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Proofs of the Model

1 Proof of Lemma: Outsider’s information choice

and firm centrality

The model solved by backward induction starting from period 1, then proceeding to period

0.

1.1 The Period-1 Stock Price

In period 1, the stock price is pinned down in equilibrium by the representative outsider’s

expectation of the firm’s cashflow, since he is risk neutral and unconstrained: P = E(F |FO),

where FO = {snj, n = 1, . . . , N} denotes the outsider’s information set.

We conjecture that the outsider chooses precisions that are identical across shocks, i.e.,
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τ εnO = τ εO for n = 1, . . . , N . We shall confirm this conjecture later. From Bayes law:

(A.1) E(F |FO) =
N∑
n=1

τ εO
τ f + τ εO

snO,

and τ−1
O ≡ V ar(F |FO) = V ar(ϕ+

∑N
n=1 fn|FO) = V ar(ϕ)+

∑N
n=1 V ar(fn|FO) = τϕ

−1
+N(τ f +

τ εO)−1.

1.2 The Period-0 Learning Problem of Outsiders

We turn to the determination of the outsider’s signal precisions. We assume that he chooses

signal precisions that maximize his posterior precision, τO, about the firm’s cash flow, subject

to his capacity constraint, either equation (6), (7), or (8) in the paper, taking other outsiders’

behaviour as given. We prove below that this intuitive objective indeed maximises the outsider’s

expected profit (see Section .1.3).

Since τO ≡ 1/V ar(F |FO) = [τϕ
−1

+
∑N

n=1(τ f+τ εnO)−1]−1, maximizing the posterior precision

is equivalent to minimizing the variance of the sum of the link-related cashflows,
∑N

n=1 V ar(fn|FO) =∑N
n=1(τ f + τ εnO)−1.

We solve this optimization problem for each of the three learning technologies we consider.

1.2.1 Variance capacity constraint

Under the variance capacity constraint, the outsider’s optimization problem is

max{τεnO}Nn=1
−

N∑
n=1

V ar(fn|FO)

subject to:
∑N

n=1 V ar(fn|FO) ≥ N/τ f − k and τ εnO ≥ 0 for n = 1, . . . , N.

The constraint binds at the optimum, leading to a posterior variance and precision equal to∑N
n=1 V ar(fn|FO) = Max(0, N/τ f −k) and 1/V ar(F |FO) = (τϕ

−1
+N/τ f −k)−1, respectively.

Individual variances are not determined, only their sum is; focusing on a symmetric equilibrium
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(i.e., identical τ εnO across links), we obtain the following optimal precisions:

(A.2)

• N ≤ kτ f , τ εnO = +∞ for n = 1, . . . , N , and τO = τϕ

• N > kτ f , τ εnO = τ f ( N
kτf
− 1)−1 for n = 1, . . . , N , and τ−1

O = τϕ
−1

+ N
τf
− k.

With this learning technology, it is possible for the outsider to know the f ′ns(n = 1, . . . , N)

without error, provided his capacity is large enough relative to the number of links (N ≤ kτ f ).

1.2.2 Linear precision constraint

Under the linear precision constraint, the outsider’s optimization problem is

max{τεnO}
N
n=1
−

N∑
n=1

(τ f + τ εnO)−1

subject to:
∑N

n=1 τ
ε
nO ≤ k′ and τ εnO ≥ 0 for n = 1, . . . , N.

Maximizing the Lagrangian leads to the following first-order conditions

(τ f + τ εnO)−2 = ν ′ for n = 1, . . . , N,

where ν ′ is the Lagrange multiplier on the capacity constraint. This system of equations implies

that the τ εnO
′s are equated across links n:

(A.3) τ εnO =
k′

N
for n = 1, . . . , N.

It follows that τ−1
O = τϕ

−1
+N(τ f + k′/N)−1.

