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OA-I Symmetry and numeraire neutrality of currency trades

This Appendix explains in detail the distinction between several designs of carry trades. Start with
a set of N currencies, e.g. the G-10 currencies in our case. A currency trading strategy is a mapping
between signals at time ¢ and currency positions taken at this time, whereby positions are defined in terms
of the weights of individual currencies. A trading strategy is formulated relative to a benchmark currency,
i.e. positions are taken relative to a certain currency in the forward market. From this perspective, two

properties seem important:

1. Symmetry: the number of short and long positions and their total weights are equal. A stronger

version of symmetry would also require equal weights of the individual short or long positions.!

2. Numeraire independence: the positions taken in the various currencies are the same, regardless of
which benchmark currency is considered. As a result, only one currency strategy must be defined

for the world at large.

Symmetry and numeraire independence are well-established features of carry trades, and have been both
adopted by recent academic studies, and implemented in investable products (see Table 1). Together, these
properties imply that the trade’s returns will be very similar from any currency perspective. This invariance
follows from the fact that the translation of returns from one currency to another simply introduces cross-
currency risk on currency returns, which is a second order effect. Conversely, if the ranking of a currency
or the signal depends in any way on the identity of the benchmark currency, then defining the same strategy
from another currency perspective will yield different currency positions and different currency weights,
and this can result in quite different returns. A well-known example is the asymmetric carry strategy in

Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), which has been shown in Daniel, Hodrick, and

"However, if weights are defined relative to a benchmark currency (e.g., based on forward differentials), they may differ on
the long and short end, creating weight asymmetry. This would cause the trade to be numeraire-dependent.



Lu (2017) to produce very different (and worse) returns from other, non-USD currency perspectives. In
fact, the USD-based version of this strategy is successful (at least partly) due to is its implicit exposure to
a dollar-centric currency strategy, the ”dollar carry” trade of Lustig, Roussanov, and Verdelhan (2014).>
We now formally show that symmetric, numeraire-independent strategies have largely equivalent re-
turns across the world. Suppose first that the USD is the benchmark currency and define the weight of
currency i as w;. Spot and forward exchange rates are quoted here as USD per one unit of a foreign cur-
rency (reversing the notation from Section II above), and denoted as S! and F;'. The return of a US-based

currency trading strategy over the interval 7 to t + 1 is:
(OA-1) rUSP = Zwi[sjﬂ/F,i —1].
=1

If the strategy is numeraire independent, the weights w; are identical for all currency perspectives. For
example, if the trading strategy is based on interest rate signals, these signals should be independent of the
benchmark currency.

Defining such a strategy relative, say, to the Japanese yen, with yen exchange rates denoted by 3; and

fﬁ (JPY per one unit of currency i), its return (in yen) is:
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With symmetric strategies the weights sum to zero, hence the last term cancels, and we are left with

’}, = Z Wi St 11 /F F By triangular arbitrage and symmetry, we can further derive:
PY USD USD /=USD _ USD _ 1pJPY | GJPY
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>The dollar carry weights are 1/(N-1) and are all either positive or negative depending on the average interest rate of the
USD relative to other currencies. The weight on the USD itself is zero. The strategy is thus very asymmetric and yields entirely
different results for other currency perspectives. That is, a ”British pound carry” or ”Swiss franc carry” need not be anything
like dollar carry. Of course, dollar-centric strategies are of interest because of the importance of the dollar in international
finance.



Cross-currency risk could drive, in principle, a wedge between the two currency perspectives, but in
practice the returns and their properties will be rather similar (barring significant differences in transaction
costs), because the forward to spot ratio in (OA-3)) is close to one, and applies to returns. We have verified
that standard carry strategies (as per our definition in Section II) yield very similar returns from any
currency perspective.

It is instructive to repeat the previous calculation, but for log returns. In this case:
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and therefore the log returns of symmetric, numeraire-independent trades are identical from any perspec-
tive; the differences between their percentage returns from different perspectives are of second order.

