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I. Model Solutions

A. Affine Term Structure Model

In an affine term structure model (ATSM), the short rate rate r; is an affine function in

the factors x; with dimension n, x 1, i.e.
(A-1) re = o+ B'%,

where « is a scalar and 3 is an n, X 1 vector. No arbitrage implies that there exists an
equivalent risk-neutral probability measure (Q) such that the price of an n-period zero-coupon
bond at time ¢ (P;,,) is equal to the expected price of a n — 1-period bond at time t + 1

discounted by the risk-free short rate, i.e.

(A-2) Py = EP {exp [~ Po_i i1} -

The factors follow a first-order vector autoregression (VAR) process under Q
(A-3) xip1 = (I— ®)x; + ®p + Xe? |,

where ® is an n, X n, matrix, g is an n, x 1 vector, X is an n, X n, matrix, and
agrl ~NID(0,1) is a n, x 1 vector. Here, E? denotes the conditional expectation under Q .

Within this setting bond prices are affine in the factors, i.e.

(A-4) P, =exp{A, +B;x}.



To solve for the factor loadings, i.e. A, and B,, for n =1,2,...N, we combine equations

(A-1)-(A-4) to obtain the recursive equations

1
(A-5) A, = —a+A, 1+ B, Pu+ éBjﬂz:E’Bn,1

(A-6) B, = -f+B,,(1-9)

The time-t price of a zero-period bond must be 1, which implies that these recursions can be

started with Ag = 0 and By = 0.

B. Quadratic Term Structure Model

In a quadratic term structure model (QTSM), the short rate r; is a quadratic function of

x; with dimensions n, x 1, i.e.
(A-T) re = 0o + 0% + XA Xy,

where §g is a scalar, d, is an n, x 1 vector, and A, is an n, X n, matrix. The factors follow the
same VAR process as in ATSM (A-3) under the risk-neutral measure. Within this setting bond

prices are quadratic in the factors, i.e.
(A-8) Py = exp [A, + B x + x,Cnx¢]

where A, is a scalar, B,, is an n, x 1 vector, and C,, is an n, X n, matrix. To solve for the factor

loadings, i.e. A,, B, and C,, for n =1,2,...N, we combine equations (A-2)-(A—4), and (A7) to



obtain the recursive equations

(A-9) A, = —d+A,1+B,_®u+ (®u)C, Pu
+%B§Z_12Fni12’Bn_1 +2(®p)'C, 2T 3B,
+2(®p)' C, 21,1\ ¥'C, 1 Pp — %log (ITp_1])
(A-10) B, = -8, +B, [ (I-®)+2(®u)C,_,(I-d)
+2B/ 3T ¥'C, ,(I-®)+4(®p)C, 2T, ¥'C,, (1 ®)

(A-11) C, = -A,+I-®)C,.,I-®)+2(I1-®)'C,_, 2} ¥C,_,1-P)
where the n, x n, matrix I',,_; is defined as
r,,=1-2Y'C,Y).

The time-t price of a zero-period bond must be 1, which implies that these recursions can be

started with Ay = 0, By = 0, and Cy = 0.

C. Shadow Rate Model

This section explains how to implement the bond pricing approximation by Priebsch

(2013) in a discrete-time shadow rate model (SRM). The short rate is given by:
(A-12) ry = max {0, s},

where the shadow rate s; is given by

(A-13) sy = a+ B'xy,

where « is a scalar and 3 is an n, x 1 vector. The risk-neutral dynamics of the factors are again

given by (A-3).



Bond yields are based on a second-order approximation, i.e.

[n—1 n—1
1 1
(A-14) w, = EE;Q E rt+i] —%vari2 [E Tt+i]

L =0 1=0
[n—1
= ZEY 0, ¢4
15 | s (00}
1 n—1 2 n—1 2
~5 E2 <;max{0,st+l}> — (E;Q ;maX{O,StJri}])

We can compute the conditional moments of the shadow rate p, =E2 [5,,4], 0F s =var? [s,,4],
and o¢ 4114 :COVifQ [St+is St+j] using (A-3) and (A-13). Using (A-12) and standard results for
the moments of a truncated Normal distribution (see Priebsch (2013)), the conditional moments

of the short rate required for (A—14) are therefore given by
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where (;,,; = gz—: and X, ;i = ;:t:’—att“:ij Here, ¢ (.) and ® (.) respectively denote the

probability density and cumulative distribution functions of the standard Normal distribution,

and ®¢ denotes the decumulative bivariate Normal distribution function.