1.2.3 Entropy constraint

Because all random variables (shocks and signal errors) are i.i.d., the prior and posterior
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variance-covariance matrices are diagonal. The determinant of these matrices is simply the

product of their diagonal elements: |
∑
| =

∏N
n=1 τ

f−1
= τ f

−N
and |

∑̂
| =

∏N
n=1(τ f + τ εnO)−1.

The outsider’s optimization problem is

max{τεnO}
N
n=1
−

N∑
n=1

(τ f + τ εnO)−1

subject to:
∏N

n=1(τ f + τ εnO) ≤ k′′τ f
N

and τ εnO ≥ 0 for n = 1, . . . , N.

Maximizing the Lagrangian leads to the following first-order conditions

(τ f + τ εnO)−2 = ν ′′
N∏

m=1,m 6=n

(τ f + τ εmO) for n = 1, . . . , N,

where ν ′′ is the Lagrange multiplier on the capacity constraint. The first-order conditions imply

(τ f + τ εnO)−1 = ν ′′
N∏
m=1

(τ f + τ εmO)−1 = ν ′′k′′τ f
N

for n = 1, . . . , N,

where the second equality results from the capacity constraint being binding. This system of

equations implies that the τ εnO’s are equated across links n:

(A.4) τ εnO = τ f (k′′1/N − 1) for n = 1, . . . , N.

It follows that τ−1
O = τϕ

−1
+N(τ fk′′1/N)−1.

Despite their differences, all three specifications imply that i) outsiders’ precision is (weakly)

decreasing in the number of links N (i.e., their information about each single link is less precise

when there are more links to investigate), and ii) this precision is increasing in the learning

capacity (k, k′, or k′′).
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1.3 Proof that the outsider’s optimal decision is to maximize τO ≡ 1/V ar(F |FO),

the precision of his information about the firm’s total cashflow

When solving the outsider’s learning problem, we postulated that he chooses signals such

that the precision of his information about the firm’s total cashflow, τO ≡ 1/V ar(F |FO), is

maximised. Here, we demonstrate that this intuitive rule is indeed optimal.

Under risk neutrality and in the absence of any restriction on trading (e.g., on borrowing or

short-selling), the outsider’s learning strategy is undetermined. Indeed, consider an outsider,

labelled O∗, who takes as given the information choice of the representative outsider. His

expected profit in period 1 is infinite since he will buy (respectively, sell) an infinite number of

shares if his expectation of the firm’s cashflow F is greater (respectively, smaller) than that of

the representative outsider. A1 It follows that his profit expected in period 0 is also infinite,

regardless of his precision choices, which therefore are indeterminate.

To break this indeterminacy, we solve the learning problem faced by a risk averse outsider

and then drive his risk aversion to zero. We will establish that a risk averse outsider finds it

optimal to maximise τO regardless of his degree of risk aversion. It follows that a risk averse out-

sider whose risk aversion is infinitesimally small—in other words, a risk neutral outsider—also

finds this rule optimal.

We assume that the outsider’s utility exhibits constant absolute risk aversion (CARA),

where the coefficient of risk aversion is denoted γ. Risk neutrality corresponds to γ = 0. We

normalize the outsider’s initial wealth to 0, without loss of generality. Hence his terminal wealth

is equal to the profit earned from portfolio investments, πO = XO(F − P ), where XO denotes

his stockholding. Thus, his objective is to maximize his expectation of U ≡ −e−γXO(F−P ).

We proceed by backward induction as before, solving first for the equilibrium price in period

1 given arbitrary precisions, and then progressing to period 0 to determine optimal precisions.

A1Of course, in equilibrium, the expectations of O∗ and of the representative outsider are identical, so that
the price equals the expectation of the representative outsider.
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1.3.1 The Period-1 Portfolio Problem of the Outsider

We solve for the outsider’s optimal portfolios decision, taking his information choices as given.

