=0 Dt·exp{rt+1:T }∑T
0 Ct·exp{rt+1:T }

, where t = 0 is fund inception, rt+1:T is continuously

compounded return on public benchmark between date t and the fund's resolution, while Dt[Ct] is the fund's
distribution [capital call] at end of period t. Panel A left (right) chart shows the frequency distributions of
TTRs computed against the broad market index for the buyout (venture) funds using the complete history
of the fund cash �ows. The width of each bin is 0.1 which corresponds to 10% di�ernce in fund life-time
return. Panel B shows TTRs for the respective subsample against (S&P500 subindex of) GICS industry
sector that the respective fund specializes in (Industry TTRs).
The sample is comprised of 349 (592) U.S.-focused buyout (venture) funds of which 159 and 358 invested at
least 50% of the funds capital of the specialization industry. Among these funds, the means for industry-
based TTR are 1.076 and 1.146 for buyout and venture funds, which exceeds the broad market-based TTRs
by 0.027 and 0.054 respectively. As with the full sample, the di�erence is statistically signi�cant only for
venture funds. See section III.B.3 of the main text for multivariate tests, separately for entries and exits.

Panel A: Broad market TTRs
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Figure IA-6

Informed Rush: more event studies

This �gure plots cumulative return on Industry portfolio around SubResTime for funds with Rush above
vintage year medians. Rush measures the intensity of fund's distributions to LPs right before SubResTime,
based on 15% residual NAV threshold. The medians are computed by fund type (venture or buyout) and
vintage year. The sample is comprised of 349 (592) U.S.-focused buyout (venture) funds. The solid line
(Informed Rush) is the mean across Informed funds that have incentives and market-timing skill, as measured
by both toDateTTR>1 and toDateIRR>HR as of SubResTime. The dashed line comprise of all other funds.
Panel A reports results by triennial intervals (of SubResTime occurance) for funds with above-median Rush

while Panel B pools across all SubResTimes and below-median Rush. The bars denote 95% con�dence
interval.

Panel A: High Rush by exit year

Panel B: Full sample: what if no Rush?
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Table IA-1

Calendar Time Portfolios: Quarterly Abnormal Returns

This table reports abnormal return estimates of portfolio B in excess of risk-free rate (rf ) or portfolio A relatively to value-
weighted CRSP or three-factor Fama-French model. Both portfolios are rebalanced quarterly. Portfolio A is equally-weighted
10 GICS sector returns. Portfolio B sells GICS sectors for which two or more Informed funds exhibited above-median Rush at
their SubResTime over the past three or seven quarters (i.e. [0,+2q] or [0,+6q] respectively) and buys the remaining sectors
(equally-weighted). Rush measures the clustering of fund distributions before the SubResTime, when fund residual NAVs
become small in front of fund total-to-date distributions. Informed funds group is the same as in Panel A of Table 2 of the
main text as of SubResTime. Median Rush is computed over all funds of the same type (venture or buyout) incepted in the
same year. Standard errors in parentheses are robust to autocorrelation, */**/*** denote signi�cance at 10/5/1% con�dence
level.

Formation window [0,+2q] Formation window [0,+6q]

B�rfr B�rfr B�A B�rfr B�rfr B�A

α 0.014*** 0.011*** 0.008*** 0.014*** 0.011** 0.008**
(0.005) (0.003) (0.003) (0.005) (0.004) (0.004)

Mkt minus rfr 0.664*** 0.734*** =0.187*** 0.472*** 0.541*** =0.379***
(0.092) (0.066) (0.054) (0.083) (0.082) (0.073)

SML =0.182*** 0.055 =0.176*** 0.062
(0.045) (0.036) (0.067) (0.052)

HML 0.268*** 0.125* 0.284*** 0.141*
(0.101) (0.067) (0.105) (0.074)

