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In this document we provide supplementary material to the paper. We start with proofs and

derivations of the results in the paper. Next, we provide details on the estimation of the model. We

conclude with a number of additional empirical results.

I. Proofs and Derivations

A. Main result

In this section we start with the proof that a unique stationary equilibrium exists for the setting

that we consider. We consider N classes of investors as this shows the generality of the result.

Proof of Proposition 1: The solution to the model in Section III of the paper has risk averse, price-

taking investors of cohort j choosing their demand vectors y j,t to maximize their expected utility

at time t in the face of a price vector Pt (equation (1) in the paper) and prices being set to bring

demand and supply into equilibrium (equation (2) in the paper). The search for the solution can be

formalized as
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Problem 1. To find
{

y j,t ,Pt | j = 1, . . . ,N; t ∈ Z
}

such that it solves

max
y j,t

Et
[
Wj,t+h j

]
− 1

2
A jVart

(
Wj,t+h j

)
, s.t. y j,t ≥ 0(IA.1)

Wj,t+h j =

(
Pt+h j +

h j

∑
k=1

Rh j−k
f Dt+k−Ct+h j

)′
y j,t +Rh j

f

(
e j−P′t y j,t

)
and

(IA.2)
N

∑
j=1

Q jy j,t = S−
N

∑
j=1

h j−1

∑
k=1

Q jy j,t−k.

As explained in the paper, we restrict ourselves to stationary equilibria. Our problem therefore

becomes

Problem 2. To find
{

y j,P | j = 1, . . . ,N
}

such that it solves

max
y j

E
[
Wj,t+h j

]
− 1

2
A jVar

(
Wj,t+h j

)
, s.t. y j ≥ 0(IA.3)

Wj,t+h j = y′j
(

Z j,t+h j −
(

Rh j
f −1

)
P
)
+Rh j

f e j

Z j,t+h j =
h j

∑
k=1

Rh j−k
f Dt+k−Ct+h j(IA.4)

and

(IA.5)
N

∑
j=1

h jQ jy j = S.

We demonstrate the existence and uniqueness of the solution to Problem 2 indirectly, by first

considering a related problem. Take the perspective of the social planner who seeks to allocate

stocks to individuals to maximize aggregate utility. The social planner is not concerned about

endowments and prices. Her problem is to maximize the weighted average of individual utilities

(with some strictly positive weights θ) over dividends net of transaction costs. Her problem can be
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written as

Problem 3. To find
{

y j | j = 1, . . . ,N
}

such that it solves

max
y j

N

∑
j=1

θ j

(
E
[
y′jZ j,t+h j

]
− 1

2
A jy′jVar

(
Z j,t+h j

)
y j

)
(IA.6)

subject to

(IA.7)
N

∑
j=1

h jQ jy j = S, y j ≥ 0.

For any θ, Problem 3 has a unique solution. To see this, note that

1. The feasible set is non-empty. For example take y1 = S/h1Q1 with y j = 0 for j > 1).

2. The objective function is bounded above, since it is quadratic in the y j with the quadratic

terms being positive definite matrices, with a negative sign.

3. It therefore has a solution.

4. The solution must be unique. Suppose there are two solutions y and y∗; then any convex

linear combination αy+(1−α)y∗ with α ∈ (0,1) is also feasible, and will dominate y and

y∗ because the objective function is quadratic in α. So the two solutions must be identical.

Consider the case where the social planner sets weights according to

Problem 4. To find
{

y j | j = 1, . . . ,N
}

such that it solves

max
y j

N

∑
j=1

θ j

(
E
[
y′jZ j,t+h j

]
− 1

2
A jy′jVar

(
Z j,t+h j

)
y j

)
(IA.8)

subject to

(IA.9)
N

∑
j=1

h jQ jy j = S, y j ≥ 0,
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with

(IA.10) θ j =
h jQ j

Rh j
f −1

.

In this case, the first order condition on y j is

(IA.11) E
[
y′jZ j,t+h j

]
−A jVar

(
Z j,t+h j

)
y j−

(
Rh j

f −1
)

λ−µ j = 0,

where λ is the Lagrange multiplier on the aggregate supply demand constraint, and µ j is the La-

grange multiplier on the short selling constraint.

This is very similar to the first order condition for the investor’s problem in Problem 2. Specif-

ically, if the social planner decides not to allocate stocks, but instead sets prices according to the

formula P = λ, investor j would decide of its own accord to buy y j and demand and supply would

balance. So the unique solution to Problem 4, which can be found using standard quadratic opti-

mization software, generates the solution to Problem 2. It gives the unique stationary equilibrium

solution to our model. Finally, we can multiply the entire objective function by R f − 1 to ensure

that the limit is finite as the net risk-free rate, R f −1, goes to zero. When we take the special case

of N = 2 and R f = 1, this gives us Proposition 1.

Finally, we can rewrite the quadratic problem into asset returns and percentage costs, which

makes it suitable for empirical implementation. With equilibrium prices constant, the dividend

yield and the net return on stocks are the same. So we can write the problem in terms of returns R

and percentage transaction costs c. Define dollar supply as S̃ = diag(P)S, relative dollar supply as

s = S̃/S̃′ι, and define ỹ j = h jQ jdiag(P)y j/(S̃′ι). Dividing the entire goal function by S̃′ι, we can

rewrite Problem 4 as follows
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Problem 5. To find
{

ỹ j | j = 1, . . . ,N
}

such that it solves

max
ỹ j

N

∑
j=1

R f −1

Rh j
f −1

(
E
[
ỹ′jZ̃ j,t+h j

]
− 1

2
1

h jγ j
ỹ′jVar

(
Z̃ j,t+h j

)
ỹ j

)
(IA.12)

subject to
N

∑
j=1

ỹ j = s, and ỹ j ≥ 0,

where

(IA.13) Z̃ j,t+h =

(
h j

∑
k=1

Rh j−k
f (Rt+k−1)− ct+h j

)
.