II. Extending the Sample Period

To explore the robustness of the key results in the main text of the paper, in this section
we extend the sample back to June 1961. Although the start of our sample beginning in 1990 is
broadly representative of many recent empirical studies using U.S. data, the period from
1990-2016 is characterized by relatively low yields with stable volatilities. In contrast, yields in
the 1970s and 1980s were relatively high and much more volatile. It therefore seems possible
that the non-linearities in the SRM and QTSM would have a greater effect when starting the
analysis in 1961. However, we show that the ability of the SRM and QTSM to match the
conditional expectations and volatilities of yields are broadly similar when the models are
estimated using this longer sample.

In the interests of brevity, we focus on the LPY tests to evaluate the models’ ability to
match conditional expectations. The procedure is essentially the same as described in the main
text of the paper.! The top row of Figure Al shows the ability of all 3-factor models and the
4-factor QTSM to satisfy the LPY (i) test, while the bottom row shows the equivalent results for
the LPY(ii) test. For both LPY tests, the gray markers indicate model-implied loadings when
the model is estimated using data from 1961-2007 (i.e. the pre-ZLB period), while the black
markers show the results when the sample for estimating the model is extended to 2016.

For the LPY(i) test, the model-implied slope coefficients do not fall as much with
maturity as they do in the data when the models are estimated over the 1961-2007 sample, but
the differences are not statistically significant. While the deviations from the desired slope
coefficients in the 3-factor QTSM are somewhat larger than in the other models, the differences
are not statistically significant and the performance of the model can be improved with the
addition of a fourth pricing factor, as was the case for the sample starting in 1990. Finally, the
addition of the ZLB period has a much smaller effect than in the benchmark sample, which
seems reasonable given that the ZLB period is now proportionally less important given the

longer pre-ZLB sample.

'We estimate the Campbell-Shiller loadings in the data using a sample starting in Nov. 1971 to avoid problems
caused by missing observations for some long-term yields prior to that date.



Figure Al: Campbell-Shiller Loadings: Sample from 1961-2016
This figure reports results from the LPY tests for the long sample. The top row of charts reports Campbell-Shiller
loadings implied by models and the data. The loadings in the data are estimated using the pre-ZLB sample from
Nov. 1971-Dec. 2007. The 95% confidence intervals for these estimates are computed based on a block bootstrap
applied jointly to the regressand and the regressor in the Campbell-Shiller regressions in the data using a block
length of 189 months and 5,000 repetitions. The model-implied loadings are the mean loadings from running
1,000 Campbell-Shiller regressions on simulated samples of 559 months, conditional on all bond yields being
above 1% at all points in the simulated sample. The gray markers report results when the model parameters are
estimated using data from June 1961-Dec. 2007, while the black markers report results when the model
parameters are estimated on data from June 1961-Dec. 2016. The bottom row of charts reports risk-adjusted
Campbell-Shiller loadings from Nov. 1971-Dec. 2007, where term premia are obtained from models estimated
using data from June 1961-Dec. 2007 (gray markers) and from June 1961-Dec. 2016 (black markers). A
well-specified model should return loadings equal to 1, which is highlighted using the heavy solid line. Conditional
on the model estimates of term premia, the 95% confidence intervals for the risk-adjusted Campbell-Shiller
loadings from the model are computed using a block bootstrap applied jointly to the regressand and the regressor
in the risk-adjusted Campbell-Shiller regressions with a block length of 189 months and 5,000 repetitions. All
charts refer to 3-factor models, with the exception of those headed QTSM(4), which refer to a 4-factor QTSM.
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For the LPY(ii) test, the models also broadly match the desired pattern of the
risk-adjusted Campbell-Shiller loadings when estimated using a sample ending in 2007, with
model-implied loadings that are generally not significantly different from 1. As for the LPY(i)
tests, including the ZLB period in the sample used to estimate the models has a smaller effect

than in our benchmark case.



