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OA-I Symmetry and numeraire neutrality of currency trades

This Appendix explains in detail the distinction between several designs of carry trades. Start with

a set of N currencies, e.g. the G-10 currencies in our case. A currency trading strategy is a mapping

between signals at time t and currency positions taken at this time, whereby positions are defined in terms

of the weights of individual currencies. A trading strategy is formulated relative to a benchmark currency,

i.e. positions are taken relative to a certain currency in the forward market. From this perspective, two

properties seem important:

1. Symmetry: the number of short and long positions and their total weights are equal. A stronger

version of symmetry would also require equal weights of the individual short or long positions.1

2. Numeraire independence: the positions taken in the various currencies are the same, regardless of

which benchmark currency is considered. As a result, only one currency strategy must be defined

for the world at large.

Symmetry and numeraire independence are well-established features of carry trades, and have been both

adopted by recent academic studies, and implemented in investable products (see Table 1). Together, these

properties imply that the trade’s returns will be very similar from any currency perspective. This invariance

follows from the fact that the translation of returns from one currency to another simply introduces cross-

currency risk on currency returns, which is a second order effect. Conversely, if the ranking of a currency

or the signal depends in any way on the identity of the benchmark currency, then defining the same strategy

from another currency perspective will yield different currency positions and different currency weights,

and this can result in quite different returns. A well-known example is the asymmetric carry strategy in

Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), which has been shown in Daniel, Hodrick, and

1However, if weights are defined relative to a benchmark currency (e.g., based on forward differentials), they may differ on
the long and short end, creating weight asymmetry. This would cause the trade to be numeraire-dependent.
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Lu (2017) to produce very different (and worse) returns from other, non-USD currency perspectives. In

fact, the USD-based version of this strategy is successful (at least partly) due to is its implicit exposure to

a dollar-centric currency strategy, the ”dollar carry” trade of Lustig, Roussanov, and Verdelhan (2014).2

We now formally show that symmetric, numeraire-independent strategies have largely equivalent re-

turns across the world. Suppose first that the USD is the benchmark currency and define the weight of

currency i as wi. Spot and forward exchange rates are quoted here as USD per one unit of a foreign cur-

rency (reversing the notation from Section II above), and denoted as Si
t and F i

t . The return of a US-based

currency trading strategy over the interval t to t +1 is:

(OA-1) rUSD
t+1 =

N

∑
i=1

wi[Si
t+1/F i

t −1].

If the strategy is numeraire independent, the weights wi are identical for all currency perspectives. For

example, if the trading strategy is based on interest rate signals, these signals should be independent of the

benchmark currency.

Defining such a strategy relative, say, to the Japanese yen, with yen exchange rates denoted by Si
t and

F i
t (JPY per one unit of currency i), its return (in yen) is:

(OA-2) rJPY
t+1 =

N

∑
i=1

wi[S
i
t+1/F i

t−1] =
N

∑
i=1

wiS
i
t+1/F i

t−
N

∑
i=1

wi

With symmetric strategies the weights sum to zero, hence the last term cancels, and we are left with

rJPY
t+1 = ∑

N
i=1 wiS

i
t+1/F i

t . By triangular arbitrage and symmetry, we can further derive:

rJPY
t+1 = [rUSD

t+1 +
N

∑
i=1

wi]∗SUSD
t+1 /FUSD

t = rUSD
t+1 ∗FJPY

t /SJPY
t+1 .(OA-3)

2The dollar carry weights are 1/(N-1) and are all either positive or negative depending on the average interest rate of the
USD relative to other currencies. The weight on the USD itself is zero. The strategy is thus very asymmetric and yields entirely
different results for other currency perspectives. That is, a ”British pound carry” or ”Swiss franc carry” need not be anything
like dollar carry. Of course, dollar-centric strategies are of interest because of the importance of the dollar in international
finance.
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Cross-currency risk could drive, in principle, a wedge between the two currency perspectives, but in

practice the returns and their properties will be rather similar (barring significant differences in transaction

costs), because the forward to spot ratio in (OA-3) is close to one, and applies to returns. We have verified

that standard carry strategies (as per our definition in Section II) yield very similar returns from any

currency perspective.

It is instructive to repeat the previous calculation, but for log returns. In this case:

rJPY
t+1 =

N

∑
i=1

wi log
(

Si
t+1/F i

t

)
=

N

∑
i=1

wi log

(
Si

t+1

F i
t

SUSD
t+1

FUSD
t

)

=
N

∑
i=1

wi log(Si
t+1/F i

t )+
N

∑
i=1

wi log(SUSD
t+1 /FUSD

t )

=
N

∑
i=1

wi log(Si
t+1/F i

t )+ log(SUSD
t+1 /FUSD

t )
N

∑
i=1

wi

=
N

∑
i=1

wi log(Si
t+1/F i

t )+0 = rUSD
t+1 ,(OA-4)

and therefore the log returns of symmetric, numeraire-independent trades are identical from any perspec-

tive; the differences between their percentage returns from different perspectives are of second order.

In sum, a symmetric carry trade, for any benchmark currency has similar returns for investors across

the world. However, symmetry is not a sufficient condition for numeraire independence. It is important to

emphasize this point, because a number of recent articles have considered ”currency-neutral” symmetric

strategies, where no position is taken with respect the benchmark currency itself, or in other words, the

weight assigned to the benchmark currency is always zero (this is implicitly true also for dollar carry).

Let’s examine, following Daniel, Hodrick, and Lu (2017), a ”dollar-neutral” carry trade with weights

wi = 1/(N − 1) if the interest rate of currency i is in top half of the interest rates of the given set of

currencies, and wi =−1/(N−1) otherwise (if N-1 is odd, the currency with the median interest rate is left

out of the trade). This strategy is clearly symmetric. However, it is not numeraire independent because if
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we define it relative to another benchmark currency, say the yen, the weight function of this ”yen-neutral”

trade will change, with now non-zero weights on the USD and zero weights on the JPY. Therefore, such

”currency-neutral” trades will produce different returns for different benchmark currencies, going beyond

the differences induced by cross-currency risk.