Quarters # 95 95 95 95 95 95

Table IA-2

Informed Rush versus Uninformed: Placebo

This table reports predictive regressions of Industry returns by placebo-substitutes for Informed Rush to provide further support
for the identi�cation scheme deployed in the main text's Table 2, Panel A. The empirical model, the dependent variable, and
all other controls as the same as in the respective speci�cation of Table 2, main text. Speci�cations (3)-(4) have predictive
covariates added but otherwise are identical to (1)-(2). Informed funds group is the same as in the main text's Table 2 Panel
A but Rush and return measurement period are de�ned di�erently�based on a 4-quarter period with maximal cumulative
distributions outside the (-6,+4)-quarter window around the SubResTime. before15% [after15% ] measures IndReturn after the
largest cluster of distributions by each fund but starting at least six quarters before [for quarter after] the quarter when residual
NAVs dropped under 15% of cumulative distributions, therefore, having arguably far less consequences for the GP's carry
interest in the fund. Also, for the purpose of tests reported in this table, I measure rush magnitude in US dollars but to insure
magnitudes and distributional properties close to those of actual Rush, I de�neMaxRush as the probit function of log($mln/10).
SEs in parentheses are robust to heteroskedasticity and autocorrelation, */**/*** denote signi�cance at 10/5/1%.

before15% after15% before15% after15%
(1) (2) (3) (4)

toDateTTR>1 × toDateIRR>Hurdle × MaxRush =0.001 =0.001 =0.002 =0.000
(0.005) (0.005) (0.005) (0.005)

toDateTTR>1 × toDateIRR>Hurdle 0.002 =0.001 0.002 =0.003
(0.003) (0.003) (0.003) (0.004)

MaxRush 0.001 =0.001 0.001 0.004
(0.002) (0.004) (0.002) (0.003)

Vintage year �xed e�ects Yes Yes Yes Yes
Predictive covariates No No Yes Yes

Observations 562 500 556 500
R2 0.001 0.003 0.052 0.287
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Table IA-3

TTR Cross-section: Robustness and Placebo

This table reports regression estimates of the log of funds' end-life TTRs on a set of fund/GP characteristics. TTR measures
the gross-return due to selling near the market peaks during the fund life-time and buying near the troughs. The explanatory
variables are: ln(FundSize)i (ln(FundSize)2i ) - log (log-squared) of the fund dollar amount of capital committed; ln(Sequence)i
- chronological order of the fund inception date within GP; ln(PME)i - log of the fund's PME ; ln(TTR)i−1 - log of the previous
fund TTR within GP; Industry return over the fund life time (Trend) and its interaction with the other explanatory variables.
Panel A reports regression estimates using actual values of TTR. Speci�cations (2) through (6) include fund vintage-year �xed
e�ects. Standard errors in parentheses are clustered by GP, */**/*** denote signi�cance at 10/5/1% con�dence level. Panel
B reports selected coe�cients from simulations based on hypothetical exit schedules but actual funds' operation dates and
industry return paths. The capital calls and distribution magnitudes and frequencies are calibrated to match the sample means
conditional only on time since a fund inception. The underlying fund holding period return-generating process (α, σi and β�as
indicated by the subpanel header) is speci�ed relatively to the realized Industry returns at the quarterly frequency. For each
combination of the parameters (i.e. Case) of the parameters we produce 1,000 replications, keeping the seed �xed across cases.
Pr{A>S} is the fraction of funds for which actual TTR exceeds the simulated TTR. IDRfrac is the ratio of (i) the di�erence
between the actual TTR and the 10th percentile of simulated TTRs, and (ii) the interdecile range across the simulated TTRs
on fund-by-fund basis. The reported values are means across replications with standard deviations provided in parentheses.

Panel A: TTRs based on the actual exit schedules

(1) (2) (3) (4) (5) (6)

ln(IndSequence)i 0.060** 0.061*** 0.051** 0.053**
(0.023) (0.021) (0.021) (0.024)

ln(PME)i 0.058*** 0.083*** 0.080***
(0.017) (0.024) (0.025)

ln(TTR)i−1 0.149*** 0.103* 0.093*
(0.050) (0.052) (0.051)

Vintage year �xed e�ects No Yes Yes Yes Yes Yes
(Industry) Trend Yes Yes Yes Yes Yes Yes
Sequence × Trend Yes Yes Yes No No Yes
PME × Trend No No Yes No Yes Yes
Past TTR × Trend No No No Yes Yes Yes