At this point, we conjecture that he chooses precisions that are identical across shocks, i.e.,

τ εnO = τ εO for n = 1, . . . , N . We shall confirm this conjecture later.

The outsider optimal portfolio is given by XO = τO[E(F |FO)−P ]
γ

, where τO and E(F |FO) are

given in equation (A.1). Aggregating asset demands across investors, neglecting the insider’s

demand who is assumed infinitesimal, and imposing market clearing, leads to the following

equilibrium price P :

(A.5) P = E(F |FO)− γX̄

τO

Note that by setting γ to zero in the portfolio holding and price equations above, one reverts

to the economy with risk neutral outsiders.

To solve for the outsider’s information choice in period 0, we consider an outsider, labelled

O∗, who takes as given the information choice of the representative outsider. (At this stage

outsider O∗ differs from the representative outsider, but in equilibrium, they will be identical).

It will prove useful to define the outsider O∗’s Sharpe Ratio:

(A.6) SRO∗ ≡ [E(F |FO∗)− P ]
√
τO∗ = γXO∗/

√
τO∗,

Substituting in this formula the expression for the price yields:

(A.7) SRO∗ ≡ [E(F |FO∗)− E(F |FO) +
γX̄

τO
]
√
τO∗

= [
N∑
n=1

τ εO∗
τ f + τ εO∗

snO∗ −
N∑
n=1

τ εO
τ f + τ εO

snO +
γX̄

τO
]
√
τO∗

= [
N∑
n=1

(
τ εO∗

τ f + τ εO∗
− τ εO
τ f + τ εO

)fn +
N∑
n=1

τ εO∗
τ f + τ εO∗

εnO∗ −
N∑
n=1

τ εO
τ f + τ εO

εnO +
γX̄

τO
]
√
τO∗
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Trading profits (and terminal wealth) equal πO∗ = XO∗(F − P ). The mean and variance

of trading profits, as of period 1, are given by the following expressions, after substituting out

XO∗:

Substituting in this formula the expression for the price yields:

(A.8) E(πO∗|FO∗) = [E(F |FO∗)− P ]XO∗ =
SR2

O∗
γ

;

and

(A.9) V ar(πO∗|FO∗) =
X2
O∗
τO∗

=
SR2

O∗
γ2

.

Because πO∗ is normally distributed conditional on period-1 information, the outsider’s

expected utility equals:

(A.10) E(U |FO∗) = E(−e−γW |FO∗) = E(−e−γπO∗|FO∗)

= −e−γE(πO∗|FO∗)+γ2V ar(πO∗|FO∗)/2 = −e−
SRO∗

2

2 .

1.3.2 The Period-0 Learning Problem of the Outsider

In period 0, outsider O∗ has expected utility:

E[E(U |FO∗)] = −E(e−
SR2

O∗
2 ).

At that time, SRO∗ is normally distributed so this expected utility is the mean of the

exponential of a chi-square distributed random variable. Hence,

E[E(U |FO∗)] = − 1√
V ar(SRO∗) + 1

e
− 1

2

E(SRO∗)
2

V ar(SRO∗)+1

We compute next the mean and variance of SRO∗ for an outsider with arbitrary signal
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precisions τ εnO∗ for n = 1, . . . , N which might differ across shocks. Taking the expectation of

equation (A.7) yields

(A.11) E(SRO∗) =
√
τj
γX̄

τO

since all random variables have mean zero. Likewise, taking the variance of equation (A.7)

yields

V ar(SRO∗) = τO∗[
N∑
n=1

(
τ εnO∗

τ f + τ εnO∗
− τ εO
τ f + τ εO

)2 1

τ f
+

N∑
n=1

τ εnO∗
2

(τ f + τ εnO∗)
2

1

τ εnO∗
+

τ εO
2

(τ f + τ εO)2

N

τ εO
]

Expanding the square, rearranging and simplifying leads to

V ar(SRO∗) =
τO∗
τf

[
N∑
n=1

τ εnO∗
τ f + τ εnO∗

+
Nτ εO

τ f + τ εO
− 2

τ εO
τ f + τ εO

N∑
n=1

τ εnO∗
τ f + τ εnO∗

]

Rearranging further implies

(A.12) V ar(SRO∗) =
1

τ f + τ εO
[aτO∗ − τ f + τ εO]

where a ≡ N +
τf−τεO
τϕ

.

