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A The Micro-Interpretation of the Enforcement

Constraint

In this appendix, we provide a micro-interpretation of the enforcement constraint

(4) used in Section III C of the paper:

(A.1) ptbt+1 ≤ max
{
ξtkt+1, (1− δb)ptbt

}

We keep the variable ξt as a constant collateral rate and introduce a new variable ηt

to capture the credit risk. We assume that firms need to search for lenders when they

decide to tap the credit market. The probability of finding a lender depends on the

financing condition. When the financing condition is ηt, the firm can find a lender with

probability ηt, and with probability 1− ηt the firm cannot get financed. Here, the inverse of

the financing condition 1/ηt can be interpreted as a measure of credit market tightness.

Thus, the probability of finding a lender decreases with the credit market tightness. The

variable ηt can also be interpreted as a measure of the lender’s financial health.

In the case that the firm finds a lender, it can issue new debt. However, due to the

firm’s limited commitment on its debt obligations, the issuance of debt is subject to

collateral constraints: when the lender provides loans to the firm in the current period, it

wants to make sure that in the next period the liquidation value of the firm’s assets is

larger than the value of the firm’s outstanding debt so that the firm does not default. To be
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specific, if the firm has capital assets kt+1 at the end of period t, its total credit limit

during period t would be ξkt+1, in which we assume that the assets in place (1− δ)kt and

the new investments it have the same collateral rate ξ. As a result, the firm’s debt

outstanding bt+1 at the end of period t should satisfy: ptbt+1 ≤ ξkt+1. The value of total

debt should be less than or equal to the value of collateral assets.

In the case that the firm does not find a lender, it cannot issue new debt. However,

according to the arrangement of long-term debt, the lender cannot force the firm to repay

more than δb percent of its debt outstanding, without regard to the financing conditions. In

this case, the borrowing constraint would be ptbt+1 ≤ (1− δb)ptbt, where (1− δb)ptbt is the

value of non-paid debt.

To sum up, during the period t the firm is subject to the following revised

enforcement constraint, which is a stochastic version of the constraint (4):

(A.2) ptbt+1 ≤ ωt+1,

where ptbt+1 is the value of debt outstanding and ωt+1 is the firm’s total debt capacity as

follow:

(A.3) ωt+1︸︷︷︸
debt capacity

= ηt︸︷︷︸
refinancing prob.

ξkt+1︸ ︷︷ ︸
collateral asset

+ (1− ηt)(1− δb)ptbt︸ ︷︷ ︸
non-paid debt

.

The firm’s debt capacity depends on the financing condition ηt, the value of

collateral assets ξkt+1, and the value of non-paid debt (1− δb)ptbt.
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Accordingly, the firm’s unused lines of credit during period t would be defined as:

(A.4) lt = ηtξkt+1 + (1− ηt)(1− δb)ptbt − ptbt+1.

The Feature of Enforcement Constraint There are three remarks on the enforcement

constraint (A.2). First, as can be seen from equation (A.3), a better financing condition ηt

eases the enforcement constraint, a lower repayment rate δb relaxes the enforcement

constraint, and a larger the last period’s debt outstanding bt also relaxes the current

period’s enforcement constraint.

Second, if the repayment rate δb = 1, the enforcement constraint (A.2) becomes

ptbt+1 ≤ ηtξkt+1. In this case, consider the constraint in period t+ 1: pt+1bt+2 ≤ ηt+1ξkt+2.

Suppose there is a decline of the financing opportunity ηt+1. Then, as a result, the firm has

to reduce its debt outstanding bt+2, which in turn forces the firm to cut either investment

or dividend. Thus, if it is costly for the firm to adjust capital or equity quickly within a

period, concerns of the period t+ 1’s credit contractions would induce the firm to borrow

less and save unused debt capacity in period t.

Third, if the repayment rate δb < 1, the second term (1− ηt)(1− δb)ptbt on the right

side of equation (A.3) comes up. In this case, the firm would have incentives to borrow

more to hedge against future credit contractions. This is because an additional unit of

borrowing ∆bt in period t− 1 would relax the enforcement constraint in period t by

(1− ηt)(1− δb)pt∆bt dollars. Further, if it is costly to adjust capital or equity quickly, the

firm would temporally save the funds from the long-term borrowing in cash.
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The Trade-off Between Cash and Unused Lines of Credit Let’s compare the efficiency

of cash and unused lines of credit in providing future liquidity. Denote pmt by the price of

cash at period t, then one additional dollar of cash in period t− 1 leads to 1
pmt−1

dollars of

available funds in period t. Similarly, suppose the price of debt at period t is pt, then one

additional dollar of unused lines of credit in period t− 1 leads to ηt(1−δb)pt+δb
pt−1

dollars of

available funds in period t. The term ηt(1−δb)pt+δb
pt−1

depends on the credit market condition

ηt, and it contains two parts. The first part ηt(1−δb)pt
pt−1

represents the increase in debt

issuance, and the second part δb
pt−1

is the reduction in debt repayment.