In sum, a symmetric carry trade, for any benchmark currency has similar returns for investors across
the world. However, symmetry is not a sufficient condition for numeraire independence. It is important to
emphasize this point, because a number of recent articles have considered “currency-neutral” symmetric
strategies, where no position is taken with respect the benchmark currency itself, or in other words, the
weight assigned to the benchmark currency is always zero (this is implicitly true also for dollar carry).
Let’s examine, following Daniel, Hodrick, and Lu (2017), a “dollar-neutral” carry trade with weights
w; = 1/(N — 1) if the interest rate of currency i is in top half of the interest rates of the given set of
currencies, and w; = —1 /(N — 1) otherwise (if N-1 is odd, the currency with the median interest rate is left

out of the trade). This strategy is clearly symmetric. However, it is not numeraire independent because if



we define it relative to another benchmark currency, say the yen, the weight function of this ’yen-neutral”
trade will change, with now non-zero weights on the USD and zero weights on the JPY. Therefore, such
“currency-neutral” trades will produce different returns for different benchmark currencies, going beyond
the differences induced by cross-currency risk.

We recognize that some numeraire-dependent strategies are of obvious interest, but care must be taken
to define them in an international context. For example, the HML factor, introduced by Lustig, Roussanov,
and Verdelhan (2011, 2014) is a carry trade which is symmetric, but not numeraire-independent as it goes
long (short) an extreme portfolio based on an interest rate ranking (as the DB strategy does), but excludes
the USD from any portfolio. This dollar neutrality makes the trade numeraire-dependent. Of course,
when such a trade is defined for benchmark currencies with non-extreme interest rates, it should often
yield similar returns across the different country perspectives.

Our preference for using symmetric, numeraire-independent carry trades is consistent with the best
known investable indices, such as the Deutsche Bank (DB) Harvest Indexes. The DB strategy goes long
(short) the G-10 currencies with the three highest (lowest) interest rates. Importantly, when the USD
interest rate is among the top or bottom three, part of the trade automatically gets a zero return, because a
position in the benchmark currency itself is taken, and hence the trade is not dollar-neutral. However, it is
symmetric and numeraire-independent, which is an advantage for a global currency trading strategy, and
may also be an advantage for a global risk pricing factor. In the trades that we consider, all participating
currencies are given a non-zero weight, including the benchmark currency, which by design yields a zero
return, whether it is held long or short.

Another way to see the fundamental difference between asymmetric, numeraire-dependent trades on
the one hand, and numeraire-independent strategies on the other is to examine what would happen if, say, a

yen-based investor would try to mimic, for example, dollar carry by taking exactly the same positions, but



relative to the yen. That is, she will go long or short in all the currencies (including the yen) as dollar carry
does, thus keeping the same weight function as in the original dollar trade, but for a different benchmark
currency. This strategy would yield quite different returns as it would face full cross-currency risk, and
not just profit and loss currency risk.

USD —=USD

With the previous notation: /F7 = [yUSP —I-va:lwi] 1 /F;
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these weights add up to one, and not zero as in a symmetric trade, the yen-based return is now:

JPY USD USD —=USD USD -JPY /JPY JPY ;| cJPY
(OA-5) 41 = [r rit1 + 1] % St JF; " —1=r, rn B /S +[F, /St+1 1],

which, compared to the expression in (OA-3)), adds a second return term that can well be of similar or

even larger magnitude than the first term.

OA-II Tests for differences in Sharpe ratios and return skewness

Sharpe ratios

The statistical significance of the differences between the Sharpe ratio or skewness of the SC trade
and those of trades from subsets is evaluated using bootstrap tests that follow Ledoit and Wolf (2008) or
Annaert, Van Osselaer, and Verstraete (2009). Skewness difference can be tested in a “direct” bootstrap
that resamples from a distribution which respects the null hypothesis of no difference. In the case of
Sharpe ratios, their difference does not easily admit such a distribution, hence the approach followed is
“indirect” and resamples from the observed data. A version of this approach to comparing Sharpe ratios
has been applied recently, among others, in DeMiguel, Nogales, and Uppal (2014).