We recognize that some numeraire-dependent strategies are of obvious interest, but care must be taken

to define them in an international context. For example, the HML factor, introduced by Lustig, Roussanov,

and Verdelhan (2011, 2014) is a carry trade which is symmetric, but not numeraire-independent as it goes

long (short) an extreme portfolio based on an interest rate ranking (as the DB strategy does), but excludes

the USD from any portfolio. This dollar neutrality makes the trade numeraire-dependent. Of course,

when such a trade is defined for benchmark currencies with non-extreme interest rates, it should often

yield similar returns across the different country perspectives.

Our preference for using symmetric, numeraire-independent carry trades is consistent with the best

known investable indices, such as the Deutsche Bank (DB) Harvest Indexes. The DB strategy goes long

(short) the G-10 currencies with the three highest (lowest) interest rates. Importantly, when the USD

interest rate is among the top or bottom three, part of the trade automatically gets a zero return, because a

position in the benchmark currency itself is taken, and hence the trade is not dollar-neutral. However, it is

symmetric and numeraire-independent, which is an advantage for a global currency trading strategy, and

may also be an advantage for a global risk pricing factor. In the trades that we consider, all participating

currencies are given a non-zero weight, including the benchmark currency, which by design yields a zero

return, whether it is held long or short.

Another way to see the fundamental difference between asymmetric, numeraire-dependent trades on

the one hand, and numeraire-independent strategies on the other is to examine what would happen if, say, a

yen-based investor would try to mimic, for example, dollar carry by taking exactly the same positions, but
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relative to the yen. That is, she will go long or short in all the currencies (including the yen) as dollar carry

does, thus keeping the same weight function as in the original dollar trade, but for a different benchmark

currency. This strategy would yield quite different returns as it would face full cross-currency risk, and

not just profit and loss currency risk.

With the previous notation: rJPY
t+1 = [rUSD

t+1 +∑
N
i=1 wi] ∗ SUSD

t+1 /FUSD
t −∑

N
i=1 wi. Since for dollar carry

these weights add up to one, and not zero as in a symmetric trade, the yen-based return is now:

(OA-5) rJPY
t+1 = [rUSD

t+1 +1]∗SUSD
t+1 /FUSD

t −1 = rUSD
t+1 FJPY

t /SJPY
t+1 +[FJPY

t /SJPY
t+1 −1],

which, compared to the expression in (OA-3), adds a second return term that can well be of similar or

even larger magnitude than the first term.

OA-II Tests for differences in Sharpe ratios and return skewness

Sharpe ratios

The statistical significance of the differences between the Sharpe ratio or skewness of the SC trade

and those of trades from subsets is evaluated using bootstrap tests that follow Ledoit and Wolf (2008) or

Annaert, Van Osselaer, and Verstraete (2009). Skewness difference can be tested in a ”direct” bootstrap

that resamples from a distribution which respects the null hypothesis of no difference. In the case of

Sharpe ratios, their difference does not easily admit such a distribution, hence the approach followed is

”indirect” and resamples from the observed data. A version of this approach to comparing Sharpe ratios

has been applied recently, among others, in DeMiguel, Nogales, and Uppal (2014).

In implementing the test for a difference between Sharpe ratios, we depart in two minor ways from

Ledoit and Wolf (2008). First, we only consider the i.i.d. case (their Section 3.2.1). We have verified

that our carry trade return series have insignificant autocorrelations for lags up to 10. Furthermore, the

suggested block size selection procedure (their Algorithm 3.1) results consistently in a selected block
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length of one, when using our data. Second, we consider one-sided bootstrap confidence intervals and

p-values, since our null hypothesis is that carry trades obtained with the enhancement rule do not improve

on the Sharpe ratio of the SC trade. We modify accordingly their equation (7).

Following the notation in Ledoit and Wolf (2008), let µ̂S and µ̂B denote the sample average returns of

a carry trade from some subset of the G-10 currencies and the SC trade, respectively, while γ̂S and γ̂B are

the sample second moments (uncentered) of the returns of these trades. Let also v̂ = (µ̂S, µ̂B, γ̂S, γ̂B), and

assume that
√

T (v̂−v) d→ (0,Ψ), where v is the population counterpart, T is sample length and Ψ is some

symmetric positive-definite matrix. The latter assumption holds under mild conditions. For the sample

difference ∆̂ between the Sharpe ratios of the carry trade from a subset of the G-10 currencies and the SC

trade, and the deviation of this sample difference from the population value ∆, one can write

∆̂ = f (v̂) =
µ̂S

γ̂S− µ̂2
S
− µ̂B

γ̂B− µ̂2
B

and
√

T (∆̂−∆)
d→ (0,∇′ f (v)Ψ∇ f (v)),(OA-6)

where ∇′ f ((a,b,c,d)) =
(

c
(c−a2)1.5 ,− d

(d−b2)1.5 ,− a
2(c−a2)1.5 ,

b
2(d−b2)1.5

)
and (a, b, c, d) represent the ele-

ments in v̂. If Ψ̂ is a consistent estimator of Ψ, then the standard error of ∆̂ is given by

(OA-7) s(∆̂) =

√
∇′ f (v̂)Ψ̂∇ f (v̂)

T
.

To test the null hypothesis ∆ ≤ 0, we bootstrap the returns of the two carry trades that are compared,

and consider the studentized random variable L= ∆∗−∆̂

s(∆∗) , where ∆∗ is a difference in Sharpe ratios computed

with bootstrapped returns, and s(∆∗) is the corresponding standard error. Even though we bootstrap ”under

the alternative”, this procedure generates meaningful sampling variation under the null of no difference

between Sharpe ratios. Given the lack of autocorrelation in the carry trade return series, as noted above,

we use an i.i.d. bootstrap (5000 samples, with replacement and pairwise, to preserve a possible cross-

sectional correlation between the returns of the two carry trades). A p-value for the null is calculated as
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the proportion of bootstrapped series for which:

(OA-8) ∆̂−L = ∆̂+
∆̂−∆∗

s(∆∗)
s(∆̂)≤ 0,

similar to equation (7) in Ledoit and Wolf (2008). These p-values are reported in Tables 2 and 3.