The firm makes a trade-off between low-return cash 1
pmt−1

and contingent unused lines

of credit ηt(1−δb)pt+δb
pt−1

. And this trade-off depends on the maturity of debt ( 1
δb

), the

opportunity cost of holding cash (pmt−1 − pt−1), and the future financing condition (ηt).

If δb = 1, ηt(1−δb)pt+δb
pt−1

= 1
pt−1

> 1
pmt−1

, unused lines of credit are less costly than cash

holdings in providing liquidity. However, if δb < 1, unused lines of credit become

contingent, and cash can be more efficient than credit lines in accumulating liquidity in

some states, particularly when future credit market conditions become worse: it is more

likely that 1
pmt−1

> ηt(1−δb)pt+δb
pt−1

when ηt becomes smaller.

The above results can also be explained by the features of long-term debt. With

long-term debt, one unit of debt issuance in period t− 1 not only brings in pt−1 dollars of

proceeds in period t− 1, but also relaxes the period t’s enforcement constraint by

(1− ηt)(1− δb)pt dollars. The relaxation of enforcement constraint then increases the

available credit the firm can use in period t. Meanwhile, one unit of debt retirement in

period t− 1 only leads to ηt(1− δb)pt + δb dollars of available funds in period t. This is
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because the financing opportunity is stochastic. If the firm does not borrow now, it may

lose the chance to borrow in the future.

B Proofs

The firm’s problem after detrending is (we remove the tilde on the detrended

variables):

V (m, b; s) = max
g′,m′,b′,d

{
d+ βg′E[(

z′a
za

)−γV (m′, b′; s′)]

}
(B.1)

subject to:

pmm′g′ ≥ ziza(B.2)

ziza +m+ pn = pmm′g′ + δbb+ i+ ϕ(d)(B.3)

g′ = (1− δ) + χφ(i)(B.4)

pb′g′ = (1− δb)pb+ pn(B.5)

pn ≥ 0(B.6)

pn ≤ η[ξg′ − (1− δb)pb](B.7)

Let µ be the multiplier on the cash-in-advance constraint (B.2), λ0 be the multiplier

on the budget constraint (B.3), q be the multiplier on the investment equation (B.4), λ1 be

the multiplier on the debt dynamics equation (B.5), λ2 be the multiplier on non-negative

debt issuance constraint (B.6), and λ3 be the multiplier on the enforcement constraint

(B.7).
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The Lagrangian equation is:

L = d+ βg′E[(
z′a
za

)−γV (m′, b′; s′)]

+µ
(
pmm′g′ − ziza

)
+λ0

(
ziza +m+ pn− pmm′g′ − δbb− i− ϕ(d)

)
+q
(
1− δ + χφ(i)− g′

)
+λ1p

(
b′g′ − (1− δb)b− n

)
+λ2pn

+λ3

(
η[ξg′ − (1− δb)pb]− pn

)

where λ2 ≡ 0 and η is the probability of having a financing opportunity.

First Order Conditions for d, i, m′, b′, g′, n are:

λ0 −
1

ϕ′(d)
= 0

q − λ0

χφ′(i)
= 0

βg′E[(
z′a
za

)−γV ′m′ ]− λ0p
mg′ + µpmg′ = 0

βg′E[(
z′a
za

)−γV ′b′ ] + λ1pg
′ = 0

βE[(
z′a
za

)−γV ′] + µpmm′ − λ0p
mm′ − q + λ1pb

′ + λ3ξη = 0

λ0p− λ1p+ λ2p− λ3p = 0
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Envelope Conditions are:

Vm = λ0

Vb = −λ0δb − λ1(1− δb)p− λ3(1− δb)pη

Proof of Proposition 3.1: If δb = 1, then µ = λ0 − λ1
p
pm

> 0, by using

λ0 − λ1 = λ3 ≥ 0 and pm > p. Thus, the cash-in-advance constraint is always binding.

Proof of Proposition 3.2: When δb < 1,

µ = λ0 − p
pm

λ1
δb+(1−δb)pη

+ p
pm
βEs

[
( z
′
a

za
)−γ

(1−η)(1−δb)λ′1
δb+(1−δb)pη

]
. The size of lagrangian multiplier µ

depends on the state s. Thus, it is possible that in some states µ = 0 and therefore the

cash-in-advance constraint can be occasionally non-binding.

C Numerical Methods

After writing down the first-order conditions and the envelope conditions, the firm’s

problem can be summarized by a system of non-linear equations associated with three

expectation terms. Thus, by solving the non-linear equations, we get the solution of the

firm’s problem.
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The numerical solution takes three steps. First, we approximate the three

conditional expectation functions as follows:

ΦV (m, b; s) = Es
[
(z′a)

−γV (m′, b′; s′)
]

Φm(m, b; s) = Es
[
(z′a)

−γVm′(m
′, b′; s′)

]
Φb(m, b; s) = Es

[
(z′a)

−γVb′(m
′, b′; s′)

]

Second, given the parameterized expectations, we solve the system of non-linear

equations on each grid. We discretize each shock on five grid points and each state variable

on ten grid points. We also do robust check by increasing the number of grids. We

interpolate linearly between grids when calculating the expectations. Finally, we iterate on

the approximation functions until convergence.