In implementing the test for a difference between Sharpe ratios, we depart in two minor ways from
Ledoit and Wolf (2008). First, we only consider the i.i.d. case (their Section 3.2.1). We have verified
that our carry trade return series have insignificant autocorrelations for lags up to 10. Furthermore, the

suggested block size selection procedure (their Algorithm 3.1) results consistently in a selected block



length of one, when using our data. Second, we consider one-sided bootstrap confidence intervals and
p-values, since our null hypothesis is that carry trades obtained with the enhancement rule do not improve
on the Sharpe ratio of the SC trade. We modify accordingly their equation (7).

Following the notation in Ledoit and Wolf (2008), let us and up denote the sample average returns of
a carry trade from some subset of the G-10 currencies and the SC trade, respectively, while ¥s and Yp are
the sample second moments (uncentered) of the returns of these trades. Let also v = (s, g, Ys,Y¥s), and
assume that /7 (v —v) 4 (0,¥), where v is the population counterpart, 7' is sample length and ¥ is some
symmetric positive-definite matrix. The latter assumption holds under mild conditions. For the sample
difference A between the Sharpe ratios of the carry trade from a subset of the G-10 currencies and the SC

trade, and the deviation of this sample difference from the population value A, one can write

(OA-6) A=f(P) = s Hg . and VT(A—A) % 0,V F0)PV (1)),
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ments in ¥, If ¥ is a consistent estimator of ¥, then the standard error of A is given by
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To test the null hypothesis A < 0, we bootstrap the returns of the two carry trades that are compared,

>)

A*—

and consider the studentized random variable L = S where A* is a difference in Sharpe ratios computed

~—|

with bootstrapped returns, and s(A*) is the corresponding standard error. Even though we bootstrap under
the alternative”, this procedure generates meaningful sampling variation under the null of no difference
between Sharpe ratios. Given the lack of autocorrelation in the carry trade return series, as noted above,
we use an 1.1.d. bootstrap (5000 samples, with replacement and pairwise, to preserve a possible cross-

sectional correlation between the returns of the two carry trades). A p-value for the null is calculated as



the proportion of bootstrapped series for which:

(OA-8) A—L=A+

similar to equation (7) in Ledoit and Wolf (2008). These p-values are reported in Tables 2 and 3.

Skewness

To test for a difference in skewness, Annaert, Van Osselaer, and Verstraete (2009, page 277) first ’sym-
metrize” the compared return series, by appending to them the mirror images of the original observations
in terms of distance to the average return. The skewness (as well as any odd central moment) of these
modified returns is thus zero, and a bootstrap that resamples from them conforms to the null of no differ-
ence in skewness. Given that autocorrelation does not seem to be an issue in our series, we draw pairwise
from the modified series of the compared returns, and compute the p-value as the percentage of draws that
yield higher improvement on the benchmark skewness than that observed in the data. All bootstraps are

performed with 5000 draws.

OA-III Differences in Sharpe ratios - accommodating the selection
The enhancement procedure described in Section III introduces a possible selection bias, which is not

accounted for by the bootstrap-based test described above, following Ledoit and Wolf (2008). To address

this issue, we suggest an alternative approach, and instead of bootstrapping the actual carry returns, we

adopt the following randomization procedure:

e at the end of month ¢ keep the interest rate differentials as in the data, but assign to each of them ar

random any of the ten returns for the following month 7 4 1.

e to each of these ten returns for month 7 4 1 add the same constant ¢;4;. We call the returns obtained

in this way “randomized” returns.



e the constant ¢; | can be positive or negative, and is chosen so that a carry trade that uses all ten
“randomized” returns would have exactly the same return as the actual SC trade for month 7 4 1.
Such a carry trade would choose the currencies to be long or short exactly as the SC trade, based on

sorting the same interest rate differentials.

e do this for all months in the sample, and repeat 1000 times, to obtain 1000 sets of ten “random-
ized” return series, that correspond to the actual interest rate differentials. Given the large number

permutations of ten numbers, we do not bootstrap in addition the interest rate differentials.