Plugging in the expressions for E(SRO∗) and V ar(SRO∗) yields the following expression for

outsider O∗’s expected utility:

E[E(U |FO∗)] = −
√
τ f + τ εO√

aτO∗ + 2τ εO
e
− c

2

τO∗
aτO∗+2τε

O

where c ≡ (γX̄/τO)2(τ f + τ εO) ≥ 0.

Outsider O∗ maximises this expression with respect to his signals precisions, τ εnO∗ (for n =

1, . . . , N), subject to his capacity constraint, either equation (6), (7), or (8) in the paper, taking

other outsiders’ behaviour, represented by τ εO, as given.
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E[E(U |FO∗)] is increasing in the outsider’s posterior precision τO∗. To see why, first note

that E[E(U |FO∗)] increasing in τO∗ is equivalent to

f(τO∗) ≡ −2ln[E[E(U |FO∗)]] = ln(aτO∗ + 2τ εO) +
cτO∗

aτO∗ + 2τ εO
− ln(τ f + τ εO)

increasing in τO∗. Since f ′(τO∗) =
a(τO∗+2τεO)+2cτεO

(aτO∗+2τεO)2
where c ≥ 0, f is increasing in τO∗ if a > 0. It is

a priori unclear what the sign of a is. Let’s suppose a < 0. In that case, the outsider’s expected

utility is decreasing in his posterior precision τO∗, leading to an optimal signal precision, τ εnO∗,

of zero across all shocks n. As a result, τ εO = 0 in equilibrium, which in turn leads to a > 0 and

contradicts our premise. Thus, a must be positive in equilibrium, and the outsider’s expected

utility is increasing in his posterior precision τO∗.

Hence, a risk averse outsider’s optimization problem amounts to choosing signals preci-

sions, τ εnO (for n = 1, . . . , N) that maximize his posterior precision τO subject to his capacity

constraint. By continuity, this rule remains optimal for a risk neutral outsider—one with an

infinitesimally small risk aversion.

2 Proof of Proposition: Insider’s profit and firm centrality

We study the (period-0) expectation of the insider’s profit, conditional on the insider buying

shares. The insider’s profit per share purchased equals F −P . She purchases shares if and only

if she considers them underpriced, i.e. if E(F |FI)−P > 0. Hence, her expected profit, denoted

πI , is given by:

πI = E[F − P |E(F |FI)− P > 0].

Substituting in the expressions for the cash flow and the equilibrium price yields:

F − P = (ϕ+
N∑
n=1

fn)− E(F |FO) = (ϕ+
N∑
n=1

fn)− (
N∑
n=1

τ εO(τ f + τ εO)−1snO)
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= ϕ+
N∑
n=1

τ f (τ f + τ εO)−1fn −
N∑
n=1

τ εO(τ f + τ εO)−1εnO,

and

E(F |FI)− P = E(F |FI)− E(F |FO)

= ϕ+
N∑
n=1

τ f (δ − τ εO)

(τ f + δ)(τ f + τ εO)
fn −

N∑
n=1

τ εO
τ f + τ εO

εnO +
N∑
n=1

δ

τ f + δ
εnI ,

where we used that τ εnI = δ for n = 1, . . . , N , by assumption.