Observations 756 756 756 404 404 404
R2 0.049 0.384 0.397 0.440 0.463 0.470

Panel B: TTRs based on random exit: Mean(SD) coe�cient across 1,000 simulations

Case 1: α = 0, σi = 0, β = 1.0

Pr{A>S} = 0.528(0.010), IDRfrac = 0.81(0.08)

(2) (3) (4) (5)

Ind. Seq. 0.009 0.009
(0.011) (0.011)

Curr. PME 0.016 0.016 0.016
(0.052) (0.052) (0.053)

Past TTR =0.017 =0.018 =0.018
(0.048) (0.048) (0.048)

Case 2: α = 0, σi = 0.20, β = 1.0

Pr{A>S} = 0.531(0.011), IDRfrac = 0.77(0.09)

(2) (3) (4) (5)

Ind. Seq. 0.009 0.009
(0.012) (0.012)

Curr. PME 0.017 0.017 0.017
(0.037) (0.037) (0.037)

Past TTR =0.016 =0.017 =0.017
(0.050) (0.050) (0.050)

Case 3: α = 0.006, σi = 0.20, β = 1.0

Pr{A>S} = 0.533(0.010), IDRfrac = 0.78(0.09)

(2) (3) (4) (5)

Ind. Seq. 0.009 0.009
(0.012) (0.012)

Curr. PME 0.019 0.019 0.019
(0.036) (0.036) (0.037)

Past TTR =0.018 =0.018 =0.019
(0.050) (0.050) (0.050)

Case 4: α = 0.006, σi = 0.20, β = 1.5

Pr{A>S} = 0.518(0.010), IDRfrac = 0.70(0.09)

(2) (3) (4) (5)

Ind. Seq. 0.016 0.016
(0.018) (0.018)

Curr. PME 0.030 0.030 0.030
(0.020) (0.020) (0.020)

Past TTR =0.018 =0.017 =0.019
(0.058) (0.057) (0.057)
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Table IA-4

Timing track records: associations and persistence

This table reports linear regression model estimates of the log of funds' end-life TTRs. TTR measures the
gross-return due to selling near the market peaks during the fund life-time and buying near the troughs

and de�ned as
∑T

t=0 Dt·exp{r1:T ·(1−t/T )}∑T
0 Ct·exp{r1:T ·(1−t/T )} /

∑T
t=0 Dt·exp{rt+1:T }∑T
0 Ct·exp{rt+1:T }

, where t = 0 is fund inception, rt+1:T is continuously

compounded return on public benchmark between date t and the fund's resolution, while Dt[Ct] is the fund's
distribution [capital call] at end of period t. The explanatory variables are: ln(Size)i (ln(Size)2

i ) - log (log-
squared) of the fund $ capital committed; ln(Sequence)i - chronological order of the fund inception date by
given GPs (the private equity management �rm); ln(PME)i - log of the fund's Kaplan and Schoar (2005)
Public Market Equivalent Index; ln(TTR)i−1 - log of the GP's previous fund TTR. TTR, ln(Sequence)i and
PME are measured versus to the GICS industry sector of the fund specialty in Panel A, and versus the broad
market/ all funds by that GPs in Panel B. Speci�cations (2) through (6) include fund vintage-year �xed
e�ects. Standard errors in parentheses are clustered at GP-level, */**/*** denote signi�cance at 10/5/1%
con�dence level. The sample is comprised of 349 (592) U.S.-focused buyout (venture) funds.

Panel A: TTR versus Industry

(1) (2) (3) (4) (5) (6)

Fund size 0.515*** 0.082
(0.162) (0.150)

Fund size squared =0.014*** =0.003
(0.004) (0.004)

Fund sequence 0.057*** 0.049*** 0.040** 0.055**
(0.021) (0.018) (0.017) (0.024)

Fund PME 0.040*** 0.059*** 0.054***
(0.015) (0.020) (0.020)

Previous fund TTR 0.135** 0.115** 0.107**
(0.052) (0.051) (0.049)

