
INTERNET APPENDIX

“Does Corporate Investment Respond to the Time-Varying Cost of Capital?

Empirical Evidence”

Yongjin Kim

Appendix A. Identity Between Investment Return and Stock Return

In equation (3), the ex-dividend price of stock on date t is Et [Mt+1V (At+1,Kt+1)]. The gross return from

date t to t+ 1 is:

RE,t+1 =
Vt+1

Et [Mt+1Vt+1]
. (A.1)

The numerator of equation (A.1) can be written as Kt+1∂Vt+1/∂Kt+1 due to the linear homogeneity of

the firm value Vt+1. Similarly, the denominator becomes:

Et [Mt+1Vt+1] = Et
[
Mt+1Kt+1

∂Vt+1

∂Kt+1

]
= Kt+1φ

′
(
I∗t
Kt

)
, (A.2)

where the first-order condition of optimal investment is used in the last equality. The return on the stock

can be written as:
Vt+1

Et [Mt+1Vt+1]
=

Kt+1
∂Vt+1

∂Kt+1

Kt+1φ′
(
I∗t
Kt

) = RI,t+1, (A.3)

confirming that the return on investment equals the stock return.

Appendix B. Decomposition of Marginal q

Given the total costs φ(I/K) = (I/K) + γ(I/K)η, equation (6) becomes:

1 + γη

(
It
Kt

)η−1

=
Et [H(At+1)]

1 + WACCt
. (B.1)

Taking logarithms of the above equation leads to the following expression for the optimal investment:

log

(
1 + γη

(
It
Kt

)η−1)
= log

(
Et [H(At+1)]

)
+ log

(
1

1 + WACCt

)
. (B.2)
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I log-linearize the left-hand side of equation (B.2), so that I can later relate the log of the investment-

capital ratio to the components of the log of the marginal q. The left-hand side becomes:

log

(
1 + γη

(
It
Kt

)η−1)
= log

(
1 + γηe

(η−1) log
(
It
Kt

))
(B.3)

≈ 1 + γηe(η−1)log( IK ) +
γη(η − 1)e(η−1)log( IK )

1 + γηe(η−1)log( IK )︸ ︷︷ ︸
≡κ

(
log

(
It
Kt

)
− log

(
I

K

))

= 1 + γηe(η−1)log( IK ) − κlog

(
I

K

)
︸ ︷︷ ︸

≡ξ

+κ log

(
It
Kt

)
,

where log(I/K) is the unconditional mean of the log of the investment-capital ratio.

The first term on the right-hand side of equation (B.2) can be approximated through the Taylor

series expansion around the unconditional mean of productivity A. The first term then becomes:

log

(
Et [H(At+1)]

)
≈ log

(
Et
[
H(A) +

∂H

∂A

(
At+1 −A

)
]

])
(B.4)

= log

(
H(A)Et

[
1 +

1

H(A)

∂H

∂A

(
At+1 −A

)
]

])
= log

(
H(A)

)
+ log

(
1 +

1

H(A)

(
Et[At+1]−A

))
,

where I use the fact that ∂H/∂A = 1 as explained below. To determine the derivative ∂H/∂A, I first apply

the envelope theorem to the Bellman equation (3) and find ∂Vt/∂At = Kt. Given that Vt = H(At)Kt, the

derivative is:
∂H(At)

∂At
=

1

Kt

∂Vt
∂At

= 1. (B.5)

To complete the decomposition in equation (B.2), I substitute equation (B.3) for the left-hand side

and equation (B.4) for the productivity component. As a result:

log

(
It
Kt

)
≈

log

(
H(A)

)
− ξ

κ︸ ︷︷ ︸
≡ν

+
1

κ
log

(
1 +

1

H(A)

(
Et(At+1)−A

))
︸ ︷︷ ︸

≡L(A)t

+
1

κ
log

(
1

1 + WACCt

)
︸ ︷︷ ︸

≡L(R)t

. (B.6)
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Appendix C. Estimating the State Prices

In the semiparametric approach to equation (9), the call option price is given by:

CallBSM
(
SF , X, τ,Rf,t, σ(X/SF , τ)

)
(C.1)

where SF is the forward price of the stock, σ is the implied volatility, τ(= T − t) is the time to maturity,

and CallBSM is the Black-Scholes-Merton formula. The function of implied volatility is estimated for each

month. To do so, I perform the kernel regression using option prices observed in that month as follows:

σ̂
(
X/SF , τ

)
=

∑n
i=1 k

(
X/SF−Xi/SFi

h
X/SF

)
k
(
τ−τi
hτ

)
σi∑n

i=1 k

(
X/SF−Xi/SFi

h
X/SF

)
k
(
τ−τi
hτ

) (C.2)

where i denotes each observation in the month, σi is the implied volatility of observation i, k(z) is

the Gaussian kernel function such that k(z) = 1/
√

2π exp
(
−z2/2

)
, and hX/SF and hτ are bandwidth

parameters. The bandwidth parameters are chosen to minimize the sum of squared errors of observations

as suggested in Hardle (1994). Ait-Sahalia and Lo (2000) show that this semiparametric estimator captures

the salient features in the option market, the volatility smile or smirk, which are likely to carry risk-relevant

information. As a result, the expected return that will be recovered from the estimated state price is

expected to reflect these option market features.

I next compute the state price as in equation (9) for each future stock price from the support

(S1, S2, . . . , SN ). Specifically, the state price of Sj on date T when the current price is Si is:

Fi,j = Rf,t
∂2CallBSM

(
SFi , X, τ,Rf,t, σ̂

(
X/SFi , τ

))
∂X2

∣∣∣∣∣
X=Sj

(
Sj+1 − Sj−1

2

)
. (C.3)

Note that the increment of stock price, (Sj+1 − Sj−1)/2, is multiplied to obtain the state prices over the

discrete states.

Appendix D. Connection between Dividend and Productivity Growth

Consider the all-equity-financed firm described in equation (3). According to the cash flow identity, the

date-t dividend (cash flows to stock holders) is equal to date-t cash flow from assets, which is production
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output minus investment expenditure for the firm. The dividend growth is then:

Dt+1

Dt
=
At+1Kt+1 − φ

(
It+1

Kt+1

)
Kt+1

AtKt − φ
(
It
Kt

)
Kt

=
1− φ

(
It+1

Kt+1

)
/At+1

1− φ
(
It
Kt

)
/At

Kt+1

Kt

At+1

At
. (D.1)

Taking logarithms of both sides of the above equation, I express the log of dividend growth:

logDt+1 − logDt︸ ︷︷ ︸
≡∆dt+1

= log

(
1− φt+1

At+1

)
− log

(
1− φt

At

)
+ log

(
1− δ + eξt

)
+ logAt+1 − logAt︸ ︷︷ ︸

≡at+1

, (D.2)

where φt denotes φ (It/Kt), and ξt is the log of investment-capital ratio log(It/Kt). I next approximate

dividend growth using Taylor expansion with respect to ξt. Hence:

∆dt+1 ≈ log

(
1− φt+1

At+1

)
− log

(
1− φt

At

)
+ log

(
1− δ + eξ

)
︸ ︷︷ ︸

≡κ1

+
eξ

1− δ + eξ︸ ︷︷ ︸
≡ρ

(ξt − ξ) + ∆at+1. (D.3)

where ξ is the unconditional mean of the investment-capital ratio, and κ1 is log of the unconditional mean

of the capital growth rate 1− δ + I/K.

Adding the dividend growth from t+ 1 to T leads to:

T∑
s=t+1

∆ds ≈ log

(
1− φT

AT

)
− log

(
1− φt

At

)
+ (T − t)κ1 + ρ

T−1∑
s=t

(ξs − ξ) +
T∑

s=t+1

∆at+1. (D.4)

As a result, the long-run average of dividend growth can be written as:

lim
T→∞

1

T − t

T∑
s=t+1

∆ds ≈ lim
T→∞

1

T − t
log

(
1− φT

AT

)
− lim
T→∞

1

T − t
log

(
1− φt

At

)
+ κ1 (D.5)

+ lim
T→∞

1

T − t
ρ
T−1∑
s=t

(ξs − ξ) + lim
T→∞

1

T − t

T∑
s=t+1

∆at+1

≈ κ1 + lim
T→∞

1

T − t

T∑
s=t+1

∆at+1,

where I use the fact that limT→∞
∑T−1

s=t

(
ξs − ξ

)
is zero due to the definition of ξ.
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Appendix E. Data on Individual Equity Options

To minimize bias from possible illiquidity in options markets, I exclude price observations with

the trading volume of five contracts or fewer. The option-based estimation requires a cross-section of call

options with different strike prices, but in-the-money calls tend to be illiquid. Thus, for these calls, I

instead use the price of the put option with the same strike price and maturity as described below. With

the application of the above filters, the bid-ask spread is, on average, 7.3% of the mid-point price. For each

of these filtered observations of individual equity options, which are mostly American, I compute the price

of its European equivalent, following Carr and Wu (2009) and Martin and Wagner (2019). Specifically,

