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A Proofs

A.1 Proof of Proposition 1:

Define ∆f = ft+1 − ft. Note that

∆f = ft(1− ft)κ(TA(RA)− TP (RP )) + λ̂(q − ft), (A.1)

where TA(RA) = r(RA)s(RA), and TP (RP ) = r(RP )s(RP ). At date t, ft is given.

Differentiating with respect to RA twice, and using the earlier conditions that r′(RA), s′(RA) >

0, that s′′(RA) = 0 by (1), and that r′′(RA) > 0 by (2), gives

∂TA(RA)

∂RA
= r′(RA)s(RA) + r(RA)s′(RA) > 0 (A.2)

∂2TA(RA)

∂(RA)2
= r′′(RA)s(RA) + 2r′(RA)s′(RA) > 0. (A.3)

Since RA affects TA but not TP , these formulas describe how active return affects both the

expected net shift in the fraction of A’s, and the expected unidirectional rate of conversion from

P to A.

Furthermore, substituting for the sending function s(RA) from (1) and the receiving function

r(RA) from (2) into (A.2) and (A.3) gives

∂TA(RA)

∂RA
= (2aRA + b)(βRA + γ) + β(aR2

A + bRA + c) (A.4)

∂2TA(RA)

∂(RA)2
= 2a(βRA + γ) + 2β(2aRA + b). (A.5)

The fact that sending and receiving functions and their first and second derivatives are all positive

signs some of the terms in parentheses. So it follows immediately from (A.4) that the sensitivity

of the transformation rate of investors to A as a function of past active return is increasing with

the parameters of the sending and receiving functions, β, γ, a, b, and c. By (A.5), a similar

point follows immediately for convexity as well, with the exception that c does not enter into

convexity. Furthermore, since κ is multiplied by TA(RA) − TP (RP ) in equation (A.1), it also

follows immediately that these effects are increasing with the intensity of social interactions, κ.

A.2 Proof of Proposition 2

From the discussion in the main text, it follows that we need to show that T̄ = T̄A − T̄P > 0

under the assumption of the proposition.

Using the definitions of the sending and receiving functions, direct calculation yields

T̄ = T̄A − T̄P

= aβ[γAσ
3
A − γPσ3

P + 3µA(σ2
A − σ2

P )] + B(σ2
A − σ2

P )− aβD3

−3aβµAD
2 − [3aβµ2

A + 3(aβ +B)σ2
P + C]D (A.6)
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where

B = aγ + bβ,

and

C = bγ + cβ.

It is easy to verify that T̄ > 0 when D = 0 and ∂T̄
∂D < 0 when D > 0 (see the proof of Proposition 3,

Part 1), so that T̄ is decreasing with D when D > 0. On the other hand, when D is very large

(relative to a fixed set of other model parameters), T̄ would be negative. Therefore, there exists

a positive D̄ corresponding to which T̄ is zero. Then for all D < D̄, T̄ > 0, so the active strategy

dominates.

A.3 Proof of Proposition 3

To show Part 1, we differentiate (A.6) with respect to D to obtain that

∂T̄

∂D
= −3aβD2 − 6aβµAD − [3aβµ2

A + 3(aβ +B)σ2
P + C] < 0.

For Part 2, differentiating with respect to active volatility σA gives

∂T̄

∂σA
= 3aβγAσ

2
A + 6aβµAσA + 2BσA > 0 (A.7)

Thus, the growth of A increases with active volatility σA. Greater return variance increases the

effect of SET on the part of the sender. Although high salience to receivers of extreme returns

(a > 0) is not required for the result, it reinforces this effect. Indeed, even if there were no SET

(β = 0), since a > 0 implies that B > 0, the result would still hold. Intuitively, high volatility

generates the extreme outcomes which receive high attention.

For Part 3, differentiating with respect to skewness γA of A gives

∂T̄

∂γA
= aβσ3

A > 0, (A.8)

Thus, the advantage of A over P is increasing with return skewness of A.