A Main Programming Routine

The main numerical routine contains two loops:

The outside loop: given states (m, b, s), solve policies (m′, b′) and update the

approximation functions (ΦV ,Φm,Φb).

The inside loop: solve a non-linear equation system with four unknowns.

8



The four unknowns are: m′, b′, i, V , and the four equations are:

EQ1 : µ(pmm′g′ − ziza) = 0

EQ2 : λ2pn = 0

EQ3 : λ3

[
η
(
ξg′ − (1− δb)pb

)
− pn

]
= 0

EQ4 : d+ βg′(za)
γΦV − V = 0

where,

g′ = (1− δ) + χφ(i)

n = b′g′ − (1− δb)b

d = ϕ−1(ziza +m+ pn− pmm′g′ − δbb− i)

λ0 =
1

ϕ′(d)

q =
λ0

χφ′(i)

λ1 =
−β(za)

γΦb

p

µ = λ0 −
β(za)

γΦm

pm

λ3 =
λ0p

mm′ + q − λ1pb
′ − µpmm′ − β(za)

γΦV

ξη

λ2 = λ3 − λ0 + λ1

B Occasionally Binding Constraints

We first solve the equation system by assuming that the two constraints (B.2) and

(B.7) are both binding, and then check the Lagrangian multipliers µ and λ3. According to

the sign of µ and λ3, we specify four cases and resolve the system case by case.
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Case A, both binding, neither precautionary cash nor unused lines of credit:

EQ1 : η
(
ξg′ − (1− δb)pb

)
− pn = 0

EQ3 : pmm′g′ − ziza = 0

Case B, one non-binding, only has precautionary cash:

EQ1 : η
(
ξg′ − (1− δb)pb

)
− pn = 0

EQ3 : pmm′g′ − ziza > 0

Case C, one non-binding, only has unused lines of credit:

EQ1 : η
(
ξg′ − (1− δb)pb

)
− pn > 0

EQ3 : pmm′g′ − ziza = 0

Case D, both non-binding, precautionary cash coexists with unused lines of credit:

EQ1 : η
(
ξg′ − (1− δb)pb

)
− pn > 0

EQ3 : pmm′g′ − ziza > 0
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D Simulated Method of Moments

The choice of model parameters is done by the simulated method of moments

(SMM). The basic idea of SMM is to choose the model parameters such that the moments

generated by the model are as close as possible to the corresponding real data moments.

The real data is a panel of heterogeneous firms, but the simulated data is generated

by a representative firm. To keep consistency between the actual data and the simulated

data, we estimate the parameters of an average firm in the data. More specifically, given

the panel structure of the data, we first calculate moments for each firm, and then compute

the average of moments across firms and use it as the target moment. We use the bootstrap

method to calculate the variance-covariance matrix associated with the target moments.

The estimation procedure is as follows.11 First, for each firm i, we choose moments

hi(xit), where xit is a vector representing variables in the actual data, and subscript i and t

indicates firm and year respectively. Second, for each firm i, we calculate the within-firm

sample mean of moments as fi(xi) = 1
T

T∑
t=1

hi(xit), where T is the number of fiscal years in

the data. Third, we compute the average of the within-firm sample mean as

f(x) = 1
N

N∑
i=1

fi(xi), where N is the number of firms in the data.

Correspondingly, we use the model to simulate a panel data of N number of firms

and S periods. We set S = 100T to make sure that the representative firm would visit all

the states in the model. We calculate the average sample mean of moments in the model as

11We also use the estimation procedure described in DeAngelo, DeAngelo and Whited (2011),

and the estimation results are robust.
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f(y, θ) = 1
NS

N∑
i=1

S∑
s=1

h(yis, θ), where yis is the simulated data from the model, and θ

represents the parameters to be estimated.

The estimator θ̂ is the solution to

min :
θ

[f(x)− f(y, θ)]TΩ[f(x)− f(y, θ)].

The weighting matrix Ω is defined as Σ̂−1, where Σ̂ is the variance-covariance

matrix associated with the average of sample mean f(x) in the data. We use the bootstrap

method to calculate the variance-covariance matrix Σ̂. First, given the population of N

number of firms from the real data, we draw J random samples with size N
2

. Second, for

each draw j, we compute the statistics of the drawn sample, denote by f(x)j. Third, we

approximate the variance-covariance matrix by the variance of f(x)j, i.e.,

Σ̂ ≈ 1
J

J∑
j=1

(
f(x)j − 1

J

J∑
j=1

f(x)j
)T (

f(x)j − 1
J

J∑
j=1

f(x)j
)
. Finally, we set J=50,000 to have

enough accuracy of the bootstrap method.
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