e note that the constants ¢, are different for different months, and that each “randomized” return
corresponding to a particular interest rate differential is potentially very different from the actual
one. This approach may associate, for example, the JPY returns predominantly with the highest
interest rates in some randomization trials. However, the returns for each month, and hence the
Sharpe ratios of the carry trades with ten currencies (all 1000 with “randomized” returns and the

actual SC trade) are exactly the same.

e on each of the 1000 sets of 10 time series reproduce the enhancement procedure described in Section
B. Based on the order of exclusion obtained from this procedure, identify for each of the 1000 sets

the currencies that would enter “good” and bad” carry trades.

e in the full sample period construct trades with the least excluded three, five or seven currencies,
corresponding to our G1-GS5 trades, and similarly with the most often excluded three, five or seven

currencies, corresponding to our B1-B5 trades.

For each of 1000 sets of 10 series of randomized carry trade returns, A* denotes the difference between
the annualized Sharpe ratio of a good carry trade (from three, five or seven currencies), constructed from

this set following the enhancement procedure, and the SC trade or the corresponding bad trade. As in



Appendix OA-II, A denotes the sample difference between the annualized Sharpe ratio of a good carry
trade and the SC trade or the corresponding bad trade. We now show A for each good carry trade, the
average of the 1000 A*’s for trades from as many currencies as the good trade on the same line, and the

proportion of such A*’s exceeding A.

Good trades vs. SC Good vs. bad trades

A avg. A* %A >A A avg. A* %A >A
Gl 0.20 0.14 0.21 042 042 0.50
G2 0.18 0.16 0.43 0.31 041 0.71
G3 0.30 0.16 0.09 0.57 0.41 0.19
G4 0.20 0.16 0.37 045 041 0.41
G5 039 0.14 0.02 0.56 032 0.05

There is substantial bias in the comparison between the G1-G5 carry trades with the SC trade, with
the selection procedure adding 14% (for G1 and GS5) or 16% (for G2 to G4) to the annualized Sharpe
ratio. Yet, in every case the observed increases in the Sharpe ratio (denoted by Z) are even higher, and for
two out of the five good trades the observed Sharpe ratio is in the 10% right tail of the distribution of the
Sharpe ratios obtained under the selection procedure using the randomized (scrambled) currency returns.
When comparing the G1-GS5 carry trades to the corresponding B1-B5 trades, the bias is relatively more
important, and in fact at least as large as the observed difference in Sharpe ratios for the G1 and G2 trades.
Only the G5 versus B5 comparison yields a Sharpe ratio of a good trade in the right tail (5.3%) of the
corresponding distribution under scrambled currency returns.

Of course, these observations alone do not constitute a proper test, since the randomization procedure
also can change the variability of the returns, and proper testing requires the use of a pivotal test statis-

tic, such as a t-statistic. To create a proper test statistic, we modify the procedure in Ledoit and Wolf



(2008) by bias-correcting our sample Sharpe ratios, and using t-statistics from the empirical distribution
as in Appendix OA-II. The results, which also reproduce the relevant portion from Table 3, to facilitate

comparison are as follows:

Good trades vs. SC Good vs. bad trades

avoret std. SR bstrp. rand. avoret std. SR bstrp. rand.
SC 1.02  3.30 0.31
Gl 1.67 329 051 0.02 0.18 B1 0.68 7.50 0.09 [0.01] [0.50]
G2 1.70 347 049 0.13 044 B2 098 554 0.18 [0.07] [0.72]
G3 249 409 061 0.01 0.06 B3 021 491 0.04 [0.01] [0.16]
G4 222 439 051 012 0.39 B4 028 496 0.06 [0.02] [0.42]
G5 397 571 069 0.03 0.04 B5S 061 4.66 0.13 [0.01] [0.09]

Let’s first focus on the G1 trade. The t-statistic for its Sharpe ratio (0.51) being different from the
benchmark Sharpe ratio (0.31) has a p-value of 0.02. When we do the test using the randomized samples,
correcting for selection bias, the p-value increases to 0.18, and the difference is no longer statistically
significant. The p-values invariably increase for all carry trades, but remain significant at the 5% level
for G5, and at the 10% level for G3. For the good vs. bad carry trade comparison, the p-values increase

dramatically and only the G5 trade has a significantly higher Sharpe ratio than B5 (at the 10% level).