A.4 Proof of Proposition 4

For Part 1, we differentiate with respect to β, the strength of SET. This reflects how tight the

link is between the sender’s self-esteem and performance.

∂T̄

∂β
= a[γAσ

3
A − γPσ3

P + 3µA(σ2
A − σ2

P )] + b(σ2
A − σ2

P )− aD3

−3aµAD
2 − [3aµ2

A + 3(a+ b)σ2
P + c]D

> 0 (A.9)
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if D ≈ 0 is sufficiently small. So greater SET increases the evolution toward A, because SET

causes greater reporting of the high returns that make A enticing for receivers. A generates

extreme returns for SET to operate upon through higher volatility, or more positive skewness.

For Part 2, differentiating with respect to conversability γ gives

∂T̄

∂γ
= a(σ2

A − σ2
P )− (b+ 3aσ2

P )D

> 0 (A.10)

if D is sufficiently small. Greater conversability γ can help the active strategy spread because of

the greater attention paid by receivers to extreme returns (a > 0), which are more often generated

by the A strategy. (If D < 0, this effect is reinforced by the higher mean return of A. In this

case an unconditional increase in the propensity to report returns tends to promote the spread of

the sender’s type more when the sender is A.) If A earns lower return than P on average, greater

conversability incrementally produces more reporting of lower returns when the sender is A than

P, which opposes the spread of A.

For Part 3, recall that the quadratic term of the receiving function a reflects greater attention

on the part of the receiver to extreme profit outcomes communicated by the sender. Differentiating

with respect to a gives

∂T̄

∂a
= β[γAσ

3
A − γPσ3

P + 3µA(σ2
A − σ2

P )] + γ(σ2
A − σ2

P )− βD3

−3βµAD
2 − [3βµ2

A + 3(β + γ)σ2
P ]D

> 0 (A.11)

if D is sufficiently small. So greater attention by receivers to extreme outcomes, a, promotes the

spread of A over P because A generates more of the extreme returns which, when a is high, are

especially noticed and more likely to persuade receivers. This effect is reinforced by SET, which

causes greater reporting of extreme high returns.

For Part 4, differentiating with respect to how prone receivers are to extrapolating returns, b,

gives

∂T̄

∂b
= β(σ2

A − σ2
P )− (3βσ2

P + γ)D

> 0 (A.12)

if D is sufficiently small. Greater extrapolativeness of receivers helps A spread by magnifying the

effect of SET (reflected in β), which spreads A because of the higher volatility of A returns.

Finally, for κ, the result follows from the symmetric functional dependence of f̄ on T̄ and κ,

f̄ = f̄(κT̄ ), which implies that f̄ is increasing in κ, just like it is increasing in T̄ .

A.5 Proof of Proposition 5

In this and the next Proof, we assume the presence of a social network, as follows: Investors are

connected in an undirected social network represented by the graph G = (N , E), where N is the

set of investors and E is the set of edges connecting them. The set of investors N = {1, . . . , N},
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and (m,n) ∈ E ⊂ N ×N if investors m and n are connected through a social tie. By convention,

the network is undirected, i.e., (m,n) ∈ E ⇔ (n,m) ∈ E , and investors are not connected to

themselves ((n, n) /∈ N ).

In the model, social ties could represent friendship, professional collaboration, membership in

the same country club, or involvement with the same online community. If (m,n) ∈ E , there is a

chance that investor m tells n his investment strategy and performance. The set of investors that

n is socially linked to is Dn = {m : (n,m) ∈ E} ⊂ N\{n}, and n’s degree (number of connections)

is dn = |Dn|. An investor with a higher degree is said to be more connected. The total number

of connections is Q = 1
2

∑
n dn.

Consider investor n, who has adopted a passive investment strategy. Given return realizations,

RA and RP , the transition probability for a sender from A to P is TA(RA). Denote the subset of

neighbors of investor n that are type A (resp. P) by DAn (resp. DPn ).