Vintage year �xed e�ects No Yes Yes Yes Yes Yes

Observations 756 756 756 404 404 404
R2 0.025 0.387 0.386 0.431 0.449 0.457

Panel B: TTR versus Broad Market

(1) (2) (3) (4) (5) (6)

ln(Size)i 0.164* 0.002
(0.085) (0.072)

ln(Size)2
i =0.005** =0.001

(0.002) (0.002)
ln(Sequence)i 0.048*** 0.034*** 0.015* 0.011

(0.009) (0.008) (0.009) (0.014)
ln(PME)i 0.037*** 0.044*** 0.043***

(0.007) (0.010) (0.010)
ln(TTR)i−1 0.108** 0.093* 0.093*

(0.055) (0.049) (0.050)
Vintage �xed e�ects No Yes Yes Yes Yes Yes

Observations 756 756 756 404 404 404
R2 0.035 0.468 0.482 0.470 0.516 0.517

IA-28



Table IA-5

Industry minus Broad market TTRs: Entry VS Exits

This table reports OLS regression estimates for the industry timing track records in excess of that of the broad market. The
dependent variable in each model is a di�erence between the fund TTR computed against the industry benchmark and its
TTR computed against the broad market. Panel A reports results for Entry TTRs, Panel B�Exit TTRs. TTR measures the
gross-return due to selling near the market peaks during the fund life-time and buying near the troughs, which can be broken
down to the entry [exit] components dues to the pattern of capital calls [distributions] as shown in equation 1 of the main
text. The sample is comprised of 349 (592) U.S.-focused buyout (venture) funds.. The explanatory variables are: `Declared
Ind.>50%P' � a dummy taking the value of 1 if a single industry represents more than 50% of the fund investments made
during its life-time, `Venture' � a dummy that takes the values of 1 if the fund type is venture, the interaction thereof, and the
fund industry and vintage year �xed e�ects. Standard errors in parentheses are clustered by GP, */**/*** denote signi�cance
at 10/5/1% con�dence level.

Panel A: Entry TTRs

(1) (2) (3) (4) (5) (6)

Declared Ind.≥50%oP 0.016* 0.015 0.038** 0.015 0.017* 0.034**
(0.009) (0.010) (0.015) (0.009) (0.010) (0.017)

Venture 0.005 0.024* =0.010 0.005
(0.011) (0.014) (0.011) (0.015)

Venture × Declared Ind.≥50%oP =0.038** =0.028
(0.019) (0.020)

Industry FE Yes Yes Yes Yes Yes Yes
Vintage FE No No No Yes Yes Yes

Observations 941 941 941 941 941 941
R2 0.029 0.029 0.033 0.192 0.193 0.195

Panel B: Exit TTRs

(1) (2) (3) (4) (5) (6)

Declared Ind.≥50%oP 0.004 0.003 0.004 0.017** 0.013 0.016
(0.009) (0.009) (0.009) (0.009) (0.009) (0.012)

Venture 0.009 0.010 0.027*** 0.030**
(0.009) (0.012) (0.009) (0.013)

Venture × Declared Ind.≥50%oP =0.003 =0.005
(0.016) (0.016)

Industry FE Yes Yes Yes Yes Yes Yes
Vintage FE No No No Yes Yes Yes

Observations 939 939 939 939 939 939
R2 0.036 0.037 0.037 0.203 0.209 0.209
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Table IA-6

Informed Rush: Robustness to Inference Methods

This table reports standard errors (SEs) computed under di�erent assumptions for the coe�cient on TTR>1 × IRR>Hurdle ×
Rush from the main text's Table 2, Panel A and B respectively (and the respective speci�cations (1) through (4)). Spatial HAC
denotes standard errors obtained by using the overlap in the return measurement window following the respective SubResTime,
following the method of Conley (1999). Since the returns are 12-month average, the maximal overlap is 4 quarters corresponding
to a weight of 1 in the outer product of residuals and, hence an correlation of 1 between those two exits. This auto-correlation
is set to decay linearly to zero for return intervals that are more than two quarters away from overlapping, e.g. one ends in
December 1999 and the other starts in June 2000. Two-way clustered standard errors are obtained as a linear combination of
one-way clustered covariance matrices as shown in Thompson (2011).