Skewness

To test for a difference in skewness, Annaert, Van Osselaer, and Verstraete (2009, page 277) first ”sym-

metrize” the compared return series, by appending to them the mirror images of the original observations

in terms of distance to the average return. The skewness (as well as any odd central moment) of these

modified returns is thus zero, and a bootstrap that resamples from them conforms to the null of no differ-

ence in skewness. Given that autocorrelation does not seem to be an issue in our series, we draw pairwise

from the modified series of the compared returns, and compute the p-value as the percentage of draws that

yield higher improvement on the benchmark skewness than that observed in the data. All bootstraps are

performed with 5000 draws.

OA-III Differences in Sharpe ratios - accommodating the selection

The enhancement procedure described in Section III introduces a possible selection bias, which is not

accounted for by the bootstrap-based test described above, following Ledoit and Wolf (2008). To address

this issue, we suggest an alternative approach, and instead of bootstrapping the actual carry returns, we

adopt the following randomization procedure:

• at the end of month t keep the interest rate differentials as in the data, but assign to each of them at

random any of the ten returns for the following month t +1.

• to each of these ten returns for month t +1 add the same constant ct+1. We call the returns obtained

in this way ”randomized” returns.
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• the constant ct+1 can be positive or negative, and is chosen so that a carry trade that uses all ten

”randomized” returns would have exactly the same return as the actual SC trade for month t + 1.

Such a carry trade would choose the currencies to be long or short exactly as the SC trade, based on

sorting the same interest rate differentials.

• do this for all months in the sample, and repeat 1000 times, to obtain 1000 sets of ten ”random-

ized” return series, that correspond to the actual interest rate differentials. Given the large number

permutations of ten numbers, we do not bootstrap in addition the interest rate differentials.

• note that the constants ct+1 are different for different months, and that each ”randomized” return

corresponding to a particular interest rate differential is potentially very different from the actual

one. This approach may associate, for example, the JPY returns predominantly with the highest

interest rates in some randomization trials. However, the returns for each month, and hence the

Sharpe ratios of the carry trades with ten currencies (all 1000 with ”randomized” returns and the

actual SC trade) are exactly the same.

• on each of the 1000 sets of 10 time series reproduce the enhancement procedure described in Section

B. Based on the order of exclusion obtained from this procedure, identify for each of the 1000 sets

the currencies that would enter ”good” and ”bad” carry trades.

• in the full sample period construct trades with the least excluded three, five or seven currencies,

corresponding to our G1-G5 trades, and similarly with the most often excluded three, five or seven

currencies, corresponding to our B1-B5 trades.

For each of 1000 sets of 10 series of randomized carry trade returns, ∆∗ denotes the difference between

the annualized Sharpe ratio of a good carry trade (from three, five or seven currencies), constructed from

this set following the enhancement procedure, and the SC trade or the corresponding bad trade. As in
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Appendix OA-II, ∆̂ denotes the sample difference between the annualized Sharpe ratio of a good carry

trade and the SC trade or the corresponding bad trade. We now show ∆̂ for each good carry trade, the

average of the 1000 ∆∗’s for trades from as many currencies as the good trade on the same line, and the

proportion of such ∆∗’s exceeding ∆̂.

Good trades vs. SC Good vs. bad trades

∆̂ avg. ∆∗ % ∆∗ > ∆̂ ∆̂ avg. ∆∗ % ∆∗ > ∆̂

G1 0.20 0.14 0.21 0.42 0.42 0.50

G2 0.18 0.16 0.43 0.31 0.41 0.71

G3 0.30 0.16 0.09 0.57 0.41 0.19

G4 0.20 0.16 0.37 0.45 0.41 0.41

G5 0.39 0.14 0.02 0.56 0.32 0.05

There is substantial bias in the comparison between the G1-G5 carry trades with the SC trade, with

the selection procedure adding 14% (for G1 and G5) or 16% (for G2 to G4) to the annualized Sharpe

ratio. Yet, in every case the observed increases in the Sharpe ratio (denoted by ∆̂) are even higher, and for

two out of the five good trades the observed Sharpe ratio is in the 10% right tail of the distribution of the

Sharpe ratios obtained under the selection procedure using the randomized (scrambled) currency returns.

When comparing the G1-G5 carry trades to the corresponding B1-B5 trades, the bias is relatively more

important, and in fact at least as large as the observed difference in Sharpe ratios for the G1 and G2 trades.

Only the G5 versus B5 comparison yields a Sharpe ratio of a good trade in the right tail (5.3%) of the

corresponding distribution under scrambled currency returns.

Of course, these observations alone do not constitute a proper test, since the randomization procedure

also can change the variability of the returns, and proper testing requires the use of a pivotal test statis-

tic, such as a t-statistic. To create a proper test statistic, we modify the procedure in Ledoit and Wolf
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(2008) by bias-correcting our sample Sharpe ratios, and using t-statistics from the empirical distribution

as in Appendix OA-II. The results, which also reproduce the relevant portion from Table 3, to facilitate

comparison are as follows:

Good trades vs. SC Good vs. bad trades

av.ret std. SR bstrp. rand. av.ret std. SR bstrp. rand.

SC 1.02 3.30 0.31

G1 1.67 3.29 0.51 0.02 0.18 B1 0.68 7.50 0.09 [0.01] [0.50]

G2 1.70 3.47 0.49 0.13 0.44 B2 0.98 5.54 0.18 [0.07] [0.72]

G3 2.49 4.09 0.61 0.01 0.06 B3 0.21 4.91 0.04 [0.01] [0.16]

G4 2.22 4.39 0.51 0.12 0.39 B4 0.28 4.96 0.06 [0.02] [0.42]

G5 3.97 5.71 0.69 0.03 0.04 B5 0.61 4.66 0.13 [0.01] [0.09]

Let’s first focus on the G1 trade. The t-statistic for its Sharpe ratio (0.51) being different from the

benchmark Sharpe ratio (0.31) has a p-value of 0.02. When we do the test using the randomized samples,

correcting for selection bias, the p-value increases to 0.18, and the difference is no longer statistically

significant. The p-values invariably increase for all carry trades, but remain significant at the 5% level

for G5, and at the 10% level for G3. For the good vs. bad carry trade comparison, the p-values increase

dramatically and only the G5 trade has a significantly higher Sharpe ratio than B5 (at the 10% level).