We prove the result for a more general case than our base model in which, even within the

same class of investment strategies (A or P), investors may have different returns. Specifically,

the return of an A investor m ∈ DA
n is assumed to be RAm. The main body considers the special

case in which RAm ≡ RA (is the same) for all active investors. In a period, the number 2κN links

are chosen randomly in E , with equal probability, and such that (m,n) and (n,m) are not both

chosen, and we assume that 2κN << Q. Here, n is the potential sender and m the potential

receiver in the chosen link (n,m).

For a type P investor n to convert to A, he/she must (i) be selected for communication, which

occurs with probability 2κdn/Q, (ii) be selected to be receiver, which occurs with probability 1/2,

(iii) communicate with an A, m ∈ DAn , and finally (iv) be converted, which occurs with probability

TA(RAm). So the probability C that investor n switches from P to A is therefore

C = κ× |Dn|
Q
× |D

A
n |
|Dn|

∑
m∈DA

n

TA(RAm). (A.13)

Clearly, this probability is increasing in the number of A connections, |DAn |. It is also increasing

and strictly convex in the performance of each of these connections, since TA is and increasing

strictly convex function of RAm. Finally, an identical argument as in the proof of Proposition 3

applied to (A.13) implies that the probability is increasing in σAm
.

A.6 Proof of Proposition 6

An identical argument as in the proof of Proposition 1 applied to (A.13) implies that the proba-

bility is increasing in an, bn, βm, and γm, m ∈ Dn.

B Endogenizing the Receiving and Sending Functions

We model here the determinants of the sending and receiving functions, and derive their functional

forms.
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B.1 The Sending Function

To derive a sending function that reflects the desire to self-enhance, we assume that the utility

derived from sending is increasing with own-return. Conversation is an occasion for an investor

to try to raise the topic of return performance if it is good, or to avoid the topic if it is bad.

Suppressing i subscripts, let π(R, x) be the utility to the sender of discussing his return R,

π(R, x) = R+
x

β′
, (B.1)

where β′ is a positive constant that measures the relative weight in the individual’s utility on

conversational context versus the desire to communicate higher returns. The more tightly the

investor’s self-esteem is tied to return performance, the higher is β′. The random variable x

measures whether, in the particular social and conversational context, raising the topic of own-

performance is appropriate or even obligatory.

The sender sends if and only if π > 0, so

s(R) = Pr
(
x > −β′R|R

)
= 1− F (−β′R), (B.2)

where F is the distribution function of x. If x ∼ U [τ1, τ2], where τ1 < 0, τ2 > 0, then

s(R) =
τ2 + β′R

τ2 − τ1

=
τ2

τ2 − τ1
+ βR, (B.3)

where β ≡ β′/(τ2− τ1), and where we restrict the domain of R to satisfy −τ2/β
′ < R < −τ1/β

′ to

ensure that the sending probability lies between 0 and 1. This will hold almost surely if |τ1|, |τ2|
are sufficiently large. Equation (B.3) is identical to the sending function (1) in Subsection 2.2

with

γ ≡ τ2

τ2 − τ1
.

In the sender’s utility π(R, x) of discussing return R, the parameter β′ captures the value

placed on mentioning one’s high return experience, versus the appropriateness of doing so. The

more tightly bound is the sender’s self-esteem or reputation to return performance, the larger is

the parameter β′, and hence the stronger is SET, as measured by β in the sending function (1)

which is proportional to β′.

The constant γ in the sending function (1) reflects the conversability of the investment choice.

When investment is a more attractive topic for conversation or when conversations are more

extensive, as occurs when investors are more sociable, higher γ shifts the distribution of x to the

right (i.e., an increase in τ2, for given τ2 − τ1, implies higher γ).

B.2 The Receiving Function

We derive an increasing convex increasing shape for the receiving function as in equation (2)

in Section 2.3 from the combination of two effects: greater receiver attention to extreme return
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outcomes, and, conditional upon paying attention, and, owing to the representativeness heuristic,

greater persuasiveness of higher return.

The return on a sender or receiver strategy has unknown mean µi, i = s, r, where Ri = µi+εi,

where for tractability the receiver perceives the distribution of the means as µi ∼ N(µi0, σ
2
µi),

εi ∼ N(0, σ2
εi). Assume all RHS random variables are independent.