Given the parameters γ j = Q j/(A jS̃′ι), this problem can be implemented empirically given

estimates for the expectations and covariances using data on returns and percentage costs. As

discussed in Section IV of the paper, for our empirical analysis we use 25 portfolios and an equal-

weighted market portfolio, which corresponds to a relative supply s that is the same across portfo-

lios and equal to 1/25 for each portfolio.

Q.E.D.

We now proceed with the derivation of the equilibrium expected returns. We start by intro-

ducing sets B j ( j = 1, . . . ,N) that represent the assets that investor j optimally holds in his or her

portfolio, as determined in Proposition 1.

Proof of Proposition 2: To derive the equilibrium, we first consider each investor’s optimization

problem. For the investors with horizon h j it is given by

max
y j,t

Et
[
Wj,t+h j

]
− 1

2
A jVart

(
Wj,t+h j

)
, s.t. y j,t ≥ 0(IA.14)

Wj,t+h j =

(
Pt+h j +

h j

∑
k=1

Rh j−k
f Dt+k−Ct+h j

)′
y j,t +Rh j

f

(
e j−P′t y j,t

)
.

We first repeat the notation used in the main text that will allow us to derive the equilibrium in
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the case where investor j holds only assets that are in B j. For a K×K matrix M, we denote by

My j>0 the |B j|× |B j| matrix (with | · | the cardinality of a set) with the rows and columns that are

not elements of B j removed. We also introduce the notation M−1
y j>0,p for the inverse of My j>0 with

zeros inserted at the locations where rows and columns of M were removed, so that M−1
y j>0,p is a

K×K matrix.

For example, let

M =


1 3 2

2 2 4

3 5 7


and let B j = {1,3}. Then

My j>0 =

 1 2

3 7

 ,
so that

M−1
y j>0 =

 7 −2

−3 1

 .
We then have

M−1
y j>0,p =


7 0 −2

0 0 0

−3 0 1

 .
If we apply this operation to the covariance matrix in the optimization problem of investor j, it

yields a K×1 vector where elements corresponding to assets not in B j are set to zero. The benefit

is that it makes the solution vectors y j,t ( j = 1, . . . ,N) conformable to addition, which allows us to

derive the equilibrium.

We then use a result of De Roon, Nijman, and Werker (2001), who show that the solution to

a utility maximization problem with short-sales constraints can be rewritten as the usual mean-

variance solution for the subset of assets for which the short-sales constraint turns out not to be
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binding. Thus, given that the optimal portfolio of the investor consists only of assets that are

elements of B j, the solution is

y j,t =
1
A j

Vart

(
Pt+h j +

h j

∑
k=1

Rh j−k
f Dt+k−Ct+h j −Rh j

f Pt

)−1

y j>0,p

(IA.15)

×Et

[
Pt+h j +

h j

∑
k=1

Rh j−k
f Dt+k−Ct+h j −Rh j

f Pt

]
.

Using the i.i.d. assumption for dividends and costs, we obtain a stationary equilibrium with con-

stant prices and i.i.d. returns. With constant prices we get Ri,t+1−1 = Di.t+1/Pi, so that y j,t can be

written as

y j,t =
1
A j

diag(Pt)
−1 Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)−1

y j>0,p

(IA.16)

×

(
E

[
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

]
−

h j−1

∑
k=0

Rh j−k
f

)
.

Making further use of the i.i.d. assumption by which E
[
ct+h j

]
= E [ct+k] and E

[
Rt+h j

]
= E [Rt+k]

for all j and k, and defining ρ j = ∑
h j
k=1 Rh j−k

f =
R

h j
f −1

R f−1 , the allocations can be written as

y j,t =
1
A j

diag(Pt)
−1 Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)−1

y j>0,p

(IA.17)

×
(
ρ j
(
E [Rt+1]−R f

)
−E [ct+1]

)
.

Each period a fixed quantity Q j > 0 of type j investors enters the market. The equilibrium condition

at time t is

(IA.18)
N

∑
j=1

Q jy j,t = S−
N

∑
j=1

h j−1

∑
k=1

Q jy j,t−k.
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Under the i.i.d. assumption we have y j,t−k = y j,t for all k, so that

(IA.19)
N

∑
j=1

h jQ jy j,t = S.

Scaling by price we obtain

(IA.20)
N

∑
j=1

h jQ j diag(Pt)y j,t = S̃t ,

where S̃t = diag(Pt)S. At this point it is useful to introduce the notation Rm
t+1 = S̃′tRt+1/S̃′tι, and

cm
t+1 = S̃′tct+1/S̃′tι. We note that in the i.i.d. setting with constant prices, S̃t is constant over time,

hence we omit the time subscript and write S̃ in what follows. This allows us to write

(IA.21) Var(Rt+1− ct+1) S̃ = S̃′ιCov
(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
.

Then, multiplying both sides of (IA.20) by (1/S̃′ι)Var(Rt+1− ct+1), and filling in the expression

for the optimal allocations gives

N

∑
j=1

h j
Q j

A jS̃′ι
Var(Rt+1− ct+1)Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1

y j>0,p

(IA.22)

×
(
ρ j
(
E [Rt+1]−R f

)
−E [ct+1]

)
= Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
.

We define γ j = Q j/(A jS̃′ι) and

(IA.23) Vj = h jVar(Rt+1− ct+1)Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)−1

y j>0,p

.
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This allows us to write

(IA.24)
N

∑
j=1

γ jVj
(
ρ j
(
E [Rt+1]−R f

)
−E [ct+1]

)
= Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
.

We can rewrite this equilibrium condition as

E [Rt+1]−R f =

(
N

∑
j=1

γ jρ jVj

)−1 N

∑
j=1

γ jVjE [ct+1](IA.25)

+

(
N

∑
j=1

γ jρ jVj

)−1

Cov
(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
.

Q.E.D.