The expectation of a mean-zero random variable x conditioned on another mean-zero ran-

dom variable y being positive is

E(x|y > 0) = q
Cov(x, y)√
V ar(y)

,

where q ≡ φ(O)
1−Φ(O)

≈ 0.8, φ and Φ are the probability and cumulative density functions of the

standard normal distribution. Applying this formula to the insider’s expected profit yields:

πI = q
Cov(F − P,E(F |FI)− P )√

V ar(E(F |FI)− P )

where

Cov(F − P,E(F |FI)− P ) =
1

τϕ
+

Nδ

(τ f + δ)(τ f + τ εO)

and

V ar(E(F |FI)− P ) =
1

τϕ
+

Nτ f (δ − τ εO)2

(τ f + δ)2(τ f + τ εO)2
+

Nτ εO
(τ f + τ εO)2

+
Nδ

(τ f + δ)2

= Cov(F − P,E(F |FI)− P ) +
Nτ εO

(τ f + δ)(τ f + τ εO)
.

The effect of the number of links N on πI can be decomposed into two parts, as shown in

the following equation:

dπI
dN

=
∂πI
∂N

+
∂πI
∂τ εO

dτ εO
dN

.
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The first term,

∂πI
∂N

=
q

V ar(E(F |FI)− P )3/2

(δ − τ εO)(τ f + δ)/τϕ +Nδ

(τ f + δ)2(τ f + τ εO)
,

represents the direct effect of N on πI , i.e., keeping τ εO, the precision of outsiders’ signals,

constant. Its sign depends on τ εO.

• If τ εO > δ(1 + Nτϕ/(τ f + δ)), then ∂πI
∂N

< 0. Intuitively, increasing the number of link-

related shocks increases uncertainty for the insider more than that for outsiders, since

the latter knows each shock much better than the former does. Therefore, the insider’s

information advantage relative to the outsider, and hence her expected profit, decrease.

• If instead τ εO < δ(1 + Nτϕ/(τ f + δ)), then ∂πI
∂N

> 0. The intuition is now reversed: as

the number of links grows, the insider’s information advantage relative to outsiders, and

hence her expected profit, increase.

The second term, ∂πI
∂τεO

dτεO
dN

, represents the indirect effect of the number of links N on πI ,

through outsiders’ information choice. Since

∂πI
∂τ εO

= − q

V ar(E(F |FI)− P )3/2

N

(τ f + δ)(τ f + τ εO)2
[
τ f + δ

τϕ
+

Nδ

τ f + τ εO
+

2Nδτ εO
(τ f + δ)(τ f + τ εO)

]

is negative and
dτεO
dN

< 0, this term is positive. Through this channel, the insider performs

better as N increases because the outsider needs to reduce his signal precision as he spreads his

scarce learning capacity more thinly across the N shocks (τ εO lower); this improve the insider’s

information advantage relative to the outsider.

The net effect of N on the insider’s profit depends on the sign and magnitude of these two

channels. These, in turn, depend on the number of links and the outsider’s learning capacity.

• If there are few links (e.g., N = 1) and a large capacity, then τ εO is large, so ∂πI
∂N

is

negative and large in absolute value, and hence dπI
dN

< 0. In words, adding links leads to a
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reduction in the insider’s profit, because the outsider is better informed than the insider

about link-related shocks.

• If instead N is large, then τ εO is small, so ∂πI
∂N

> 0 and hence dπI
dN

> 0. In that case, adding

links increases the insider’s expected profit, because her informational advantage grows.

Thus, the insider’s profit is U-shaped as a function of the number of links N , provided the

outsider’s learning capacity is large enough. If instead this capacity is low, then the profit

increases with N for all N .

We establish next this result formally for each of the three learning technologies. We start

with the case of the variance capacity constraint:

• When N ≤ kτf , τ
ε
O = +∞; so taking limits in the above expressions yields

V ar(E(F |FI)− P ) ≈ 1

τϕ
+

N

τ f + δ
,
∂πI
∂N
≈ − q

V ar(E(F |FI)− P )3/2

1/τϕ

τ f + δ
< 0

and ∂πI
∂τεO
≈ 0, leading to dπI

dN
< 0.