The receiver is exposed to a realization of (Rs, Rr) and to the sender’s type. A receiver can,

at cost ∼ U(0, c1), pay attention, in which case, the receiver learns the direct cost of switching

strategies, c2 ∼ U(c2, c2), and optimizes over whether to switch. A non-attending receiver incurs

no cost, and never switches. The costs of paying attention and of switching depends on situation-

specific circumstances not observed by the econometrician.

We assume that c2 < 0 < c2. The possibility that the ‘cost’ of switching is negative reflects a

possible favorable inference by the receiver about the sender’s adoption of the sender’s strategy.

(It could alternatively reflect conformist preferences.)

The quasi-Bayesian update of µi, i = s, r given observed returns

E[µi|Ri] = µi0 + βi(Ri − µi0), (B.4)

where

βi =
σ2
µi

σ2
µi + σ2

εi

.

Here we capture representativeness/overextrapolation taking the form of βi being an overestimate

of the true relationship, i.e., the receiver regards past returns as being more indicative of future

performance than they really are.18

We assume for simplicity that an attending receiver switches to the sender’s strategy based

on whether the difference in updated means µs − µr exceeds the switch cost c2.19

So conditional upon attending and the observed returns, the probability of switching strategies

is

P (E[µs|Rs]− E[µr|Rr]− c2 ≥ 0) =

∫ βsRs−βrRr

c2=c2

dc2

c̄2 − c2

=
βsRs − βrRr − c2

c̄2 − c2

(B.5)

when this quantity lies between 0 and 1, and is at the relevant probability boundary otherwise.

We endogenize the investor’s attention heuristic by solving for the optimal decision of whether

to pay attention, taking into account (Rs, Rr) and what this implies about (µs, µr). Owing to

cognitive processing constraints, in general we expect this decision to be heuristic. However, a

wide set of heuristics are possible, and the result we derive are not driven by bias in this decision.

So as a benchmark case that is neutral with respect to bias in the attention decision, we model the

attention decision as fully rational, i.e., making full use of Rs, Rr, and c1, but not c2 which is only

18Algebraically this could arise from overestimation of σ2
µi and/or underestimation of σ2

εi . The form of
the receiving function that we derive here does not actually require this overextrapolation, but for realistic
parameter values σ2

µi/σ
2
εi would be low, since most of the variance in strategy performance comes from

chance rather than differences in means. This would lead to very weak updating, implying a very small
slope of the receiving function.

19It would not be hard to allow for the effect of risk aversion via an adjustment for the difference in
variances of the two strategies. Since prior variances are known, observation reduces posterior variances
deterministically, i.e., by the same amount regardless of the signal.
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observed after paying attention.20 The approach of assuming rationality in attention allocation

is also applied in the large literature on rational inattention (Sims 2003), and in other work on

limited attention such as Peng and Xiong (2006).

The receiver’s attention heuristic is tuned to pay attention if the expected improvement in

portfolio expected returns, net of switch costs, and given the observed past returns, exceeds the

cost of attention. Let 1E[µs|Rs]−E[µr|Rr]−c2≥0 be an indicator function for the receiver switching to

the sender’s strategy after attending and observing returns. The receiver attends iff the expected

gain exceeds c1,

E[(µs − µr − c2)1E[µs|Rs]−E[µr|Rr]−c2≥0|Rs, Rr]− c1 ≥ 0, (B.6)

so substituting out expectations of µ’s by (B.4), the condition becomes

(βsRs − βrRr)(βsRs − βrRr − c2)

c̄2 − c2

− E[c21µs−µr−c2≥0|Rs, Rr]− c1 ≥ 0. (B.7)

Now the expectation above is

E[c21E[µs|Rs]−E[µr|Rr]−c2≥0|Rs, Rr] =
(βsRs − βrRr)2 − c2

2

2(c̄2 − c2)

So the receiver attends iff

(βsRs − βrRr − c2)2

2(c̄2 − c2)
− c1 ≥ 0. (B.8)

Since c1 is uniformly distributed,

P (Attend|Rs, Rr) = P

(
c1 ≤

(βsRs − βrRr − c2)2

2(c̄2 − c2)

)
=

(βsRs − βrRr − c2)2

2c̄1(c̄2 − c2)
, (B.9)

which is quadratically increasing in the weighted return difference βsRs − βrRr.
The probability that the receiver switches conditional upon the returns is the product

P (Attend|Rs, Rr)P (Switch|Attend, Rs, Rr).