B. Short-selling

In this Appendix we describe how one could incorporate short-selling in the model. As noted

by Bongaerts, De Jong, and Driessen (2011), the key step is to realize that, for short positions, the

net return equals −(R+c). The mean-variance problem for the case without short-sale constraints

can then be written as

max
y j,t

Et
[
Wj,t+h j

]
− 1

2
A jVart

(
Wj,t+h j

)
,(IA.26)

Wj,t+h j =

(
Pt+h j +

h j

∑
k=1

Rh j−k
f Dt+k−ω j ·Ct+h j

)′
y j,t +Rh j

f

(
e j−P′t y j,t

)
,

where ω j is a K by 1 vector, with ω j(i) = 1 if y j,t(i)> 0 and ω j(i) = −1 if y j,t(i)< 0. Then, the

optimal portfolio can consist of long positions, zero positions, and short positions. The vectors

ω j are determined endogenously as they depend on the optimal demand. One could then proceed

in a similar way as in the benchmark model derivation to derive equilibrium expected returns and

optimal demands.
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C. Segmentation effects

Proof of Proposition 3: In this proposition, we have N = 2, h1 = 1, Var(ct) = 0, the h1-investors

optimally invest only in the most liquid assets, and the h2-investors optimally invest in all assets.

In this case we obtain V2 = I. If we sort the assets by liquidity with the most liquid assets first,

writing

(IA.27) Var(Rt+1− ct+1) =

 Vliq Vliq,illiq

Villiq,liq Villiq

 ,
we have

V1 = h1Var(Rt+1)Var

(
h1

∑
k=1

Rh1−k
f Rt+k

)−1

y1>0,p

(IA.28)

=

 Vliq 0

0 Villiq


 V−1

liq 0

0 0


=

 I 0

Villiq,liqV−1
liq 0

 .
Using N = 2 and V2 = I in (IA.25) leads to the equilibrium relation

E [Rt+1]−R f = (γ1ρ1V1 + γ2ρ2I)−1 (γ1V1 + γ2I)E [ct+1](IA.29)

+(γ1ρ1V1 + γ2ρ2I)−1 Cov
(
Rt+1,Rm

t+1
)
.
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To find the liquidity risk effect, we focus on the factor

(γ1ρ1V1 + γ2ρ2I)−1 =

 (γ1ρ1 + γ2ρ2) I 0

γ1ρ1Villiq,liqV−1
liq γ2ρ2I


−1

(IA.30)

=

 (γ1ρ1 + γ2ρ2)
−1 I 0

−γ1ρ1 (γ2ρ2)
−1 (γ1ρ1 + γ2ρ2)

−1Villiq,liqV−1
liq (γ2ρ2)

−1 I

 .
In what follows, we will use the liquidity spillover beta, defined by

β =Villiq,liqV−1
liq(IA.31)

= Cov
(

Rilliq
t+1,R

liq
t+1

)
Var
(

Rliq
t+1

)−1
.

For the impact of the level of liquidity we write

(γ1ρ1V1 + γ2ρ2I)−1 (γ1V1 + γ2I)(IA.32)

=

 (γ1ρ1 + γ2ρ2)
−1 I 0

−γ1ρ1 (γ2ρ2)
−1 (γ1ρ1 + γ2ρ2)

−1
β (γ2ρ2)

−1 I


 (γ1 + γ2) I 0

γ1β γ2I


=

 (γ1 + γ2)(γ1ρ1 + γ2ρ2)
−1 I 0(

γ1 (γ2ρ2)
−1− γ1ρ1 (γ2ρ2)

−1 (γ1 + γ2)(γ1ρ1 + γ2ρ2)
−1
)

β ρ
−1
2 I

 .
We rewrite the scalar part of the spillover coefficient using the identity

(IA.33)
γ1

γ2ρ2
− γ1ρ1 (γ1 + γ2)

γ2ρ2 (γ1ρ1 + γ2ρ2)
=

ρ2−ρ1

ρ2

γ1

γ1ρ1 + γ2ρ2
.

Combining the results above, we can write the equilibrium relation for the liquid assets as

(IA.34) E
[
Rliq

t+1

]
−R f =

γ1 + γ2

γ1ρ1 + γ2ρ2
E
[
cliq

t+1

]
+

1
γ1ρ1 + γ2ρ2

Cov
(

Rliq
t+1,R

m
t+1

)
.
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and the equilibrium relation for the illiquid assets as

E
[
Rilliq

t+1

]
−R f =

1
ρ2

E
[
cilliq

t+1

]
+

ρ2−ρ1

ρ2

γ1

γ1ρ1 + γ2ρ2
βE
[
cliq

t+1

]
(IA.35)

+
1

γ2ρ2
Cov

(
Rilliq

t+1,R
m
t+1

)
− γ1ρ1

γ2ρ2 (γ1ρ1 + γ2ρ2)
βCov

(
Rliq

t+1,R
m
t+1

)
.

The desired expressions now follow directly. Q.E.D.

D. Dynamic model

In this section, we derive the full dynamic extension in Section VI of the paper. As mentioned

in the main text, in the liquid state, defined by It = 0, transaction costs are low with Ci,t =C0
i +η0

i,t ,

where η0
i,t is a mean-zero, i.i.d. variable that captures variation in transaction costs within the

regime. Similarly, in the illiquid state (It = 1) we have Ci,t =C1
i +η1

i,t , with C1
i ≥C0

i . The liquidity

state follows a Markov-switching process, with Pr(It+1 = 0|It = 1) = θ/2π and Pr(It+1 = 1|It =

0) = θ/2(1−π). By parameterizing the process in this way, the unconditional probability of

being in the illiquid state is π and the unconditional probability of a change in liquidity state in

any given period is θ. This modelling approach thus allows for persistence in transaction costs

because the regimes are persistent, and also incorporates i.i.d. variation in transaction costs within

each regime. We continue to assume that dividends are i.i.d. We again have short-horizon and

long-horizon investors, where we normalize h1 = 1 to save on notation.

To obtain tractable results in the presence of persistent transaction costs, we need to modify

our assumptions concerning the behavior of long-term investors. First, we allow their horizon h2

to tend to infinity. As shown below, this simplifies their demand function since the risk and return

from investment is dominated by the dividend stream.