OA-IV Factor models explaining good and bad carry trades

Tables [OA-2] to [DA-4] present the results separately for the standard carry trade (SC), the G1-G5 and
B1-B5 trades, and the GC and BC trades on average. The first column in Table also shows the
respective average returns that are to be explained. For the G1-GS5 trades these range between 1.7 and 4%

(annualized), and are all significantly different from zero at the 1% confidence level (with GMM standard
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errors); for the GC trades they are on average 2%, and all but two out of 18 are significant at the 5% level.
In contrast, the average returns for the bad carry trades never exceed 1%, and are never significant, even
at the 10% level.

A. Model with equity volatility

The market factor (denoted MKT) in the model is proxied by the total return of the MSCI-World equity
index, in excess of the risk-free rate and expressed in USD. The equity volatility factor (EqVol) reflects
innovations in global equity volatilities, as constructed in Lustig, Roussanov, and Verdelhan (2011), and
is taken from Verdelhan’s website (data until 12/2013). The interaction term (product of MKT and EqVol)
is denoted “prod”, and exhibits highly negative skewness (-7.6).

The top panel of Table [OA-2| reports results from time-series regressions of carry trade returns on
the three risk factors. The market betas are significant for both good and bad trades, and of comparable
magnitudes. However, the slope coefficient estimates on the product factor are typically negative, albeit
rarely significant for good trades, while they are positive, mostly much larger in magnitude, and almost
always significant at the 5% significance level for the bad trades. The F-test for no difference between
the average slope coefficients across the GC and BC trades rejects only for 3,,,,4. Given the high negative
skewness of the product factor, the large positive value of f3,,,4 implies that the market risk exposure of
the bad trades increases substantially in highly volatile times, helping to explain the negative skewness of
the bad trades as shown in Table 3.

From the perspective of a time-varying market beta, the large 8,4 implies, for example, that the
effective market beta for bad carry trades ranges between 0.025 and 0.083 for the 10-th and 90-th percentile
observations of EqVol (which are -0.67 and 0.59, respectively). This regime dependence is much weaker
for good carry trades, due to their smaller 3,4 estimates. The SC trade resembles the bad trades in this

respect, with a 3,4 that is positive and marginally significant (at the 10% level). Given that increases in
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volatility tend to characterize periods of market downturns (the correlation between MKT and EqVol is
-0.24 in our sample), our findings attribute the under-performance in times of crisis mostly to bad carry
trades, while good trades are less affected.

The alpha’s obtained in the time-series regressions are difficult to interpret in the presence of non-
traded factors. Therefore, we also perform GMM-based cross-sectional tests on the GC and BC return
cross sections, and show the results in the last two rows of the table. For the GC trades, the risk price for
the MKT factor is significant at the 5% level, while for the BC trades no risk price is significant. However,
the joint test does not reject for either of the two cross sections, delivering large p-values.

For further clarification, Panels A and B in Figure | plot model-predicted vs. actual average returns for
the GC and BC trades, where we see practically no relation for the BC trades, but a much better fit for the
GC trades, albeit with a few outliers. When we run a simple OLS regression of actual average returns on
a constant and the model-based expected returns, we obtain an R? of 0.67 for the GC trades, and 0.29 for
the BC trades. The combined evidence suggests that this three-factor model does not adequately describe
the returns of the bad carry trades, but still saliently reveals the high exposure of these trades to the equity
market during high-volatility periods. In contrast, a significant price of risk for the market factor and

Figure ] show the promise of the model to provide a risk-based interpretation of good carry trades.

B. Model with Up and Down equity market factors

Our interest in such a model is motivated both by the asymmetric patterns in carry trade returns docu-
mented above, and the recent work of Lettau, Maggiori, and Weber (2015), who find support for a similar
model pricing the joint cross section of several asset classes, including the returns of interest-rate-sorted
currency portfolios. Note that their model employs the market factor itself, together with a separate down-
market factor, whereas we use uncorrelated down- and up-market factors, which help sharpen the focus
on the asymmetric return behavior across good and bad carry trades (see also Ang, Chen, and Xing (2006,
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Table 2)). Keeping the notation MKT for the total return of the MSCI-World equity index, in excess of
the risk-free rate and expressed in USD, the Down factor is taken to be min(MKT,0), and the Up factor is
max(MKT,0).