The first probability is given in (B.9), and the second in (B.5).

So the probability of switching, i.e., the receiving function, is

r(Rs, Rr) =
(βsRs − βrRr − c2)3

2(c̄2 − c2)2c̄1

20Modelling the attention choice as fully rational may seem paradoxical, since it can take more cal-
culations to allocate attention optimally than to simply solve the decision problem at hand. However,
again, we view full rationality of the attention decision as merely the most convenient benchmark case.
Furthermore, it is not necessary to view our benchmark case as involving full conscious rationality in the
attention allocation decision. The calculations needed to allocate attention correctly do not necessarily
use cognitive resources at the time of each attentional decision. Attention heuristics can be viewed as
having been designed in human evolutionary prehistory to balance the cost of paying attention against
the benefits achieving better decision outcomes. Alternatively, the attention mechanism can be viewed
as a rule-of-thumb heuristic that the investor has learned through previous experience over the investor’s
lifetime.
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when this quantity lies between 0 and 1. This is a cubic function of βsRs − βrRr with all

nonnegative coefficients since c2 ≤ 0.

A special case of this development is when βr << βs, in which case the expression approxi-

mately simplifies to

r(Rs) =
1

2(c̄2 − c2)2c̄1
[(βsRs)3 − 3c2(βsRs)2 + 3(c2)2βsRs − (c2)3]

when this quantity lies between 0 and 1.

A quadratic Taylor approximation leads to a quadratic expression for r(Rs, Rr) or, when βr

small, for r(Rs), as in equation (2) in Section 2.3, where we assume that most of the probability

mass of R is in the range where the coefficients of this quadratic approximation are positive,

consistent with a convex increasing shape for the receiving function. Specifically, performing

this Taylor expansion around Rs = 0 yields the quadratic receiving function coefficients a =

−3c2(βs)2/[2(c̄2− c2)2c̄1], b = 3(c2)2βs/[2(c̄2− c2)2c̄1], and c = −(c2)3/[2(c̄2− c2)2c̄1]. By varying

the free parameters, any positive vector of values of (a, b, c) is feasible.

C Homophily

Consider a variation of the network model in which there is homophily. Specifically, senders and

receivers (or, equivalently links) are no longer randomly selected, but rather the probabilities are

tweaked such that the probability that communication (a link) is selected between two agents with

the same strategy is relatively higher than the probability that agents with different strategies

are selected, by a factor χ.

Specifically, when there is no homophily, the fraction of selected sender-receivers with an

active potential sender and a passive potential receiver in a period is κft(1− ft). When there is

homophily, it is instead κ
χft(1 − ft), where χ > 1 denotes the degree of homophily. This is also

the fraction of passive potential senders and active potential receivers selected.

The transformation rate will then be

E[∆f ] =
1

χ
f(1− f)κT̄ + λ̂(q − f).

It is easy to show that compared with the transformation rate in the base model (3), the trans-

formation rate with homophily is lower, and this also carries over to a lower steady state fraction

of active investors.

D Equilibrium Model

So far, we have modeled the economy in a partial equilibrium setting with exogenous return

distributions for A and P, along with informal arguments that when there are more A’s in the in-

vestor population, demand for this strategy increases, decreasing future returns. In practice, after

extensive inflow of investors into active strategies, we expect the equilibrium price of acquiring

strategy positions to rise, reducing expected future returns. So evolution toward A is self-limiting.