Second, and more significantly, we now allow long-term investors to rebalance at any time.
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With time-varying liquidity, short-term investors change their asset holdings depending on the

state. This will necessarily affect prices, so the investment opportunity set available to long-term

investors varies over time. They therefore have a strong economic incentive to trade – to absorb

assets which have suddenly become illiquid and which the short-term investors no longer wish to

hold, or to supply assets which come into high demand when they become more liquid.

We therefore replace the market clearing condition in the benchmark model (equation (IA.18))

with

(IA.36) Q1y1,t +Q2y2,t = S.

Now, the entire supply of assets is available for trading each period; in the benchmark model, it

was only the supply made available by departing generations that was available for trading. This

casts long-horizon agents in the role of value investors who buy or sell when the market price is

low or high relative to the fundamental value of the asset, as measured by the present value of

future dividends. Furthermore, given the infinite horizon of the long-term investors transaction

costs do not affect their demand. Long horizon agents thus act as passive traders, and do not face

transaction costs when they trade with the short-horizon investors.

The new market clearing assumption has a major technical advantage. With the supply of

assets being constant, with demand dependent on beliefs about future dividends, prices and costs,

and with the liquidity state following a Markov process, we can look for an equilibrium where

prices depend on the liquidity state alone.

The final component of the time-varying liquidity model is to focus on the case where θ, the

probability of a switch in the liquidity state per period, tends to zero. Note that the unconditional

probability of being in the illiquid state remains fixed at π; the assumption is effectively saying that

the average length of time the market is in any liquidity state is long compared with the horizon of

the short-term investor.
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Given these additional assumptions, we can then calculate demands, equate them to supply and

calculate equilibrium expected returns. The demand of the short-term investors is given by

(IA.37) y1,t =
1

A1
Var
(
Pt+1 +Dt+1−Ct+1−R f Pt | It

)−1
y1,t>0,pE

[
Pt+1 +Dt+1−Ct+1−R f Pt | It

]
,

while the long-term investors have demand

y2,t =
1

A2
Var

(
Pt+h2 +

h2

∑
k=1

Rh2−k
f Dt+k−Ct+h2−Rh2

f Pt | It

)−1

y2,t>0,p

(IA.38)

×E

[
Pt+h2 +

h2

∑
k=1

Rh2−k
f Dt+k−Ct+h2−Rh2

f Pt | It

]
.

This demand function depends on the current liquidity state, as does the degree of segmentation that

the investor chooses in equilibrium. Hence, short-term and long-term investors can endogenously

choose to invest in a different set of assets in the liquid state compared to the illiquid state.

The net gains from the investment portfolio can conveniently be split into a net capital gain and

a dividend stream

Pt+h2 +
h2

∑
k=1

Rh2−k
f Dt+k−Ct+h2−Rh2

f Pt(IA.39)

= (Pt+h2−Ct+h2−Pt)+

(
h2

∑
k=1

Rh2−k
f Dt+k−

(
Rh2

f −1
)

Pt

)
.

With Pt being known at time t, and dividends being i.i.d. the variance and expectation of the

dividend stream can be simplified as

(IA.40) Var

(
h2

∑
k=1

Rh2−k
f Dt+k−

(
Rh2

f −1
)

Pt | It

)
y2,t>0,p

=
h2

∑
k=1

R2h2−2k
f Var(Dt+1 | It)y2,t>0,p,
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and

E

[
h2

∑
k=1

Rh2−k
f Dt+k−

(
Rh2

f −1
)

Pt | It

]
=

h2

∑
k=1

Rh2−k
f E [Dt+1 | It ]−

(
Rh2

f −1
)

Pt(IA.41)

=
Rh2

f −1

R f −1
E
[
Dt+1−

(
R f −1

)
Pt | It

]
.

Equation (IA.38) can now be rewritten as

y2,t =
1

A2

(
Var(Pt+h2−Ct+h2−Pt | It)+

R2h2
f −1

R2
f −1

Var(Dt+1 | It)

)−1

y2,t>0,p

(IA.42)

×
(
E [Pt+h2−Ct+h2−Pt | It ]+ρ2E

[
Dt+1−

(
R f −1

)
Pt | It

])
,

where ρ j = ∑
h j
k=1 Rh j−k

f = (Rh j
f − 1)/(R f − 1). Note that both the variance and the expectation of

the value of dividend grow at least as fast as the horizon, h2. By contrast, both the variance and

expectation of the net capital gain tend asymptotically to a finite limit. So for large h2 we ignore

the net capital gain and approximate the demand function of the long-term investors as

(IA.43) y2,t ≈
1

A2

(
R2h2

f −1

R2
f −1

Var(Dt+1 | It)

)−1

y2,t>0,p

ρ2E
[
Dt+1−

(
R f −1

)
Pt | It

]
.

As mentioned above, we now allow the long-term investors to rebalance. The market clearing

equation is given by

(IA.44) Q1y1,t +Q2y2,t = S.

Both demand and supply depend only on current and future dividends and transactions, and no

longer depend on past transactions. Prices are thus a function of the regime. They jump when

the regime switches, and while the regime remains unchanged, prices are unchanged. We may
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therefore write

(IA.45) Pt = PIt .

We divide the numerator and the denominator of the demand equations by prices to write demand

in terms of returns. For short-term investors

y1,t =
1

A1
diag

(
PIt
)−1
(

diag
(
PIt
)−1

Var
(
PIt+1 +Dt+1−Ct+1 | It

)
diag

(
PIt
)−1
)−1

y1,t>0,p
(IA.46)

×diag
(
PIt
)−1E

[
PIt+1 +Dt+1−Ct+1−R f PIt | It

]
=

1
A1

diag
(
PIt
)−1

Var(Rt+1− ct+1 | It)−1
y1,t>0,pE

[
Rt+1−R f − ct+1 | It

]
,

We focus on the case where the unconditional probability of a change in liquidity state in any

period is very small, that is the case where θ→ 0. Then the probability of a price change is small,

and we can approximate the net return on a stock by its dividend yield

(IA.47) diag
(
PIt
)−1

Dt+1 ≈ Rt+1−1.