Panel A: Informed ≡ (toDateTTR>1)·(toDateIRR>HR)
Fund FE Fund FE+PseudoTiming

15%thld 20%thld 15%thld 20%thld
(1) (2) (3) (4)

Cluster by Exit quarter (Table 2A main text) 0.00667 0.00780 0.00464 0.00538

Spatial HAC 0.00670 0.00719 0.00555 0.00447
Cluster by Vintage year 0.00680 0.00663 0.00602 0.00549
Cluster by Industry sector 0.00680 0.00429 0.00293 0.00214

Two-way clustered:

by Exit and Industry 0.00722 0.00560 0.00276 0.00321
by Vintage and Industry 0.00740 0.00467 0.00487 0.00253
by Exit and Vintage 0.00750 0.00823 0.00578 0.00587

Panel B: Informed≡(toDateTTR>1)+(toDateIRR>HR)+(toDateTTR>1)·(toDateIRR>HR)
Fund FE Fund FE+PseudoTiming

15%thld 20%thld 15%thld 20%thld
(1) (2) (3) (4)

Cluster by Exit quarter (Table 2B main text) 0.01180 0.01013 0.00959 0.00783

Spatial HAC 0.01021 0.00843 0.00744 0.00656
Cluster by Vintage year 0.01905 0.01654 0.01312 0.01143
Cluster by Industry sector 0.01387 0.01068 0.00628 0.00865

Two-way clustered:

by Exit and Industry 0.01749 0.00867 0.00995 0.00546
by Vintage and Industry 0.01643 0.00734 0.00943 0.00414
by Exit and Vintage 0.01067 0.00911 0.00718 0.00551
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Table IA-7

Informed Rush: robustness to variable de�nition

This table reports predictive regressions of the fund industry returns by Informed Rush, a proxy for the
carried interest �cashed-in� by GPs with a positive track record of market timing in the past. As dis-
cussed in the main text, a negative α-estimate from the following model identi�es market timing skill by GPs:

E[IndustryReturn1:12
ij ] = α · InformedijRush20ij + α0Informedij + α1Rush20ij + λj ,

where IndustryReturn1:12
ij is a mean monthly return on S&P500 subindex for the GICS industry sector that

fund i specializes in over 12 months following the fund i SubResTime, λj � fund vintage year �xed e�ects;
Rush is a fraction of fund distributions over the last 6 quarters in the funds' total-to-date: Rush20 = 1 if
Rush >= 0.2 and zero otherwise. In speci�cations (1) and (3) [(2) and (4)], Informedij is the interaction
between two dummies toDateTTR > 1 and toDateIRR > Hurdle, while speci�cations (2) and (4) also
include the two dummies separately as well. TTR measures the fund gross return to date due to selling at

market peaks and buying at troughs and is de�ned as
∑T

t=0 Dt·exp{r1:T ·(1−t/T )}∑T
0 Ct·exp{r1:T ·(1−t/T )} /

∑T
t=0 Dt·exp{rt+1:T }∑T
0 Ct·exp{rt+1:T }

, where t = 0

is fund inception, rt+1:T is continuously compounded return on the S&P500 subindex between date t and
the fund's resolution, while Dt[Ct] is the fund's distribution [capital call] at end of period t, and DT equals
the last most reported NAV corresponding to SubResTime. SubResTime is the �rst quarter when fund NAV
drops below 15% of the fund total distributions up to that quarter. Speci�cations (3)-(4) include additional
return-predictive covariates (see Table II of the main text). Standard errors in parentheses are clustered at
SubResTime, */**/*** denote signi�cance at 10/5/1%. The sample is comprised of 349 (592) U.S.-focused
buyout (venture) funds.

(1) (2) (3) (4)

toDateTTR>1 × toDateIRR>Hurdle × Rush20 =0.010*** =0.010* =0.005* =0.009*
(0.003) (0.006) (0.003) (0.005)

toDateTTR>1 × toDateIRR>Hurdle =0.000 0.003 0.002 0.004
(0.003) (0.004) (0.002) (0.003)

toDateTTR>1 × Rush20 0.000 0.004
(0.004) (0.004)

toDateIRR>Hurdle × Rush20 =0.000 0.001
(0.004) (0.003)

toDateTTR>1 =0.001 =0.002
(0.004) (0.002)

toDateIRR>Hurdle =0.005* =0.002
(0.003) (0.003)

Rush20 0.001 0.001 0.002 0.001
(0.002) (0.003) (0.002) (0.003)