OA-IV Factor models explaining good and bad carry trades

Tables OA-2 to OA-4 present the results separately for the standard carry trade (SC), the G1-G5 and

B1-B5 trades, and the GC and BC trades on average. The first column in Table OA-2 also shows the

respective average returns that are to be explained. For the G1-G5 trades these range between 1.7 and 4%

(annualized), and are all significantly different from zero at the 1% confidence level (with GMM standard
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errors); for the GC trades they are on average 2%, and all but two out of 18 are significant at the 5% level.

In contrast, the average returns for the bad carry trades never exceed 1%, and are never significant, even

at the 10% level.

A. Model with equity volatility

The market factor (denoted MKT) in the model is proxied by the total return of the MSCI-World equity

index, in excess of the risk-free rate and expressed in USD. The equity volatility factor (EqVol) reflects

innovations in global equity volatilities, as constructed in Lustig, Roussanov, and Verdelhan (2011), and

is taken from Verdelhan’s website (data until 12/2013). The interaction term (product of MKT and EqVol)

is denoted ”prod”, and exhibits highly negative skewness (-7.6).

The top panel of Table OA-2 reports results from time-series regressions of carry trade returns on

the three risk factors. The market betas are significant for both good and bad trades, and of comparable

magnitudes. However, the slope coefficient estimates on the product factor are typically negative, albeit

rarely significant for good trades, while they are positive, mostly much larger in magnitude, and almost

always significant at the 5% significance level for the bad trades. The F-test for no difference between

the average slope coefficients across the GC and BC trades rejects only for βprod . Given the high negative

skewness of the product factor, the large positive value of βprod implies that the market risk exposure of

the bad trades increases substantially in highly volatile times, helping to explain the negative skewness of

the bad trades as shown in Table 3.

From the perspective of a time-varying market beta, the large βprod implies, for example, that the

effective market beta for bad carry trades ranges between 0.025 and 0.083 for the 10-th and 90-th percentile

observations of EqVol (which are -0.67 and 0.59, respectively). This regime dependence is much weaker

for good carry trades, due to their smaller βprod estimates. The SC trade resembles the bad trades in this

respect, with a βprod that is positive and marginally significant (at the 10% level). Given that increases in
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volatility tend to characterize periods of market downturns (the correlation between MKT and EqVol is

-0.24 in our sample), our findings attribute the under-performance in times of crisis mostly to bad carry

trades, while good trades are less affected.

The alpha’s obtained in the time-series regressions are difficult to interpret in the presence of non-

traded factors. Therefore, we also perform GMM-based cross-sectional tests on the GC and BC return

cross sections, and show the results in the last two rows of the table. For the GC trades, the risk price for

the MKT factor is significant at the 5% level, while for the BC trades no risk price is significant. However,

the joint test does not reject for either of the two cross sections, delivering large p-values.

For further clarification, Panels A and B in Figure 4 plot model-predicted vs. actual average returns for

the GC and BC trades, where we see practically no relation for the BC trades, but a much better fit for the

GC trades, albeit with a few outliers. When we run a simple OLS regression of actual average returns on

a constant and the model-based expected returns, we obtain an R2 of 0.67 for the GC trades, and 0.29 for

the BC trades. The combined evidence suggests that this three-factor model does not adequately describe

the returns of the bad carry trades, but still saliently reveals the high exposure of these trades to the equity

market during high-volatility periods. In contrast, a significant price of risk for the market factor and

Figure 4 show the promise of the model to provide a risk-based interpretation of good carry trades.

B. Model with Up and Down equity market factors

Our interest in such a model is motivated both by the asymmetric patterns in carry trade returns docu-

mented above, and the recent work of Lettau, Maggiori, and Weber (2015), who find support for a similar

model pricing the joint cross section of several asset classes, including the returns of interest-rate-sorted

currency portfolios. Note that their model employs the market factor itself, together with a separate down-

market factor, whereas we use uncorrelated down- and up-market factors, which help sharpen the focus

on the asymmetric return behavior across good and bad carry trades (see also Ang, Chen, and Xing (2006,
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Table 2)). Keeping the notation MKT for the total return of the MSCI-World equity index, in excess of

the risk-free rate and expressed in USD, the Down factor is taken to be min(MKT,0), and the Up factor is

max(MKT,0).

Table OA-3 shows that in the time-series regressions the slope coefficient estimates on the Down factor

are not statistically significant for about 70% of the good carry trades, but are significant for all but one

of the bad carry trades. The pattern is reversed for the Up factor, where the estimates are significant for

most of the good trades, but are in fact never significant for the bad trades, even at the 10% confidence

level. The magnitudes of the respective slope coefficients for good versus bad trades also differ largely, by

a factor of three or four, and these differences are highly significant, as evidenced by the reported p-values

from GMM tests for the equality of the average βDown or βU p across the 18 GC and BC trades. Additional

joint tests for pairwise equality between the corresponding coefficients for the GC and BC trades reject

with even smaller p-values. As above, the SC trade exhibits mixed features, with both slope coefficients

being significant.

The cross-sectional test results resemble those from Table OA-2, in that both risk prices λDown and λU p

are statistically significant for good trades, and highly insignificant for bad trades, while the tests for the

pricing errors being jointly equal to zero fail to reject, with high p-values. Moreover, the plots of model-

based versus actual average returns, similar to those in Figure 4) again reveal a reasonable fit for good

trades, but no apparent relation for bad trades, indicating that the model with down- and up-market factors

more adequately describes the returns of good carry trades. The important additional insight from this

model, however, is the striking dichotomy between the returns of good carry trades, which have relatively

high Up-market betas but decouple in bad times, and the returns of bad carry trades, which have relatively

high Down-market betas.