We now extend the model in a stylized way to capture such equilibrium effects. Without loss of

generality, we assume that one agent is chosen in each time period, i.e., that κ = 1/2N .
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The Investment Technology

We model the supply-side of the economy as a set of short-term investment opportunities with

diminishing returns to scale, which implies imperfectly elastic supply. We assume that the output

elasticity is lower for investments associated with active than for passive strategies, reflecting

the idea that active strategies may be less scalable. For simplicity, we assume that investments

associated with P’s are perfectly elastic, whereas investments associated with A’s are not. For

example, if A is buying IPO stocks, and if the supply of excellent new business opportunities is

limited, then there will be diminishing returns to aggregate investment in A. As a special case,

the passive investment could, for example, represent a low-risk storage technology.

The one-period returns in this case depend on total active investments, X, as

RA(NA) = (βAr + εA + υ)× (ρX)−1/2 − υ, (D.1)

RP = βP r + εP , (D.2)

where the NA is the total number of active investors, υ > 0, ρ > 0 are parameters, and X in

equilibrium will depend on NA.21 Also, r denotes a common component of returns shared by A

and P (e.g., the market portfolio), E[r] = 0, βi is the sensitivity of strategy return to the common

return component, εi is a strategy-specific component, E[εi] = 0, i = A,P . We assume that r, εA
and εP are independent, with skewness γA and γP , respectively, and that the skewness of r is

zero.

The Investor Objective

The objective of investors is to maximize the mean-variance expected utility function

U = E[R]−
(
ζ

2

)
V ar(R), (D.3)

where for simplicity we set the risk aversion coefficient ζ = 1. The riskfree asset has return rf .

Here, since we have normalized such that E[r] = E[εA] = E[εP ] = 0, we assume that rf < 0. The

negative riskfree rate could, for example, represent a storage technology with some depreciation.

This assumption could easily be modified, at the cost of greater algebraic complexity, by allowing

for additional intercept components of returns in (D.1) and (D.2).

By assumption, the P’s maximize expected utility of investing in a portfolio consisting of a

risky investment alternative that is available to P investors, and the riskfree asset. Similarly, A’s

optimize a portfolio of a risky investment alternative that is available to A investors, and the

riskfree asset. Investors optimize rationally, but do not consider including both passive and active

assets in their portfolios at the same time.22 In equilibrium, active investors’ total demand is X,

where they optimize expected utility given the return distribution in (D.1).

21The return specification in (D.1) corresponds to a concave production function where input X leads to

stochastic production (βAr+εA+υ)×
(
X
ρ

)1/2
−υX. The parameters are such that a higher ρ is associated

with a lower expected output, and a higher υ corresponds to a more concave production function.
22Our assumption of an increasing receiving function was based on the idea that investors overextrapolate

reports about past return performance. This suggests that investors will have overoptimistic expectations
about the strategies they have been persuaded to adopt. It would be easy to incorporate such overestimation
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Joint Determination of Strategy Popularity and Asset Returns

In this specification, the return penalty, DNA
, depends on NA, the number of A’s. We choose a

specific value for the ρ parameter,

ρ =
2(β2

Aσ
2
r + σ2

A)

N |rf |
,

which in equilibrium implies an initial return penalty of zero, DN/2 = 0. Here, we have assumed

that f0 = 1
2 , i.e., that half of the population initially invests in each strategy. Moreover, we

assume that q = 1
2 , so that new investors also invests equally in the two strategies.

The case of a zero return penalty to active investing is a simple benchmark case that is

useful for identifying what influences the spread of competing investment strategies when the

obvious effect of expected return differences is neutralized. It follows from the dependence here

of equilibrium return on the number of A’s that the transformation probability also depends on

NA,

T
A
NA

= E[TA(RA(NA))]. (D.4)

The following proposition provides conditions under which the results from Sections 3.2-3.3 gen-

eralize to the equilibrium setting.

Proposition 7 Under the parameter restrictions that |rf | is small, κ ≥ |rf |, γP = 0, γA ≥ 0,

and

βA > 2βP (D.5)

σA > 2σP , (D.6)

Proposition 2, Proposition 3:2-3:3 , and Proposition 4 continue to hold in equilibrium. Moreover,

the returns an investor is expected to receive from active investments is nonpositive and strictly

decreasing over time.