This allows us to write the demand by the long-term investors as

y2,t =
1

A2
diag

(
PIt
)−1
(

R2h2
f −1

R2
f −1

diag
(
PIt
)−1

Var(Dt+1 | It)diag
(
PIt
)−1

y2,t>0,p

)
(IA.48)

×ρ2 diag
(
PIt
)−1E

[
Dt+1−

(
R f −1

)
PIt | It

]
≈ 1

A2
diag

(
PIt
)−1
(

R2h2
f −1

R2
f −1

Var(Rt+1 | It)

)−1

ρ2E
[
Rt+1−R f | It

]
.

Next, we let

(IA.49) SIt = diag
(
PIt
)

S,
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and use (IA.46) and (IA.48) to rewrite the equilibrium condition (IA.44) similarly to the static case

as

SIt = diag
(
PIt
)
(Q1y1,t +Q2y2,t)(IA.50)

=
Q1

A1
Var(Rt+1− ct+1 | It)−1

y1,t>0,pE
[
Rt+1−R f − ct+1 | It

]
+

Q2

A2

(
R2h2

f −1

R2
f −1

Var(Rt+1 | It)

)−1

y2,t>0,p

ρ2E
[
Rt+1−R f | It

]
.

Then we can make use of the fact that

Var(Rt+1− ct+1 | It)SIt = E
[
(Rt+1− ct+1)(Rt+1− ct+1)

′ | It
]

SIt(IA.51)

= SIt ′ιE

[
(Rt+1− ct+1)

(
SIt ′Rt+1

SIt ′ι
− SIt ′ct+1

SIt ′ι

)′
| It

]

= SIt ′ιCov
(
Rt+1− ct+1,Rm

t+1− cm
t+1 | It

)
to obtain

Cov
(
Rt+1− ct+1,Rm

t+1− cm
t+1 | It

)
(IA.52)

=
Q1

A1SIt ′ι
Var(Rt+1− ct+1 | It)Var(Rt+1− ct+1 | It)−1

y1,t>0,pE
[
Rt+1−R f − ct+1 | It

]
+

Q2

A2SIt ′ι
Var(Rt+1− ct+1 | It)

(
R2h2

f −1

R2
f −1

Var(Rt+1 | It)

)−1

y2,t>0,p

ρ2E
[
Rt+1−R f | It

]
.
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If we now introduce

V1,t = Var(Rt+1− ct+1 | It)Var(Rt+1− ct+1 | It)−1
y1,t>0,p ,(IA.53)

V2,t = Var(Rt+1− ct+1 | It)

(
R2h2

f −1

R2
f −1

Var(Rt+1 | It)

)−1

y2,t>0,p

,(IA.54)

and let γ j = Q j/(A jSIt ′ι), then we find that

E
[
Rt+1−R f | It

]
= (γ1V1,t + γ2ρ2V2,t)

−1
γ1V1,tE [ct+1 | It ](IA.55)

+(γ1V1,t + γ2ρ2V2,t)
−1 Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1 | It

)
,

which is the desired expression.

II. Estimation Methodology

A. Computing the long-term covariance matrix

We use the i.i.d. assumption to rewrite part of the moment conditions as follows

Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)−1

=

((
h j−1

∑
k=1

R2(h j−k)
f

)
Var(Rt+1)+Var(Rt+1− ct+1)

)−1

(IA.56)

=

R2(h j−1)
f −1

R2
f −1

Var(Rt+1)+Var(Rt+1− ct+1)

−1

.

This allows us to compute the covariance terms using only one-period covariances.
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B. Standard Errors and Model Testing

We denote the required moments that enter the asset pricing model by the vector ψ. This

vector contains expected returns, expected costs, and all required covariances of returns and costs.

It is straightforward to derive the asymptotic covariance matrix of the sample estimator of these

moments (since covariances can be written as second moments plus products of first moments),

(IA.57)
√

T (ψ̂−ψ)
d→N

(
0,Sψ

)
.

We can now use the delta method to find the standard errors for γ̂.

Consider the GMM minimization problem given by

(IA.58) min
γ

g(ψ̂,γ)′g(ψ̂,γ),

for which the solution is implicitly given by

(IA.59) 2Gγ(ψ̂,γ)
′g(ψ̂,γ) = 0,

where

(IA.60) Gγ(ψ,γ) =
∂g(ψ,γ)

∂γ
.

Dividing both sides of (IA.59) by 2 and evaluating at γ̂, we may write

(IA.61) Gγ(ψ̂, γ̂)
′g(ψ̂,γ0)+Gγ(ψ̂, γ̂)

′ (g(ψ̂, γ̂)−g(ψ̂,γ0)) = 0.

19



Next, we expand g(ψ̂, γ̂) around γ0 to obtain

(IA.62) g(ψ̂, γ̂)−g(ψ̂,γ0)≈ Gγ(ψ̂, γ̂) (̂γ− γ0) .

It follows that

(IA.63) Gγ(ψ̂, γ̂)
′g(ψ̂,γ0)+Gγ(ψ̂, γ̂)

′Gγ(ψ̂, γ̂) (̂γ− γ0) = 0.

We now expand g(ψ̂,γ0) around ψ0 and use the fact that g(ψ0,γ0) = 0 to find that

(IA.64) g(ψ̂,γ0)≈ Gψ(ψ̂, γ̂)(ψ̂−ψ0) ,

where

(IA.65) Gψ(ψ,γ) =
∂g(ψ,γ)

∂ψ
.

Hence

(IA.66) Gγ(ψ̂, γ̂)
′Gγ(ψ̂, γ̂) (̂γ− γ0) =−Gγ(ψ̂, γ̂)

′Gψ(ψ̂, γ̂)(ψ̂−ψ0) .

Using this result we obtain

(IA.67)
√

T (̂γ− γ0)≈−
(
Gγ(ψ̂, γ̂)

′Gγ(ψ̂, γ̂)
)−1 Gγ(ψ̂, γ̂)

′Gψ(ψ̂, γ̂)
√

T (ψ̂−ψ0) .

It follows that

(IA.68)
√

T (̂γ− γ0)
d→N

(
0,
(

G′γGγ

)−1
G′γGψSψG′ψGγ

(
G′γGγ

)−1
)
.