Table[OA-3|shows that in the time-series regressions the slope coefficient estimates on the Down factor
are not statistically significant for about 70% of the good carry trades, but are significant for all but one
of the bad carry trades. The pattern is reversed for the Up factor, where the estimates are significant for
most of the good trades, but are in fact never significant for the bad trades, even at the 10% confidence
level. The magnitudes of the respective slope coefficients for good versus bad trades also differ largely, by
a factor of three or four, and these differences are highly significant, as evidenced by the reported p-values
from GMM tests for the equality of the average Bpow, or By, across the 18 GC and BC trades. Additional
joint tests for pairwise equality between the corresponding coefficients for the GC and BC trades reject
with even smaller p-values. As above, the SC trade exhibits mixed features, with both slope coefficients
being significant.

The cross-sectional test results resemble those from Table in that both risk prices Apoy, and Ay P
are statistically significant for good trades, and highly insignificant for bad trades, while the tests for the
pricing errors being jointly equal to zero fail to reject, with high p-values. Moreover, the plots of model-
based versus actual average returns, similar to those in Figure ) again reveal a reasonable fit for good
trades, but no apparent relation for bad trades, indicating that the model with down- and up-market factors
more adequately describes the returns of good carry trades. The important additional insight from this
model, however, is the striking dichotomy between the returns of good carry trades, which have relatively
high Up-market betas but decouple in bad times, and the returns of bad carry trades, which have relatively

high Down-market betas.

C. Fama-French three-factor model
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Similar to Table @ and in the same format, Table @ illustrates the ability of the Fama-French
three-factor model to explain the returns of good and bad carry trades, and the main finding is that the
model does not perform well with respect to good carry trades.

The top panel of this table refers to time-series tests, and shows that the betas on the market factor
are economically small for these trades (0.05 on average), albeit often significant, while those on the
other two factors typically are not significantly different from zero. The adjusted R”’s in the time-series
regressions are relatively low, even sometimes negative, whereas the alphas are only about 5 to 30% lower
than the unconditional average carry trade returns, and still statistically significant for all G1-G5 trades
and 14 of the GC trades. On the other hand, for bad carry trades the betas on all three factors are higher and
statistically significant in most cases, and the R>’s are on average 0.12. A test for no difference between the
average slope coefficients across the 18 GC and BC trades rejects for Byx7 and Bsap, at the 5% confidence
level. Interestingly, the model renders all alphas much lower than the respective average returns for the
bad carry trades, so that these trades can be qualified as “negative alpha trades”, from the perspective
of this model. The model also explains a large part of the SC trade’s average returns, with statistically
significant factor loadings and a high R%. The time-series tests therefore suggest that the good carry trades
pose a problem for this model, whereas the SC trade and the bad trades at least are meaningfully exposed
to standard risk factors. In addition, a test for alphas being jointly equal to zero does not reject for both
the GC and BC sets of carry trades, with p-values above 0.30.

The last two lines of the table show results from GMM-based cross-sectional tests, using the GC and
BC trades as test assets. The estimates of the risk prices A are all statistically insignificant, except for
Ak for the GC trades, while the tests for the pricing errors being jointly equal to zero exhibit p-values
above 0.70. The results for the risk prices thus cast doubt on the explanatory power of the Fama-French

three-factor model for the BC trades as well, whereas the joint test results may reflect power issues.
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Table OA-6: Detailed version of the top panel of Table 4