In equilibrium, active investments thus dominate, and the return penalty is positive, in line

with the core results of the partial equilibrium model. Intuitively, transmission bias causes A to

spread, putting a downward pressure on the returns to the A strategy, and thereby inducing a

return penalty to active investing. In other words, owing to transmission bias, A investing persists

despite needing to climb uphill against a return penalty.

The sufficient condition on σA is stricter in the equilibrium setting, as seen by the extra

factor 2 in (D.6). This factor arises because the restriction T
A
NA

depends on the number of active

investors, NA, and T
A
NA

> T
P
NA

needs to be satisfied for all 1 ≤ NA ≤ N . Of course, this is just a

sufficient condition.

The only result from Section 3.2 that does not extend to the equilibrium setting is Proposi-

tion 3:1, the comparative static with respect to the return penalty. Such comparative statics are

not well defined in the equilibrium model since the return penalty is endogenous.

into the investor’s mean-variance portfolio optimization here, but doing so would not affect the general
nature of our conclusions. These are driven by the fact that in our specification, an increase in the fraction
of A’s drives down the equilibrium expected return of this strategy. So for simplicity we assume rational
mean-variance optimization.
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E Trading Volume

If we interpret A as active trading in the market for individual stocks, with a preponderance

of long positions, then a high market return implies high average returns to A’s. Proposition 1

therefore suggests that when the stock market rises, volume of trade in individual stocks increases.

This implication is consistent with episodes such as the rise of day trading, investment clubs, and

stock market chat rooms during the millennial internet boom, and with evidence from 46 countries

including the U.S. that investors trade more when the stock market has performed well (Statman,

Thorley, and Vorkink 2006; Griffin, Nardari, and Stulz 2007). We next study trading volume in

the equilibrium model, to verify that evolution toward A is associated with high trading volume.

The total demand of NA active investors, given a risky investment opportunity with expected

return E[RA] and return variance V ar(RA) is X = NA
E[RA]−rf
V ar(RA) , and market clearance, by (D.1),

leads to

X =
ρκ2N2

A

(ρυNA − ρNA|rf |+ (β2
Aσ

2
r + σ2

A))2
. (E.1)

When an investor switches from P to A, he liquidates his passive portfolio position of

|rf |
σ2
P

,

the number of active investors increases from NA to NA + 1, and he invests

1

NA + 1
XNA+1

in the active investment. Here, in equilibrium,

XNA
=

2υ2NN2
A|rf |

(2NA(υ − |rf |) +N |rf |)2(β2
Aσ

2
r + σ2

A)
. (E.2)

Moreover, the NA investors that are already active rebalance from a total position of XNA
to

NA

NA+1XNA+1. The total trading volume is thus: |rf |σ2
P

+ ZNA
, where

ZNA

def
=

1

NA + 1
XNA+1 +NA

∣∣∣∣XNA

NA
− XNA+1

NA + 1

∣∣∣∣ .
It is easy to verify that when υ+rf ≈ 0, i.e., when |rf | is of similar size as υ, then Xn

n is increasing

in n, and therefore

ZNA
= XNA+1 −XNA

.

Moreover, when υ = −rf ,

ZNA
=

2υ

N(β2
Aσ

2
r + σ2

A)
(1 + 2NA), (E.3)

which is strictly increasing in NA. Therefore, by continuity, for υ + rf ≈ 0, total trading volume,

is also strictly increasing in NA.

An identical argument applies to the situation when an investor switches from A to P. Specif-

ically, if there are initially NA + 1 investors, and an investor switches from A to P, that investor

invests |rf |σ2
P

in the passive strategy, sells 1
NA+1

XNA+1
in the active investment, whereas the other NA

investors in total rebalance from NA
XNA+1

NA+1
to XNA

. Again, the total trading volume is described

by |rf |σ2
P

+ ZNA
.
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