20



This result shows that the parameter estimates have an asymptotic normal distribution. We use a

standard bootstrap method to calculate the asymptotic standard errors. Under standard regularity

conditions, the bootstrap distribution converges to the asymptotic distribution (Shao and Tu, 1995).

We prefer this approach over directly calculating Gγ and Gψ because we have to solve the asset

pricing model numerically and calculating the partial derivatives may render unstable results. The

bootstrap method is also useful when testing models against each other, as discussed below.

In each bootstrap, we draw monthly observations for returns and transaction costs (for all port-

folios) with replacement from the 1964-2009 sample period, to create a sample of the same size

as the original data. We then re-estimate the model parameters given this bootstrap sample. We

perform 5000 bootstrap simulations, and the standard error for a given parameter is then obtained

by calculating the standard deviation of the parameter estimate across the 5000 simulations.

The bootstrap approach can also be used directly to implement the test statistic of Rivers and

Vuong (2002) and Hall and Pelletier (2011). This test-statistic compares the GMM J values of

two non-nested models, and tests whether one model has significantly lower pricing errors than an

alternative model. The difference between the J values has an asymptotically normal distribution if

both models are misspecified. We apply this test to our two-horizon model and the single-horizon

AP model. In each bootstrap simulation, we estimate both models and calculate their J statistics.

We then calculate the standard deviation of the difference between the two J values across 5000

simulations. The asymptotically normal test statistic equals the difference between the full-sample

J values of the two models, divided by this standard deviation.

III. Additional Empirical Results

A. Atkins and Dyl (1997) Holding Period Estimates

In the absence of investor-level data, it is difficult to estimate the average holding period of

investors in a single stock or portfolio of stocks. A proxy for the average holding period put
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forward by Atkins and Dyl (1997) is given by

(IA.69) Holding Periodit =
Shares Outstanding in Period t

Trading Volume in Period t
.

This is a rough proxy, as not all investors hold the asset for the same period of time. As Næs

and Ødegaard (2009) show, the holding period can be overstated if there are a few very long-

term investors holding the stock. Therefore, we only use this proxy to obtain an impression of

the average holding periods for the various portfolios in our sample. We compute the proxy for

each stock in our sample, and then take the average across stocks to obtain a portfolio measure.

Table IA.1 presents time-series averages of these estimates.

B. Results for Different Portfolios

We estimate our model for various different portfolio sorts. Table IA.2 shows the cross-

sectional fit of our model for a sort on the variance of the stock-level liquidity: the R2 equals

74.5% in the AP model versus 28.6% in the heterogenous horizon model for the case without

a constant term. For the B/M-by-size portfolios the cross-sectional R2 equals 28.4% in the AP

model versus 46.3% in the heterogenous horizon model (without constant term). To investigate

the importance of liquidity risk further, in addition to the analysis in Section V.C of the paper, we

perform double sorts on liquidity level and liquidity risk. Table IA.2 has results for a 5x5 double

sort, sorting on the daily covariance of the stock return and market-wide transaction costs (over the

past 12 months), and on the average transaction costs. In addition, we present results for another

5x5 double sort, sorting on the standard deviation of daily transaction costs in the past year (liq-

uidity risk) and on the average transaction costs over the past 12 months. The results show that the

two-horizon model has a decent fit for both portfolio sorts, well above the fit of the AP model.

We also calculate the liquidity risk premium implied by the model and the parameter estimates

in the same way as in Section V.C of the paper. Table IA.3 shows that, across all sorts, this liquidity
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risk premium is at most 2 basis points per year, similar to our benchmark estimates. Hence, the

liquidity risk premium is small for all these sorts.

Finally, we assess how much segmentation there is when estimating the model on the basis

of these different portfolio sorts. For each estimation, we calculate for how many of the 25 port-

folios both the short-term and long-term investor have a nonzero investment. In the benchmark

estimation, there are 3 of these integrated portfolios. Table IA.4 reports the number of integrated

portfolios for the different portfolio sorts. For all sorts, there is a substantial degree of segmenta-

tion. The lowest level of segmentation is obtained for the book-to-market x size portfolios, where

9 out of the 25 portfolios are held by both investors.

C. Robustness to Sample Period

In addition to our full-sample results for the period 1964 until 2009, we also provide subsample

results for the period 1964 until 1986 and for the period 1987 until 2009. We also provide the

results for the Acharya and Pedersen (2005) sample, which runs from 1964 until 1999. We report

the R2 in Table IA.2, the liquidity risk premium in Table IA.3 and the level of segmentation in

Table IA.4.

We find in all cases low levels for the liquidity risk premium and high levels of segmentation.

In terms of fit, only for the second half of the sample the fit is much lower than in all other cases,

both for the two-horizon model and the AP model. For these subsample the average returns across

portfolios are less smooth and more noisy than for the full sample, leading to a lower R2.

D. Robustness to Horizon

We then test the sensitivity of model performance to the choice of the investor horizons. We

first fix the short-term investor horizon at 1 month and estimate the model for h2 = 36,60,240

months. Similarly, we fix the long-term horizon at 120 months and vary the short-term horizon
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(h1 = 3,6,12 months). As before, we report the R2 in Table IA.2, the liquidity risk premium in

Table IA.3 and the level of segmentation in Table IA.4.

We see that varying the long-term horizon has little influence on the results, in all dimensions.

Varying the short-term horizon has more effects. For h1 = 3 the results are quite similar to the

benchmark case, but when we increase h1 further, the fit decreases and the liquidity risk premium

increases a bit, but remains small (at most 6 basis points per year). The parameter estimates (not

reported) show that the role of the long-term investors becomes negligble when we increase the

horizon of the short-term investors. Hence, we conclude that we need a sufficient difference in

horizons of the two investor types to obtain a reasonable fit. Finally, we still find substantial

segmentation when we vary the horizons, though a bit less than in the benchmark setting.