I use the volatility surface reported by OptionMetrics and enter the reported volatility into the Black-

Scholes-Merton formula to obtain the European option price. Next, for put options that are included as a

substitute for illiquid calls, I apply the put-call parity to the European put price and obtain the price of

the call with the same strike price and maturity. Lastly, to reliably estimate the expected return for each

month, I require a firm to have at least 30 observations of option prices in a month.
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Appendix F. Additional Regression Results

Table F.1: Alternative Estimation of Factor-Based Cost of Equity and Capital Investment

This table presents panel regressions of capital investment on the alternative estimates of the factor-based cost
of equity. The dependent variable is INVESTi,t, firm i’s investment-capital ratio in quarter t. The regression
specification is:

INVESTi,t = αi + β × ERi,t−1 + γ ×Xi,t−1 + εi,T

where ERi,t−1 is the factor-based cost of equity, ERCAPM
i,t−1 or ERFF

i,t−1, and Xi,t−1 denotes the control variables.
In determining the cost of equity, the factor risk premiums are measured in multiple ways: historical mean of
the factor returns in the past six months, one year, three years, or five years, or the mean in the expanding
window. Each stock’s risk exposures are derived from the regression of the stock’s daily returns in the past
year. Combining the risk exposures with each of the risk premium estimates results in alternative estimates
of the five-factor-based cost of equity: ERFF, 6-month roll

i,t , ERFF, 1-year roll
i,t , ERFF, 3-year roll

i,t , ERFF, 5-year roll
i,t , and

ERFF, expand
i,t . The CAPM-based cost of equity is measured similarly. The controls include Tobin’s q (Qi,t−1),

the log of the book value of total assets (SIZEi,t−1), the leverage ratio (LEVi,t−1), the value-weighted yields on
corporate bonds (YIELDi,t−1), 10-year treasury constant maturity (rft−1), and cash flow-to-asset ratio (CFi,t−1).
The standard errors are clustered by firm. The t-statistics are presented in parentheses below the parameter
estimates. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Dependent variable: INVESTi,t

Specification: 1 2 3 4 5 6 7 8 9 10

ERCAPM, 6-month roll
i,t−1 -0.000733

(-0.26)

ERCAPM, 1-year roll
i,t−1 0.00540

(1.11)

ERCAPM, 3-year roll
i,t−1 -0.0429∗∗∗

(-3.42)

ERCAPM, 5-year roll
i,t−1 -0.0181

(-1.28)

ERCAPM, expand
i,t−1 0.145∗

(1.91)

ERFF, 6-month roll
i,t−1 0.00142

(0.51)

ERFF, 1-year roll
i,t−1 0.00895∗

(1.72)

ERFF, 3-year roll
i,t−1 -0.0210∗

(-1.79)

ERFF, 5-year roll
i,t−1 -0.00645

(-0.47)

ERFF, expand
i,t−1 -0.0273

(-1.24)

N 7,136 7,136 7,136 7,136 7,136 7,136 7,136 7,136 7,136 7,136
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
adj. R2 0.550 0.550 0.552 0.550 0.551 0.550 0.551 0.551 0.550 0.551

6



Table F.2: The Expected Future Productivity from Forward Prices and Realized Productivity

This table presents panel regressions of realized productivity on the expected future productivity. The dependent
variable is the log of realized productivity in quarter t, ai,t+1. In specification 1, the explanatory variable is the log
of productivity lagged by one quarter, ai,t−1, and the expected growth in productivity EF

t−1 [∆ai,t], which is derived
from forward prices as in equation (19). The regression specification is:

ai,t = αi + β1 × ai,t−1 + β2 × EF
t−1 [∆ai,t] + εi,t.

In specification 2, the explanatory variable is the estimate of future productivity EXS
t−1 [∆ai,t], which is derived

from the cross-sectional earnings model. The standard errors are clustered by firm. The t-statistics are presented
in parentheses below the parameter estimates. *, **, and *** denote significance at the 10%, 5%, and 1% levels,
respectively.

Dependent variable: ai,t
Specification: 1 2

ai,t−1 0.5642∗∗∗
(21.02)

EFt−1 [∆ai,t] 0.0540∗∗∗
(8.27)

EXSt−1 [ai,t] 0.9670∗∗∗
(13.80)

N 22,408 27,638
adj. R2 0.900 0.804
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