Vintage �xed e�ects Yes Yes Yes Yes
Predictive covariates No No Yes Yes
Observations 893 893 892 892
R2 0.212 0.218 0.444 0.445
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Table IA-8

Informed Rush versus Uninformed: Fuzzy RDD

This table reports predictive regressions of excess Industry returns by Informed Rush, a proxy for the carried interest
�cashed-in� by GPs with a positive track record of market timing in the past:

IndReturn1:12
i − E[IndustryReturn1:12

ij |ci] = α
[
InformedijRushij Informedij Rushij

]
+ βXij + λj + εij ,

where IndustryReturnij is the mean monthly Industry return over 12 months following the fund i SubResTime, the dependent
variable is obtained as a residual of full-sample regressions of IndustryReturnij on ci, return Predictive covariates. Rushij
measures the intensity of fund's distributions to LPs right before SubResTime. Informedij is the indicator variable denoting
funds with both toDateTTR>1 and toDateIRR>Hurdle as of SubResTime based on 15% residual NAV threshold. The sample
is comprised of 349 (592) U.S.-focused buyout (venture) funds. Speci�cation (1) includes all funds from the sample whereas
speci�cations (2), (3), and (4) only include funds for which ToDateIRR is, respectively within 7.5%, 5%, and 2.5% distance
from Hurdle rate. All speci�cations also control for the third-order polynomial of ToDateIRR-distance from Hurdle rate
(i.e. the �forcing variable�, Xij) as well as vintage year �xed e�ects (λj). Standard errors in parentheses are clustered at
SubResTime, */**/*** denote signi�cance at 10/5/1%.

Full Distance from Hurdle rate (%)

sample -7.5 to +7.5 -5.0 to +5.0 -2.5 to +2.5
(1) (2) (3) (4)

toDateTTR>1 × toDateIRR>Hurdle × Rush =0.013** =0.015 =0.009 =0.011
(0.006) (0.011) (0.010) (0.016)

toDateTTR>1 × toDateIRR>Hurdle 0.002 0.003 0.003 0.004
(0.002) (0.004) (0.005) (0.008)

Rush 0.005 0.009 0.004 0.007
(0.005) (0.009) (0.009) (0.014)

(toDateIRR minus Hurdle) 3rd-order polynom Yes Yes Yes Yes
Vintage year �xed e�ects Yes Yes Yes Yes

Observations 893 281 186 108
R2 0.046 0.084 0.079 0.128
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Table IA-9

Return predictability and earnings news: full IV

Panel A of this table reports instrumental variable regression estimates of the following model:
E[Rushij ] = λRj + cRi + αR

[
Informedij IndReturn1:12

ij Informedij IndReturn1:12
ij

]
,

where Rushij measures the intensity of fund i distributions to LPs right before SubResTime; Informedij is
an indicator for the presence of incentives and market-timing skill; IndReturnij is the mean monthly return
on Industry over 12 months following fund i SubResTime, and aRj �vintage year �xed e�ects. Informed,
IndReturn, and their interaction are instrumented with the IndustryEPSsurprise over the respective pe-
riod, the propensity for the fund to be Informed, and their interaction. Informed are funds with both
toDateTTR>1 and toDateIRR>HR as of SubResTime. In speci�cations (1) and (3), SubResTime is based
on 15% residual NAV threshold as opposed to 20% in speci�cations (2) and (4). All speci�cations include
vintage group �xed e�ects, while speci�cations (3) and (4) also include Predictive covariates, cRi . The propen-
sity to be Informed is obtained from a probit model (as reported in speci�cation (1) of Panel B with pooled
15% and 20% SubResTimes) and is set to missing whenever the fund has fewer than �ve peers. Mfx denote
marginal e�ects evaluated at means. 1st stage K-P Wald stat is the partial F -statistic from Kleibergen and
Paap (2006) Wald test. Standard errors in parentheses are robust to heteroskedasticity, */**/*** denote
signi�cance at 10/5/1%. The sample is comprised of 349 (592) U.S.-focused buyout (venture) funds.