E. Determinants of the Regime Probabilities

In this subsection we study the time series of the regime probabilities implied by the regime-

switching model in Table III of the paper. As described in Section VI of the paper, for each month

in the 1964-2009 sample period we calculate the probability of being in the illiquid regime. In

formulas, this probability is equal to P(It = 1 | ct ,ct−1, . . .), conditional upon all information at

time t.

Figure IA.1 shows the time series of this illiquid regime probability, along with the NBER

recession dummy. In 27% of the months the probability of an illiquid regime is above 50%. We see

that the probability of the illiquid regime is high, for example, in two recessions in the 70s, around

the 1987 crash, from the LTCM crisis in 1998 continuing into the recession in 2001, and October

to December 2008. In addition, we regress the probability of being in the liquid regime at time t

on a set of financial and economic variables that may capture distress and illiquidity.1 Table IA.5

1The data on the default spread and the term spread, are from the Federal Reserve Bank of St. Louis, and the
risk-free rate is from the website of Kenneth French. We define the default spread as the difference between the yield
on Moody’s Baa or better corporate bond yield index and the yield on a 10-year constant maturity Treasury bond. The
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shows that the most important variables, in terms of statistical and economic significance, are the

NBER dummy and stock market volatility (measured as the monthly standard deviation of daily

market returns). Both these variables negatively affect the probability of a liquid regime, which is

what one would intuitively expect.

F. Model with Regime Switches in Covariances

In Section VI of the paper we estimate a regime-switching model for transaction costs and use

this to estimate dynamic version of our asset pricing model. In the benchmark analysis we focus

on a model where only transaction cost levels change across regimes, and keep the covariances of

costs and returns constant across regimes. In this subsection we present results when we estimate

the dynamic asset pricing model when both transaction costs and covariances are allowed to change

across regimes.

As described in Section VI of the paper, we use the regime probabilities to construct estimates

of the conditional expectations and covariances of returns and transaction costs for all portfolios.

Specifically, if P(It = 0 | ct ,ct−1, . . .) > 0.5, the subsequent month t + 1 is assigned to the set of

“liquid months”, and else it is assigned to the set of “illiquid months”. We then calculate the

means and covariances for the liquid months and illiquid months, respectively. This gives sample

estimates for E [Rt+1−1 | It ], E [ct+1 | It ], and all conditional covariances.

We then insert the conditional estimates of expected transaction costs and all covariances in

(29), and estimate the model parameters using GMM on the 50 moment conditions described in

Section VI of the paper. In Table IA.6 we present the parameter estimates. We see that both

investor types contribute to the sharing of risk. With an R2 of 37.6% the fit is similar to the model

without regime changes in the covariances (Table III of the paper). In Figure IA.2 we graph the

term spread is computed as the difference between the yield on a 10-year constant maturity Treasury bond and the and
the 3-month T-bill rate.
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optimal holdings of the long-term investors in both regimes. As discussed in the main text, we

again find a flight-to-liquidity effect.
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Table IA.1: Holding Period Estimates
This table shows Atkins and Dyl (1997) holding period estimates for each portfolio in our sample. The CRSP data
used are monthly data corresponding to 25 equal-weighted and value-weighted US stock portfolios sorted on illiquidity
with sample period 1964–2009.

Portfolio Holding EW Holding VW
(years) (years)

1 3.6859 5.9213
2 2.9287 3.7504
3 2.9354 3.6913
4 2.9579 3.6413
5 3.0125 4.8293
6 3.2248 5.0410
7 3.1341 4.9557
8 3.2531 5.1739
9 3.3466 5.3480

10 3.5535 7.1417
11 3.5674 7.0612
12 3.9862 10.3052
13 3.6511 7.1028
14 4.0883 10.0884
15 4.3240 11.9349
16 4.8012 14.0370
17 5.0640 16.3176
18 5.5199 21.3015
19 5.4839 15.5012
20 6.3671 26.7479
21 6.1255 26.2792
22 6.4674 20.8965
23 7.0583 30.0194
24 8.7680 39.8894

25 11.7683 89.9250
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Table IA.2: GMM estimation results: robustness of R2 to different portfolio sorts, sample periods,
and horizons
This table shows the cross-sectional R2 for various portfolio sorts (Panel A), sample periods (Panel B), and horizons
(Panel C). The full sample period is 1964–2009. A value-weighted market portfolio is used. The parameters are
estimated using GMM. We include four different portfolio sorts. First, monthly data corresponding to 25 value-
weighted US stock portfolios sorted on the standard deviation of daily transaction costs in the past 12 months. Second,
double-sorted portfolios on size and book-to-market. Third, we provide results for a 5x5 double sort, sorting on
the daily covariance of the stock return and market-wide transaction costs (over the past 12 months), and on the
average transaction costs. Fourth, we present results for a 5x5 double sort, sorting on the standard deviation of daily
transaction costs in the past year (liquidity risk) and on the average transaction costs over the past 12 months. Panel
B presents results based on the first and second half of the sample, respectively, and for the sample period of Acharya
and Pedersen (2005): 1964-1999. Panel C presents results for different investor horizons. Two types of models are
included. The first model is a two-horizon model (equation (6)), with h1 = 1, and h2 = 120, without and with constant
term α (2HOR and 2HOR+α). AP indicates that the specification corresponds to a variant of the Acharya and Pedersen
(2005) specification given by equation (24).