Good  port. avg.ret. p-val o p-val Brx p-val  Byprrx p-val  Bgooa  p-val R?
1 -1.63 0.25 -1.74  0.00 1.02  0.00 -0.39 0.00 90.3
2 -0.19 0.88 -1.15 0.08 088 0.00 -0.13 0.00 75.8
3 0.79 0.54 -0.28 0.65 0.95 0.00 -0.13 0.00 78.4
4 2.80 0.05 1.12 0.10 1.01 0.00 0.00 0.94 78.4
5 3.68 0.02 1.62 0.03 1.11 0.00 0.05 0.11 80.0
6 4.65 0.01 0.43 0.35 1.03  0.00 0.61 0.00 93.8
7 -0.18 0.92 -0.38 0.67 1.24  0.00 -0.46 0.00 80.5
8 1.04 0.57 -0.14  0.87 1.27  0.00 -0.23 0.00 77.6
9 2.76 0.12 1.16 0.14 1.28  0.00 -0.14 0.00 81.7
10 2.77 0.14 0.39 0.66 1.28  0.00 0.05 0.19 79.7
11 4.79 0.02 1.55 0.13 1.27  0.00 0.27 0.00 75.2

Gl 1 -227 0.00 099 0.00 -0.61 0.00 76.5
2 -0.85 0.15 0.89  0.00 -0.50 0.00 78.8
3 -029  0.63 0.94  0.00 -0.30 0.00 777
4 0.87 0.18 1.00  0.00 0.16 0.03 789
5 1.15 0.10 1.10  0.00 0.41 0.00 823
6 1.40 0.16 1.08  0.00 0.85 0.00 71.0
7 -0.97  0.38 1.21 0.00 -0.75 0.00 69.4
8 0.34 0.66 1.28  0.00 -0.87 0.00 81.7
9 0.71 0.38 1.26  0.00 -0.05 0.62 80.1
10 -0.06 094 1.27  0.00 0.41 0.00 814
11 0.78 0.36 1.25 0.00 1.14 0.00 824

G2 1 -234  0.00 099 0.00 -0.56 0.00 76.0
2 -1.10 0.08 0.88 0.00 -0.34 0.00 76.0
3 -0.57 037 093 0.00 -0.13 0.08 76.2
4 0.72 0.25 0.99  0.00 0.24 0.00 79.6
5 1.34 0.06 1.10  0.00 0.28 0.00 81.1
6 1.94 0.07 1.10  0.00 0.50 0.00 65.9
7 -1.09 0.33 1.20  0.00 -0.66 0.00 68.6
8 -0.31 0.73 1.25  0.00 -0.45 0.00 75.6
9 0.59 0.47 1.26  0.00 0.03 0.74 80.1
10 -0.09  0.92 1.27  0.00 0.42 0.00 81.7
11 1.67 0.12 1.28  0.00 0.56 0.00 73.5

G3 1 -2.14  0.00 1.04  0.00 -0.50 0.00 76.2
2 -0.88 0.16 092 0.00 -0.34 0.00 76.9
3 -0.35 0.57 096  0.00 -0.19 0.00 76.9
4 0.97 0.14 099  0.00 0.06 0.30  78.5
5 1.21 0.09 1.07  0.00 0.27 0.00 814
6 1.19 0.23 1.01 0.00 0.70 0.00 70.8
7 -0.80  0.47 1.27  0.00 -0.61 0.00 69.2
8 0.11 0.89 1.31 0.00 -0.52 0.00 77.5
9 0.87 0.28 1.28  0.00 -0.11 0.16 80.3
10 -0.02 098 1.24  0.00 0.28 0.00 80.7
11 0.59 0.52 1.16  0.00 0.90 0.00 81.2

G4 1 -2.80  0.00 1.05  0.00 -0.26 0.00 714
2 -1.10  0.09 098 0.00 -0.33 0.00 76.3
3 -0.48 044 099  0.00 -0.18 0.00 76.7
4 0.91 0.17 096  0.00 0.13 0.04 78.8
5 1.35 0.05 1.03  0.00 0.27 0.00 812
6 2.12 0.06 1.00  0.00 0.38 0.00 64.8
7 -1.83 0.10 1.23  0.00 -0.19 0.19  63.8
8 -0.23 0.80 1.39  0.00 -0.49 0.00 76.6
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Table OA-7:

Detailed version of the top panel of Table 10

Good  port. avg. ret.  p-val o p-val Boc  p-val  Bgooa  p-val R?
1 -1.63 0.25 -3.23 0.02 0.38 0.00 12.6
2 -0.19 0.88 -1.37 0.27 0.28 0.00 8.7
3 0.79 0.54 -0.98 0.41 0.42 0.00 17.6
4 2.80 0.05 0.18 0.88 0.63 0.00 34.3
5 3.68 0.02 0.81 0.54 0.69 0.00 33.8
6 4.65 0.01 2.27 0.18 0.57 0.00 17.7
7 -0.18 0.92 -2.64 0.12 0.59 0.00 18.1
8 1.04 0.57 -1.24 0.45 0.54 0.00 16.1
9 2.76 0.12 0.17 0.91 0.62 0.00 21.7
10 2.77 0.14 -0.18 0.91 0.70 0.00 26.5
11 4.79 0.02 1.53 0.35 0.78 0.00 27.5

Gl 1 -1.63 0.25 -1.02 0.48 -0.36 0.04 2.1
2 -0.19 0.88 0.28 0.83 -0.28 0.04 1.6
3 0.79 0.54 0.90 0.50 -0.07 0.66 -0.2
4 2.80 0.05 2.13 0.15 0.40 0.01 2.7
5 3.68 0.02 2.54 0.11 0.69 0.00 6.8
6 4.65 0.01 2.77 0.12 1.12 0.00 14.4
7 -0.18 0.92 0.56 0.76 -0.45 0.03 1.9
8 1.04 0.57 1.96 0.30 -0.55 0.00 3.2
9 2.76 0.12 2.31 0.20 0.27 0.26 0.6
10 2.77 0.14 1.55 0.41 0.73 0.00 5.7
11 4.79 0.02 2.36 0.20 1.45 0.00 20.0

G2 1 -1.63 0.25 -1.07 0.46 -0.33 0.02 1.9
2 -0.19 0.88 0.04 0.98 -0.13 0.33 0.2
3 0.79 0.54 0.64 0.63 0.09 0.51 -0.1
4 2.80 0.05 2.00 0.17 0.47 0.00 43
5 3.68 0.02 2.76 0.08 0.54 0.00 4.6
6 4.65 0.01 3.36 0.07 0.76 0.00 7.2
7 -0.18 0.92 0.46 0.80 -0.38 0.05 1.5
8 1.04 0.57 1.31 0.49 -0.16 0.41 0.0
9 2.76 0.12 2.21 0.22 0.32 0.11 1.1
10 2.77 0.14 1.54 0.39 0.72 0.00 6.2
11 4.79 0.02 3.32 0.09 0.86 0.00 7.7

G3 1 -1.63 0.25 -1.61 0.28 -0.01 0.95 -0.3
2 -0.19 0.88 -0.41 0.76 0.09 0.37 0.0
3 0.79 0.54 0.14 0.92 0.26 0.02 2.0
4 2.80 0.05 1.48 0.31 0.53 0.00 7.7
5 3.68 0.02 1.76 0.26 0.77 0.00 13.7
6 4.65 0.01 1.71 0.29 1.18 0.00 24.7
7 -0.18 0.92 -0.15 0.94 -0.01 0.93 -0.3
8 1.04 0.57 0.79 0.68 0.10 0.50 -0.1
9 2.76 0.12 1.52 0.40 0.50 0.00 43
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Figure 4: Average vs. model-based expected returns

Circles with no fill (large black dots) plot model-based expected monthly returns versus average monthly
returns (annualized and in percent) for the GC (BC) set of 18 carry trades, as described in Table 3. The
model based returns refer to the three-factor model with a market factor (MKT), an equity volatility factor
(EqVol) and the product of MKT and EqVol, and are estimated, for each trade, as the product of its time-
series slope estimates () with respect to the factors in the model, and the corresponding estimates of the
factor risk prices A, as shown in Table The bottom right corner of each plot shows the R? obtained
in regressing average returns on model-based returns (with a constant). The sample period is 12/1984 to
12/2013.
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