• When N is large, τ εO = (N/kτf−1)−1 which converges towards zero as N grows to infinity.

It follows that

V ar(E(F |FI)− P ) ≈ Nδ

τ f (τ f + δ)

grows to infinity, and that

∂πI
∂N
≈ q

V ar(E(F |FI)− P )3/2

Nδ

(τ f + δ)τf

converges towards zero, leading to dπI
dN
≥ 0.

The resulting pattern is a U shape, provided that k > 1 ⁄ τ f . Intuitively, adding links

favours the outsider as long as N ≤ kτ f because the outsider is able to learn each link-related

shock perfectly; but beyond a number of links, he can no longer keep pace and his information

per link deteriorates, giving a greater advantage to the insider.
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The other two constraints also lead to similar U–shaped patterns for πI . The only difference

relative to the case of the variance capacity constraint is that the downward-sloping branch is

now less pronounced because the outsider’s information about link-related shocks is imperfect

even at low levels of N : the outsider’s precision about these shocks starts to deteriorate as

links are added starting from the very first link (whereas in the variance capacity constraint

case, it remains infinite up to τ f links). Again, the U shape obtains only if the capacity is large

enough, because it ensures that the outsider is well informed about link-related shocks when

there are few links, and thus that adding links reduces his disadvantage relative to the insider

(who knows perfectly the shock ϕ but not the link-related shocks fn).

• Formally, substitute N = 1 into the expressions for ∂πI
∂N

and ∂πI
∂τεO

; the condition dπI
dN

< 0 is

then equivalent to

(A.13) τϕδ − (τ f + δ +
τϕδ

τ f + τ εO
+

2τϕδτ εO
(τ f + δ)(τ f + τ εO)

)
dτ εO
dN

< (τ εO − δ)(τ f + τ εO),

where τ εO and
dτεO
dN

are evaluated at N = 1. Under the linear precision constraint, τ εO = k′

N
= k′

and
dτεO
dN

= − k′

N2 = −k′ for N = 1 so condition (A.13) can be stated as:

τϕδ(τ f + k′) + (τ f + δ)(τ f + k′)k′ + τϕδ + 2τϕδ
τf+δ

k′2

(k′ − δ)(τ f + k′)2
< 1.

The numerator of the ratio on left-hand side of this inequality grows with k′ to infinity at a

rate k′2 while its denominator grows to infinity at a rate k′3. Hence, there exist a threshold, k̄′,

such that, for any k′ > k̄′, this ratio is smaller than 1. Likewise, under the entropy constraint,

τ εO = τ f (k′′1/N − 1) = τ f (k′′ − 1) and

τ εO
dN

=
−τ f (ln(k′′))k′′1/N

N2
= −τ fk′′ln(k′′)
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for N = 1 so condition (A.13) is equivalent to:

τϕδ + ((τ f + δ)k′′ + τϕδ
τf

+ 2τϕδτf (k′′−1)
(τf+δ)τf

)τ f ln(k′′)

τ fk′′(τ f (k′′ − 1)− δ)
< 1.

The numerator of the ratio on left-hand side of this inequality grows with k′′ to infinity

at a rate k′′ln(k′′) while its denominator grows to infinity at a rate k′2. Hence, there exist a

threshold, k̄′′, such that, for any k′′ > k̄′′, this ratio is smaller than 1. Thus, under both the

linear precision and entropy constraints, there exist a threshold such that condition (A.13) is

satisfied for any capacity larger than this threshold. In words, if the outsider’s learning capacity

is large enough, the downward-sloping branch of the U shape obtains.

• The upward-sloping branch of the U shape obtains, as in the case of the variance capacity

constraint, because τ εO converges to 0, regardless of the learning technology employed.

That is, eventually (i.e., for high enough number of links N), the outsider lacks the

resources to investigate all links.