Panel A: Instrumentation of the Informed Status with its Propensity

15%thld 20%thld 15%thld 20%thld
(1) (2) (3) (4)

Informed(D) × IndustryReturn =10.537** =9.510** =9.367** =7.843*
(4.598) (4.382) (4.613) (4.265)

IndustryReturn 1.336 0.744 2.537 1.468
(2.790) (2.719) (2.756) (2.787)

Informed(D) =0.104 =0.139 =0.088 =0.094
(0.085) (0.088) (0.124) (0.140)

Vintage year �xed e�ects Yes Yes Yes Yes
Predictive covariates No No Yes Yes

1st stage K-P Wald statistic 17.5 18.6 16.5 12.0
Observations 628 695 628 695

Panel B: Informed Status Probability Model

(1) (2)

β/(t-stat) Mfx β/(t-stat) Mfx

Median peer PME 1.115*** 0.4384 1.210*** 0.4741
(6.29) (6.54)

Median peer TTR 3.575*** 1.4051 1.510*** 0.5918
(8.93) (2.94)

Industry Return since inception 0.274*** 0.1075 0.040 0.0157
(5.46) (0.38)

Previous fund TTR>1 0.194* 0.0763 0.330*** 0.1293
(1.69) (2.78)

Vintage year �xed e�ects No Yes

Observations 1,349 1,349
Pseudo R2 (Baseline probability) 0.153 (42.4%) 0.211 (42.7%)
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Table IA-10

Does Informed Rush sacri�ce holding period returns?

This table reports OLS estimates of the following model:
E[HARij ] = α · InformedijRushij + α0Informedij + α1Rushij + λj

where HARij is the holding period abnormal return of fund i as measured by a natural log of the Kaplan-
Schoar PME at the latest available date (henceforth, Last PME) against the fund industry and the broad
market in speci�cations (1) and (2), respectively. In speci�cations (3) and (4), HARij is a log of a ratio
of Last PME (industry or market) to the respective PME as of the fund's 5th anniversary. Rushij � a
fraction of distributions (to LPs) over the last 6 quarters before the SubResTime in the funds' total-to-date.
Informedij is the main e�ects and the interaction of two dummies which proxy for the presence of skill and
�nancial incentive and are based on whether TTR (IRR) as of SubResTime exceeds 1 (Hurdle rate), λj �
fund vintage-year and industry �xed e�ects. TTR measures the fund gross return to date due to selling at

market peaks and buying at troughs and is de�ned as
∑T

t=0 Dt·exp{r1:T ·(1−t/T )}∑T
0 Ct·exp{r1:T ·(1−t/T )} /

∑T
t=0 Dt·exp{rt+1:T }∑T
0 Ct·exp{rt+1:T }

, where t = 0

is fund inception, rt+1:T is continuously compounded return on public benchmark between date t and the
fund's resolution, while Dt[Ct] is the fund's distribution [capital call] at end of period t, ant DT equals the
last most reported NAV corresponding to SubResTime. SubResTime is the �rst fund-quarter with non-zero
cash-�ows when fund NAV drops below 15% of the fund total distributions up to that quarter. The sample is
comprised of 349 (592) U.S.-focused buyout (venture) funds and for the purpose of this analysis is restricted
to funds with SubResTime of at least 7 years since inception. The industry and market returns are proxied
by, respectively, S&P500 subindex corresponding to the GICS Industry sector of the fund specialty and
CRSP valued-weighed index. Standard errors in parentheses are clustered by fund vintage year, */**/***
denote signi�cance at 10/5/1%.

PME 0:T PME 5y:T
industry market industry market

(1) (2) (3) (4)

Rush e�ects:

toDateTTR>1 × toDateIRR>Hurdle × Rush 0.068 0.034 0.415 0.362
(0.602) (0.624) (0.568) (0.536)

toDateTTR>1 × Rush 0.234 0.430 0.041 0.143
(0.440) (0.428) (0.359) (0.392)

toDateIRR>Hurdle × Rush 0.286 0.360 =0.058 0.053
(0.399) (0.354) (0.398) (0.358)

Rush =0.514* =0.567** 0.104 0.073
(0.256) (0.242) (0.224) (0.205)

Base e�ects:

toDateTTR>1 × toDateIRR>Hurdle 0.150 0.087 =0.025 =0.066
(0.153) (0.159) (0.175) (0.160)

toDateTTR>1 =0.342*** =0.239** =0.300*** =0.185**
(0.099) (0.092) (0.086) (0.089)

toDateIRR>Hurdle 0.659*** 0.718*** 0.361** 0.404***
(0.120) (0.112) (0.146) (0.132)