Panel A: Different portfolio sorts

2HOR 2HOR+α AP AP+α

Benchmark 72.6% 74.1% 26.6% 32.3%
σ(illiq) 74.5% 80.6% 28.6% 33.0%
B/M-by-size 46.3% 49.2% 28.4% 32.6%
Liq cov + level 59.8% 60.6% 40.6% 42.0%
Liq var + level 67.0% 67.9% 22.1% 27.4%

Panel B: Different sample periods

2HOR 2HOR+α AP AP+α

First half of sample 86.1% 88.7% 52.3% 66.9%
Second half of sample 8.7% 9.4% -7.3% 7.3%
AP sample 70.9% 69.7% 34.8% 37.2%

Panel C: Different horizons

2HOR 2HOR+α

h2 = 36 74.8% 75.3%
h2 = 60 77.0% 77.2%
h2 = 240 74.8% 74.8%
h1 = 3 69.8% 69.8%
h1 = 6 53.6% 54.6%
h1 = 12 37.6% 39.2%
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Table IA.3: GMM estimation results: Robustness of liquidity risk premium to different portfolio
sorts, sample periods and horizons
This table shows the model-implied liquidity risk premium for various portfolio sorts (Panel A), sample periods (Panel
B), and horizons (Panel C). The full sample period is 1964–2009. A value-weighted market portfolio is used. The
parameters are estimated using GMM. We include four different portfolio sorts. First, monthly data corresponding to
25 value-weighted US stock portfolios sorted on the standard deviation of daily transaction costs in the past 12 months.
Second, double-sorted portfolios on size and book-to-market. Third, we provide results for a 5x5 double sort, sorting
on the daily covariance of the stock return and market-wide transaction costs (over the past 12 months), and on the
average transaction costs. Fourth, we present results for a 5x5 double sort, sorting on the standard deviation of daily
transaction costs in the past year (liquidity risk) and on the average transaction costs over the past 12 months. Panel
B presents results based on the first and second half of the sample, respectively, and for the sample period of Acharya
and Pedersen (2005): 1964-1999. Panel C presents results for different investor horizons. Results are presented for
the two-horizon model (equation (6)), with h1 = 1, and h2 = 120, without and with constant term α (2HOR and
2HOR+α).

Panel A: Different portfolio sorts

2HOR 2HOR+α

Benchmark 0.020% 0.016%
σ(illiq) 0.017% 0.008%
B/M-by-size 0.011% 0.008%
Liq cov + level 0.007% 0.004%
Liq var + level 0.019% 0.007%

Panel B: Different sample periods

2HOR 2HOR+α

First half of sample 0.008% 0.015%
Second half of sample 0.009% 0.004%
AP sample 0.017% 0.018%

Panel C: Different horizons

2HOR 2HOR+α

h2 = 36 0.019% 0.024%
h2 = 60 0.017% 0.010%
h2 = 240 0.005% 0.005%
h1 = 3 0.051% 0.051%
h1 = 6 0.058% 0.054%
h1 = 12 0.065% 0.052%
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Table IA.4: GMM estimation results: number of integrated portfolios for different portfolio sorts,
sample periods and horizons
This table reports how many of the 25 portfolios are held by both the short-term and long-term investors, for various
portfolio sorts (Panel A), sample periods (Panel B), and horizons (Panel C). The full sample period is 1964–2009. A
value-weighted market portfolio is used. The parameters are estimated using GMM. We include four different portfolio
sorts. First, monthly data corresponding to 25 value-weighted US stock portfolios sorted on the standard deviation of
daily transaction costs in the past 12 months. Second, double-sorted portfolios on size and book-to-market. Third, we
provide results for a 5x5 double sort, sorting on the daily covariance of the stock return and market-wide transaction
costs (over the past 12 months), and on the average transaction costs. Fourth, we present results for a 5x5 double
sort, sorting on the standard deviation of daily transaction costs in the past year (liquidity risk) and on the average
transaction costs over the past 12 months. Panel B presents results based on the first and second half of the sample,
respectively, and for the sample period of Acharya and Pedersen (2005): 1964-1999. Panel C presents results for
different investor horizons. Results are presented for the two-horizon model (equation (6)), with h1 = 1, and h2 = 120,
without and with constant term α (2HOR and 2HOR+α).

Panel A: Different portfolio sorts

2HOR 2HOR+α

Benchmark 3 2
σ(illiq) 4 1
B/M-by-size 9 8
Liq cov + level 5 3
Liq var + level 5 2

Panel B: Different sample periods

2HOR 2HOR+α

First half of sample 1 3
Second half of sample 3 5
AP sample 4 3

Panel C: Different horizons

2HOR 2HOR+α

h2 = 36 3 2
h2 = 60 3 1
h2 = 240 2 2
h1 = 3 6 6
h1 = 6 9 8
h1 = 12 6 7
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Table IA.6: Estimation results: Model with regime changes in covariances
This table shows the estimation results for the dynamic version of the model (Section VI of the paper). The estimates
are based on monthly data corresponding to 25 value-weighted US stock portfolios sorted on illiquidity with sample
period 1964–2009. An equal-weighted market portfolio is used. The table reports GMM estimates of the asset pricing
model with two regimes for transaction costs, as given in equation (29), with a constant term for the expected returns
in the illiquid regime, and where we allow both transaction costs and all return and cost covariances to differ across
regimes. We set h1 = 1, and h2 = 120. For each portfolio, we have two moment conditions: the mean return in
the illiquid regime and the mean return in the liquid regime. The parameters are estimated using GMM. For each
coefficient the t-value is given in parentheses. The cross-sectional R2 and RMSE are also reported, as well as the
risk-bearing capacities (γ jh j).

GMM estimates of conditional asset pricing model

γ1 γ2 αIt=1 R2 RMSE γ1h1 γ2h2

0.7081 0.00039 -0.3143% 37.6% 0.172% 0.7081 0.0470
(1.77) (1.39) (-0.81)
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Figure IA.1: Probability of illiquid regime
The solid line of the figure gives, for each month in the 1964-2009 sample period, the probability
of being in the illiquid regime, as implied by the regime-switching model in Table III of the paper:
P(It = 1 | ct ,ct−1, . . .), conditional upon all information at time t. The dashed line contains the
NBER recession dummy for each month, which is equal to 1 in case of recession and 0 otherwise.
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Figure IA.2: Optimal portfolio holdings in different regimes: Regime changes in covariances
This figure gives, for each of the 25 equity portfolios sorted on transaction costs, the optimal hold-
ings of long-term (120-month) investors for the dynamic two-horizon model in Table IA.6, both
in the liquid regime and the illiquid regime, where we allow variances and covariances to differ
across regimes (in addition to transaction costs). These holdings are obtained using Proposition 1,
and are presented as a fraction of the total supply of the value-weighted market portfolio.
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