C. Fama-French three-factor model
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Similar to Table OA-2 and in the same format, Table OA-4 illustrates the ability of the Fama-French

three-factor model to explain the returns of good and bad carry trades, and the main finding is that the

model does not perform well with respect to good carry trades.

The top panel of this table refers to time-series tests, and shows that the betas on the market factor

are economically small for these trades (0.05 on average), albeit often significant, while those on the

other two factors typically are not significantly different from zero. The adjusted R2’s in the time-series

regressions are relatively low, even sometimes negative, whereas the alphas are only about 5 to 30% lower

than the unconditional average carry trade returns, and still statistically significant for all G1-G5 trades

and 14 of the GC trades. On the other hand, for bad carry trades the betas on all three factors are higher and

statistically significant in most cases, and the R2’s are on average 0.12. A test for no difference between the

average slope coefficients across the 18 GC and BC trades rejects for βMKT and βSMB, at the 5% confidence

level. Interestingly, the model renders all alphas much lower than the respective average returns for the

bad carry trades, so that these trades can be qualified as ”negative alpha trades”, from the perspective

of this model. The model also explains a large part of the SC trade’s average returns, with statistically

significant factor loadings and a high R2. The time-series tests therefore suggest that the good carry trades

pose a problem for this model, whereas the SC trade and the bad trades at least are meaningfully exposed

to standard risk factors. In addition, a test for alphas being jointly equal to zero does not reject for both

the GC and BC sets of carry trades, with p-values above 0.30.

The last two lines of the table show results from GMM-based cross-sectional tests, using the GC and

BC trades as test assets. The estimates of the risk prices λ are all statistically insignificant, except for

λMKT for the GC trades, while the tests for the pricing errors being jointly equal to zero exhibit p-values

above 0.70. The results for the risk prices thus cast doubt on the explanatory power of the Fama-French

three-factor model for the BC trades as well, whereas the joint test results may reflect power issues.
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Table OA-6: Detailed version of the top panel of Table 4

Good port. avg. ret. p-val α p-val βRX p-val βHMLFX p-val βGood p-val R2

1 -1.63 0.25 -1.74 0.00 1.02 0.00 -0.39 0.00 90.3
2 -0.19 0.88 -1.15 0.08 0.88 0.00 -0.13 0.00 75.8
3 0.79 0.54 -0.28 0.65 0.95 0.00 -0.13 0.00 78.4
4 2.80 0.05 1.12 0.10 1.01 0.00 0.00 0.94 78.4
5 3.68 0.02 1.62 0.03 1.11 0.00 0.05 0.11 80.0
6 4.65 0.01 0.43 0.35 1.03 0.00 0.61 0.00 93.8
7 -0.18 0.92 -0.38 0.67 1.24 0.00 -0.46 0.00 80.5
8 1.04 0.57 -0.14 0.87 1.27 0.00 -0.23 0.00 77.6
9 2.76 0.12 1.16 0.14 1.28 0.00 -0.14 0.00 81.7
10 2.77 0.14 0.39 0.66 1.28 0.00 0.05 0.19 79.7
11 4.79 0.02 1.55 0.13 1.27 0.00 0.27 0.00 75.2

G1 1 -2.27 0.00 0.99 0.00 -0.61 0.00 76.5
2 -0.85 0.15 0.89 0.00 -0.50 0.00 78.8
3 -0.29 0.63 0.94 0.00 -0.30 0.00 77.7
4 0.87 0.18 1.00 0.00 0.16 0.03 78.9
5 1.15 0.10 1.10 0.00 0.41 0.00 82.3
6 1.40 0.16 1.08 0.00 0.85 0.00 71.0
7 -0.97 0.38 1.21 0.00 -0.75 0.00 69.4
8 0.34 0.66 1.28 0.00 -0.87 0.00 81.7
9 0.71 0.38 1.26 0.00 -0.05 0.62 80.1
10 -0.06 0.94 1.27 0.00 0.41 0.00 81.4
11 0.78 0.36 1.25 0.00 1.14 0.00 82.4

G2 1 -2.34 0.00 0.99 0.00 -0.56 0.00 76.0
2 -1.10 0.08 0.88 0.00 -0.34 0.00 76.0
3 -0.57 0.37 0.93 0.00 -0.13 0.08 76.2
4 0.72 0.25 0.99 0.00 0.24 0.00 79.6
5 1.34 0.06 1.10 0.00 0.28 0.00 81.1
6 1.94 0.07 1.10 0.00 0.50 0.00 65.9
7 -1.09 0.33 1.20 0.00 -0.66 0.00 68.6
8 -0.31 0.73 1.25 0.00 -0.45 0.00 75.6
9 0.59 0.47 1.26 0.00 0.03 0.74 80.1
10 -0.09 0.92 1.27 0.00 0.42 0.00 81.7
11 1.67 0.12 1.28 0.00 0.56 0.00 73.5

G3 1 -2.14 0.00 1.04 0.00 -0.50 0.00 76.2
2 -0.88 0.16 0.92 0.00 -0.34 0.00 76.9
3 -0.35 0.57 0.96 0.00 -0.19 0.00 76.9
4 0.97 0.14 0.99 0.00 0.06 0.30 78.5
5 1.21 0.09 1.07 0.00 0.27 0.00 81.4
6 1.19 0.23 1.01 0.00 0.70 0.00 70.8
7 -0.80 0.47 1.27 0.00 -0.61 0.00 69.2
8 0.11 0.89 1.31 0.00 -0.52 0.00 77.5
9 0.87 0.28 1.28 0.00 -0.11 0.16 80.3
10 -0.02 0.98 1.24 0.00 0.28 0.00 80.7
11 0.59 0.52 1.16 0.00 0.90 0.00 81.2