Turning to conditional volatilities, Figure A2 shows that the 3-factor models estimated
over the longer sample display much the same weaknesses as in our benchmark sample period,
i.e. the link between the level of yields and conditional volatilities is simply too tight to match
the observed volatilities in the data when yields are away from the ZLB. Unreported results show

substantively the same result for the 4-factor QTSM.

Figure A2: Conditional Volatility of Bond Yields: Sample from 1961 to 2016
This figure plots yields y;4+1,12 on the horizontal axes against 1-month-ahead conditional volatilities o (y4+1,12) on
the vertical axes (both in the data and from 3-factor models estimated using data from June 1961-Dec. 2016).
Yields and conditional volatilities are all expressed as annualized percentages. The model-implied conditional
volatilities are computed using a first-order linearization of the relationship between bond yields and the pricing
factors, evaluated at the estimated factor values.
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III. Estimated Model Parameters

Table Al reports parameter estimates and estimated asymptotic standard errors for the

3-factor models estimated using data from Jan. 1990-Dec. 2016.

Table A1l: Three-Factor Models: Sample from 1990 to 2016

Asymptotic standard errors (SEs) are computed using the methods provided by Andreasen and
~ step3
Christensen (2015). SEs for Bitlep use bandwidth parameters wp = 5 and wr = 10.

ATSM QTSM SRM

Estimate SE Estimate SE Estimate SE
a 0.0077 0.0123 - - 0.0082 0.0010
b11 0.0048 0.0011 0.0035 0.0047 0.0037 0.0010
Bo 0.0488 0.0473 0.0536 0.0211 0.0531 0.0051
P3s 0.0502 0.0483 0.0591 0.0194 0.0571 0.0041
[y - - 0.0021 0.0094 - -
Loy - - 0.0388 0.0160 - -
Lhs - - 0.0546 0.0150 - -
ho (1,1) | —4.28 x 107°  6.02 x 107> | —0.0020 0.0017 —5.08 x 107 5.08 x 107°
ho(2,1) | 2.48 x 107* 0.0019 —0.0621 0.0521 6.15 x 1074 0.0015
ho(3,1) | —3.74 x 10~* 0.0019 0.0673 0.0520 —7.66 x 107* 0.0015
he (1,1) 0.9892 0.0127 0.9741 0.0214 0.9867 0.0106
he (1,2) 0.0166 0.0195 0.0110 0.0190 0.0193 0.0118
h. (1,3) 0.0161 0.0205 0.0096 0.0196 0.0188 0.0123
he (2,1) 0.1727 0.3607 0.1367 0.6055 0.2403 0.2827
he (2,2) 1.5753 0.8182 1.6579 0.5828 1.5657 0.4028
he (2,3) 0.6615 0.8549 0.7867 0.6045 0.6557 0.4180
he (3,1) —0.1930 0.3542 —0.1308 0.6030 —0.2626 0.2812
h. (3,2) —0.6569 0.8088 —0.7133 0.5828 —0.6556 0.4029
he (3,3) 0.2538 0.8448 0.1533 0.6047 0.2497 0.4179
o1 3.94 x107% 3.39x107°| 0.0035 |2.25x107*| 3.79x 107* 2.78 x 107°
T —0.0051 0.0013 —0.0351 0.0088 —0.0042 9.36 x 1074
099 0.0108 6.54 x 107* | 0.0935 0.0055 0.0106 722 x 1074
O3 0.0047 0.0013 0.0323 0.0087 0.0039 9.28 x 1074
T2 —0.0108 6.52 x 107% | —0.0941 0.0055 —0.0108 7.67 x 107*
O33 1.46 x 107* 125 x 107° | 0.0022 | 2.56 x 107% | 2.84 x 107* 2.67 x 107°
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