Vintage �xed e�ects Yes Yes Yes Yes
Industry �xed e�ects Yes Yes Yes Yes

Sum(Rush e�ects) 0.074 0.257 0.502 0.631
p-value 0.757 0.422 0.000 0.001

Observations 796 796 796 796
R2 0.383 0.433 0.271 0.279
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Table IA-11

Risk shifting evidence

This table reports simulation-based estimates of abnormal volatility of Industry returns. Industry returns

are of S&P500 subindex corresponding to the GICS Industry sector of the fund specialty. The estimation
methodology is described in section IA-2 of this appendix. In short, I (1) estimate an auxiliary model model
of fund �xed e�ects for SubResTime and Rush, (2) independently simulate 1,000 blocks of up to 100 random
exits per fund under this model, and (3) pool main model estimates over these independent simulations.
The main model is:

E[IndustryV oltyij,h] = β · InformedijRushij + γ1Informedij + γ2Rushij + λj ,
where IndustryV oltyij,h annualized standard deviation of monthly returns {-6 to -0} and {-12 to -8} quarters
of fund i actual (i.e. Informedij = 1) or simulated SubResTime; Rushij � actual or simulated fraction of
distributions over the last 6 quarters in the funds' total-to-date, λj � �fund �xed e�ects� estimates from the
auxiliary model. The estimation is over funds with actual stopping-time of at least 8 years that as of the 5th
anniversary had (i) a POSITIVE track record of market timing as measured by TTR> 1 or (ii) where the
�rm faces high survival risk as measured by net-of-fees IRR in the bottom tercile among type×vintage peers
(Btm) and/or no successor fund raised up until at least the 6th quarter before SubResTime (NoNext). TTR
measures the fund gross return to date due to selling at market peaks and buying at troughs. Speci�cations
(1) and (3) report results for the volatility over the {-6 to 0 quarters} window from the stopping-quarter
which corresponds to Rush measurement period. Speci�cations (2) and (4) report results for the {-12 to -8
quarters} window which corresponds to at least the sixth year of the fund operations. Note that high values
of Rush indicate that relatively few distributions to LPs have been made before quarter-6 from the stopping.
Besides the main terms of Informed constituents: (TTR>1), (Btm|NoNext = 1), (Btm|Y esNext = 1),
(Top|NoNext = 1) and their interaction, control variables include Rush and the projections of fund �xed
e�ect (from the auxiliary model). In Speci�cations (3) and (4) control variables also include the levels of VIX
index as the fund stopping-quarter and the {-12 to -8 quarters} or {-6 to 0 quarters} window respectively.
Standard errors in parentheses are clustered at SubResTime, */**/*** denote signi�cance at 10/5/1%.

-6:0q -12:-8q -6:0q -12:-8q
(1) (2) (3) (4)

TTR>1 × Btm|NoNext × Rush 0.025 0.075** 0.007 0.064**
(0.027) (0.038) (0.022) (0.030)

TTR>1 × Top|NoNext × Rush 0.007 =0.010 0.012 =0.010
(0.020) (0.025) (0.016) (0.019)

TTR>1 × BtmYes|Next × Rush 0.006 =0.015 0.001 =0.007
(0.012) (0.017) (0.009) (0.015)

Btm|NoNext × Rush =0.001 =0.009 0.006 =0.010
(0.012) (0.015) (0.007) (0.012)

Top|NoNext × Rush =0.006 0.018 =0.006 0.007
(0.011) (0.019) (0.007) (0.016)

Btm|YesNext × Rush 0.006 0.016* 0.000 0.002
(0.006) (0.008) (0.004) (0.008)

TTR>1 × Rush =0.006 =0.006 0.003 =0.003
(0.007) (0.008) (0.005) (0.007)

Rush, Informed �xed e�ects Yes Yes Yes Yes
Fund �xed e�ects Yes Yes Yes Yes
VIX levels No No Yes Yes
# of Actual funds 596 596 596 596
Pseudo funds per 1 Actual 94.6 94.6 94.5 94.1
# of independent simulations 1000 1000 1000 1000
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