G4 1 -2.80 0.00 1.05 0.00 -0.26 0.00 71.4
2 -1.10 0.09 0.98 0.00 -0.33 0.00 76.3
3 -0.48 0.44 0.99 0.00 -0.18 0.00 76.7
4 0.91 0.17 0.96 0.00 0.13 0.04 78.8
5 1.35 0.05 1.03 0.00 0.27 0.00 81.2
6 2.12 0.06 1.00 0.00 0.38 0.00 64.8
7 -1.83 0.10 1.23 0.00 -0.19 0.19 63.8
8 -0.23 0.80 1.39 0.00 -0.49 0.00 76.6
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9 0.72 0.37 1.28 0.00 -0.05 0.55 80.1
10 0.31 0.72 1.23 0.00 0.17 0.08 79.9
11 1.26 0.19 1.04 0.00 0.80 0.00 78.0

G5 1 -2.68 0.00 1.03 0.00 -0.17 0.00 71.0
2 -0.93 0.16 0.95 0.00 -0.22 0.00 75.5
3 -0.83 0.19 0.92 0.00 0.02 0.66 75.8
4 0.57 0.37 0.94 0.00 0.16 0.00 79.6
5 1.33 0.06 1.06 0.00 0.14 0.00 80.5
6 2.53 0.03 1.11 0.00 0.06 0.48 62.8
7 -1.96 0.07 1.19 0.00 -0.05 0.64 63.3
8 -0.41 0.65 1.30 0.00 -0.19 0.00 74.0
9 0.40 0.63 1.23 0.00 0.07 0.22 80.2
10 -0.03 0.97 1.21 0.00 0.19 0.02 80.4
11 1.99 0.07 1.24 0.00 0.18 0.05 70.8

G1 1 -1.69 0.00 1.02 0.00 -0.38 0.00 -0.06 0.39 90.3
2 -0.79 0.19 0.89 0.00 -0.04 0.15 -0.44 0.00 79.0
3 -0.15 0.81 0.95 0.00 -0.10 0.00 -0.16 0.06 78.7
4 0.94 0.15 1.00 0.00 -0.05 0.18 0.22 0.01 79.0
5 1.23 0.08 1.10 0.00 -0.05 0.11 0.48 0.00 82.5
6 0.47 0.31 1.03 0.00 0.61 0.00 -0.04 0.49 93.8
7 -0.30 0.74 1.25 0.00 -0.44 0.00 -0.11 0.34 80.6
8 0.47 0.55 1.28 0.00 -0.09 0.04 -0.75 0.00 82.1
9 0.99 0.21 1.28 0.00 -0.18 0.00 0.21 0.05 82.1
10 0.00 1.00 1.27 0.00 -0.04 0.33 0.47 0.00 81.4
11 0.69 0.42 1.24 0.00 0.06 0.16 1.05 0.00 82.6

G2 1 -1.57 0.00 1.03 0.00 -0.36 0.00 -0.17 0.00 90.8
2 -0.91 0.15 0.89 0.00 -0.09 0.00 -0.25 0.00 77.0
3 -0.29 0.64 0.95 0.00 -0.13 0.00 0.01 0.88 78.3
4 0.83 0.20 1.00 0.00 -0.05 0.16 0.29 0.00 79.8
5 1.34 0.07 1.10 0.00 0.00 0.98 0.28 0.00 81.1
6 0.60 0.19 1.03 0.00 0.63 0.00 -0.17 0.00 94.1
7 -0.18 0.84 1.25 0.00 -0.43 0.00 -0.21 0.02 80.9
8 0.10 0.90 1.27 0.00 -0.19 0.00 -0.25 0.02 78.2
9 0.95 0.22 1.28 0.00 -0.17 0.00 0.21 0.03 82.2
10 -0.05 0.96 1.27 0.00 -0.02 0.65 0.44 0.00 81.6
11 1.21 0.23 1.26 0.00 0.21 0.00 0.34 0.00 76.1

G3 1 -1.69 0.00 1.03 0.00 -0.38 0.00 -0.04 0.41 90.3
2 -0.80 0.20 0.92 0.00 -0.07 0.02 -0.27 0.00 77.4
3 -0.21 0.73 0.96 0.00 -0.12 0.00 -0.05 0.39 78.3
4 1.00 0.14 0.99 0.00 -0.02 0.51 0.09 0.22 78.5
5 1.23 0.09 1.07 0.00 -0.02 0.42 0.30 0.00 81.3
6 0.47 0.31 1.03 0.00 0.61 0.00 -0.03 0.52 93.8
7 -0.27 0.76 1.26 0.00 -0.44 0.00 -0.08 0.44 80.6
8 0.30 0.72 1.31 0.00 -0.15 0.00 -0.33 0.00 78.9
9 1.05 0.18 1.27 0.00 -0.16 0.00 0.08 0.34 81.8
10 0.00 1.00 1.24 0.00 -0.02 0.69 0.30 0.00 80.7
11 0.49 0.59 1.16 0.00 0.08 0.09 0.80 0.00 81.5

G4 1 -1.72 0.00 1.03 0.00 -0.39 0.00 -0.02 0.75 90.3
2 -0.83 0.18 0.97 0.00 -0.10 0.00 -0.27 0.00 77.8
3 -0.15 0.80 0.98 0.00 -0.12 0.00 -0.10 0.06 78.6
4 0.95 0.15 0.96 0.00 -0.02 0.57 0.14 0.04 78.8
5 1.31 0.07 1.03 0.00 0.02 0.54 0.26 0.00 81.2
6 0.44 0.34 1.03 0.00 0.61 0.00 -0.01 0.90 93.8
7 -0.52 0.55 1.21 0.00 -0.47 0.00 0.11 0.38 80.6
8 0.30 0.72 1.38 0.00 -0.19 0.00 -0.37 0.00 79.4
9 1.11 0.15 1.27 0.00 -0.14 0.00 0.04 0.65 81.7
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10 0.21 0.81 1.23 0.00 0.03 0.41 0.15 0.15 79.9
11 0.73 0.43 1.05 0.00 0.19 0.00 0.68 0.00 80.3

G5 1 -1.49 0.00 1.06 0.00 -0.39 0.00 -0.08 0.01 90.5
2 -0.58 0.36 0.96 0.00 -0.11 0.00 -0.19 0.00 77.6
3 -0.42 0.49 0.93 0.00 -0.13 0.00 0.05 0.19 78.4
4 0.62 0.35 0.94 0.00 -0.01 0.64 0.17 0.00 79.5
5 1.22 0.09 1.06 0.00 0.04 0.18 0.13 0.01 80.6
6 0.65 0.16 1.06 0.00 0.61 0.00 -0.07 0.02 93.9
7 -0.53 0.53 1.22 0.00 -0.46 0.00 0.05 0.53 80.5
8 0.27 0.74 1.32 0.00 -0.22 0.00 -0.14 0.03 78.0
9 0.85 0.29 1.24 0.00 -0.14 0.00 0.10 0.11 82.0
10 -0.15 0.86 1.21 0.00 0.04 0.34 0.18 0.02 80.5
11 1.19 0.25 1.22 0.00 0.26 0.00 0.12 0.12 75.4
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Table OA-7: Detailed version of the top panel of Table 10

Good port. avg. ret. p-val α p-val βDC p-val βGood p-val R2

1 -1.63 0.25 -3.23 0.02 0.38 0.00 12.6
2 -0.19 0.88 -1.37 0.27 0.28 0.00 8.7
3 0.79 0.54 -0.98 0.41 0.42 0.00 17.6
4 2.80 0.05 0.18 0.88 0.63 0.00 34.3
5 3.68 0.02 0.81 0.54 0.69 0.00 33.8
6 4.65 0.01 2.27 0.18 0.57 0.00 17.7
7 -0.18 0.92 -2.64 0.12 0.59 0.00 18.1
8 1.04 0.57 -1.24 0.45 0.54 0.00 16.1
9 2.76 0.12 0.17 0.91 0.62 0.00 21.7
10 2.77 0.14 -0.18 0.91 0.70 0.00 26.5
11 4.79 0.02 1.53 0.35 0.78 0.00 27.5

G1 1 -1.63 0.25 -1.02 0.48 -0.36 0.04 2.1
2 -0.19 0.88 0.28 0.83 -0.28 0.04 1.6
3 0.79 0.54 0.90 0.50 -0.07 0.66 -0.2
4 2.80 0.05 2.13 0.15 0.40 0.01 2.7
5 3.68 0.02 2.54 0.11 0.69 0.00 6.8
6 4.65 0.01 2.77 0.12 1.12 0.00 14.4
7 -0.18 0.92 0.56 0.76 -0.45 0.03 1.9
8 1.04 0.57 1.96 0.30 -0.55 0.00 3.2
9 2.76 0.12 2.31 0.20 0.27 0.26 0.6
10 2.77 0.14 1.55 0.41 0.73 0.00 5.7
11 4.79 0.02 2.36 0.20 1.45 0.00 20.0

G2 1 -1.63 0.25 -1.07 0.46 -0.33 0.02 1.9
2 -0.19 0.88 0.04 0.98 -0.13 0.33 0.2
3 0.79 0.54 0.64 0.63 0.09 0.51 -0.1
4 2.80 0.05 2.00 0.17 0.47 0.00 4.3
5 3.68 0.02 2.76 0.08 0.54 0.00 4.6
6 4.65 0.01 3.36 0.07 0.76 0.00 7.2
7 -0.18 0.92 0.46 0.80 -0.38 0.05 1.5
8 1.04 0.57 1.31 0.49 -0.16 0.41 0.0
9 2.76 0.12 2.21 0.22 0.32 0.11 1.1
10 2.77 0.14 1.54 0.39 0.72 0.00 6.2
11 4.79 0.02 3.32 0.09 0.86 0.00 7.7

G3 1 -1.63 0.25 -1.61 0.28 -0.01 0.95 -0.3
2 -0.19 0.88 -0.41 0.76 0.09 0.37 0.0
3 0.79 0.54 0.14 0.92 0.26 0.02 2.0
4 2.80 0.05 1.48 0.31 0.53 0.00 7.7
5 3.68 0.02 1.76 0.26 0.77 0.00 13.7
6 4.65 0.01 1.71 0.29 1.18 0.00 24.7
7 -0.18 0.92 -0.15 0.94 -0.01 0.93 -0.3
8 1.04 0.57 0.79 0.68 0.10 0.50 -0.1
9 2.76 0.12 1.52 0.40 0.50 0.00 4.3

23



10 2.77 0.14 0.61 0.73 0.86 0.00 12.8
11 4.79 0.02 1.18 0.49 1.45 0.00 30.9

G4 1 -1.63 0.25 -2.94 0.03 0.59 0.00 11.1
2 -0.19 0.88 -1.22 0.33 0.47 0.00 8.8
3 0.79 0.54 -0.61 0.62 0.63 0.00 14.6
4 2.80 0.05 0.78 0.53 0.91 0.00 27.1
5 3.68 0.02 1.22 0.38 1.11 0.00 33.0
6 4.65 0.01 1.99 0.21 1.20 0.00 29.6
7 -0.18 0.92 -1.99 0.25 0.82 0.00 12.9
8 1.04 0.57 -0.41 0.82 0.65 0.00 8.6
9 2.76 0.12 0.55 0.73 1.00 0.00 20.9
10 2.77 0.14 0.15 0.93 1.18 0.00 27.9
11 4.79 0.02 1.13 0.44 1.65 0.00 46.5

G5 1 -1.63 0.25 -3.33 0.01 0.43 0.00 9.9
2 -0.19 0.88 -1.54 0.23 0.34 0.00 7.9
3 0.79 0.54 -1.41 0.23 0.56 0.00 19.3
4 2.80 0.05 -0.02 0.98 0.71 0.00 28.0
5 3.68 0.02 0.65 0.65 0.76 0.00 26.2
6 4.65 0.01 1.83 0.27 0.71 0.00 17.4
7 -0.18 0.92 -2.72 0.12 0.64 0.00 13.5
8 1.04 0.57 -1.24 0.47 0.57 0.00 11.3
9 2.76 0.12 -0.38 0.81 0.79 0.00 22.4
10 2.77 0.14 -0.81 0.60 0.90 0.00 27.4
11 4.79 0.02 1.20 0.49 0.90 0.00 23.4

G1 1 -1.63 0.25 -2.48 0.05 0.54 0.00 -0.83 0.00 23.0
2 -0.19 0.88 -0.81 0.50 0.40 0.00 -0.63 0.00 16.2
3 0.79 0.54 -0.51 0.66 0.52 0.00 -0.52 0.00 22.1
4 2.80 0.05 0.34 0.78 0.66 0.00 -0.17 0.19 34.6
5 3.68 0.02 0.72 0.59 0.67 0.00 0.10 0.54 33.7
6 4.65 0.01 1.59 0.34 0.43 0.00 0.75 0.00 22.9
7 -0.18 0.92 -1.61 0.31 0.80 0.00 -1.14 0.00 30.0
8 1.04 0.57 -0.14 0.93 0.77 0.00 -1.22 0.00 30.5
9 2.76 0.12 0.47 0.77 0.68 0.00 -0.33 0.13 22.5
10 2.77 0.14 -0.31 0.85 0.68 0.00 0.14 0.51 26.5
11 4.79 0.02 0.70 0.66 0.61 0.00 0.92 0.00 34.2

G2 1 -1.63 0.25 -2.55 0.04 0.55 0.00 -0.80 0.00 23.1
2 -0.19 0.88 -0.98 0.43 0.38 0.00 -0.46 0.00 13.0
3 0.79 0.54 -0.69 0.56 0.49 0.00 -0.33 0.01 19.5
4 2.80 0.05 0.25 0.84 0.64 0.00 -0.08 0.46 34.2
5 3.68 0.02 0.86 0.51 0.70 0.00 -0.07 0.64 33.7
6 4.65 0.01 1.99 0.24 0.50 0.00 0.32 0.06 18.6
7 -0.18 0.92 -1.72 0.29 0.81 0.00 -1.08 0.00 29.7
8 1.04 0.57 -0.59 0.72 0.70 0.00 -0.76 0.00 22.1
9 2.76 0.12 0.39 0.80 0.67 0.00 -0.26 0.16 22.2
10 2.77 0.14 -0.29 0.85 0.68 0.00 0.13 0.48 26.5
11 4.79 0.02 1.34 0.42 0.73 0.00 0.23 0.20 27.8
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G3 1 -1.63 0.25 -2.66 0.05 0.50 0.00 -0.43 0.00 16.3
2 -0.19 0.88 -1.11 0.38 0.33 0.00 -0.19 0.07 9.4
3 0.79 0.54 -0.82 0.49 0.45 0.00 -0.12 0.30 17.7
4 2.80 0.05 0.17 0.89 0.62 0.00 0.01 0.95 34.1
5 3.68 0.02 0.46 0.73 0.62 0.00 0.26 0.04 34.8
6 4.65 0.01 1.04 0.51 0.32 0.01 0.91 0.00 29.0
7 -0.18 0.92 -1.75 0.30 0.76 0.00 -0.65 0.00 23.5
8 1.04 0.57 -0.62 0.70 0.67 0.00 -0.46 0.00 18.8
9 2.76 0.12 0.21 0.90 0.63 0.00 -0.03 0.87 21.4
10 2.77 0.14 -0.66 0.68 0.61 0.00 0.35 0.04 28.0
11 4.79 0.02 0.14 0.93 0.50 0.00 1.03 0.00 39.6

G4 1 -1.63 0.25 -3.45 0.01 0.26 0.03 0.33 0.02 14.6
2 -0.19 0.88 -1.57 0.21 0.17 0.11 0.29 0.01 10.7
3 0.79 0.54 -1.20 0.31 0.30 0.01 0.33 0.01 20.0
4 2.80 0.05 -0.12 0.92 0.46 0.00 0.46 0.00 38.5
5 3.68 0.02 0.36 0.78 0.43 0.00 0.68 0.00 41.4
6 4.65 0.01 1.60 0.30 0.19 0.13 1.01 0.00 30.7
7 -0.18 0.92 -2.88 0.09 0.45 0.00 0.37 0.03 19.5
8 1.04 0.57 -1.36 0.41 0.48 0.00 0.18 0.31 16.3
9 2.76 0.12 -0.23 0.88 0.39 0.01 0.60 0.00 26.3
10 2.77 0.14 -0.68 0.64 0.42 0.00 0.76 0.00 33.7
11 4.79 0.02 0.62 0.66 0.26 0.08 1.39 0.00 48.3

G5 1 -1.63 0.25 -3.55 0.01 0.28 0.02 0.19 0.13 13.4
2 -0.19 0.88 -1.68 0.18 0.18 0.08 0.18 0.08 9.7
3 0.79 0.54 -1.59 0.17 0.23 0.03 0.36 0.00 21.8
4 2.80 0.05 -0.37 0.75 0.45 0.00 0.33 0.00 37.3
5 3.68 0.02 0.26 0.84 0.51 0.00 0.32 0.00 36.2
6 4.65 0.01 1.56 0.33 0.34 0.01 0.42 0.00 20.7
7 -0.18 0.92 -3.07 0.07 0.45 0.00 0.25 0.06 19.0
8 1.04 0.57 -1.58 0.34 0.44 0.00 0.20 0.15 16.7
9 2.76 0.12 -0.66 0.67 0.35 0.01 0.49 0.00 26.0
10 2.77 0.14 -1.12 0.44 0.40 0.00 0.55 0.00 31.9
11 4.79 0.02 0.78 0.63 0.54 0.00 0.44 0.00 30.3
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Figure 4: Average vs. model-based expected returns

Circles with no fill (large black dots) plot model-based expected monthly returns versus average monthly
returns (annualized and in percent) for the GC (BC) set of 18 carry trades, as described in Table 3. The
model based returns refer to the three-factor model with a market factor (MKT), an equity volatility factor
(EqVol) and the product of MKT and EqVol, and are estimated, for each trade, as the product of its time-
series slope estimates (β) with respect to the factors in the model, and the corresponding estimates of the
factor risk prices λ, as shown in Table OA-2. The bottom right corner of each plot shows the R2 obtained
in regressing average returns on model-based returns (with a constant). The sample period is 12/1984 to
12/2013.
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