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I. Model Solutions

A. Affi ne Term Structure Model

In an affi ne term structure model (ATSM), the short rate rate rt is an affi ne function in

the factors xt with dimension nx × 1, i.e.

(A—1) rt = α + β′xt,

where α is a scalar and β is an nx × 1 vector. No arbitrage implies that there exists an

equivalent risk-neutral probability measure (Q) such that the price of an n-period zero-coupon

bond at time t (Pt,n) is equal to the expected price of a n− 1-period bond at time t+ 1

discounted by the risk-free short rate, i.e.

(A—2) Pt,n = EQt {exp [−rt]Pn−1,t+1} .

The factors follow a first-order vector autoregression (VAR) process under Q

(A—3) xt+1 = (I−Φ) xt + Φµ+ ΣεQt+1,

where Φ is an nx × nx matrix, µ is an nx × 1 vector, Σ is an nx × nx matrix, and

εQt+1 ∼NID(0, I) is a nx × 1 vector. Here, EQt denotes the conditional expectation under Q .

Within this setting bond prices are affi ne in the factors, i.e.

(A—4) Pt,n = exp {An + B′nxt} .
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To solve for the factor loadings, i.e. An and Bn for n = 1, 2, ...N , we combine equations

(A—1)-(A—4) to obtain the recursive equations

An = −α + An−1 +B′n−1Φµ+
1

2
B′n−1ΣΣ′Bn−1(A—5)

B′n = −β′ + B′n−1 (I−Φ)(A—6)

The time-t price of a zero-period bond must be 1, which implies that these recursions can be

started with A0 = 0 and B0 = 0.

B. Quadratic Term Structure Model

In a quadratic term structure model (QTSM), the short rate rt is a quadratic function of

xt with dimensions nx × 1, i.e.

(A—7) rt = δ0 + δ′xxt + x′t∆xxxt,

where δ0 is a scalar, δx is an nx × 1 vector, and ∆xx is an nx × nx matrix. The factors follow the

same VAR process as in ATSM (A—3) under the risk-neutral measure. Within this setting bond

prices are quadratic in the factors, i.e.

(A—8) Pt,n = exp [An + B′nxt + x′tCnxt] ,

where An is a scalar, Bn is an nx × 1 vector, and Cn is an nx × nx matrix. To solve for the factor

loadings, i.e. An, Bn, and Cn for n = 1, 2, ...N , we combine equations (A—2)-(A—4), and (A—7) to
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obtain the recursive equations

An = −δ0 + An−1 + B′n−1Φµ+ (Φµ)′Cn−1Φµ(A—9)

+
1

2
B′n−1ΣΓ−1n−1Σ

′Bn−1 + 2 (Φµ)′Cn−1ΣΓ−1n−1Σ
′Bn−1

+2 (Φµ)′Cn−1ΣΓ−1n−1Σ
′Cn−1Φµ−

1

2
log (|Γn−1|)

B′n = −δ′x + B′n−1 (I−Φ) + 2 (Φµ)′Cn−1 (I−Φ)(A—10)

+2B′n−1ΣΓ−1n−1Σ
′Cn−1 (I−Φ) + 4 (Φµ)′Cn−1ΣΓ−1n−1Σ

′Cn−1 (I−Φ)

Cn = −∆xx + (I−Φ)′Cn−1 (I−Φ) + 2 (I−Φ)′Cn−1ΣΓ−1n−1Σ
′Cn−1 (I−Φ)(A—11)

where the nx × nx matrix Γn−1 is defined as

Γn−1 = (I−2Σ′Cn−1Σ) .

The time-t price of a zero-period bond must be 1, which implies that these recursions can be

started with A0 = 0, B0 = 0, and C0 = 0.

C. Shadow Rate Model

This section explains how to implement the bond pricing approximation by Priebsch

(2013) in a discrete-time shadow rate model (SRM). The short rate is given by:

(A—12) rt = max {0, st} ,

where the shadow rate st is given by

(A—13) st = α + β′xt,

where α is a scalar and β is an nx × 1 vector. The risk-neutral dynamics of the factors are again

given by (A—3).
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Bond yields are based on a second-order approximation, i.e.

yt,n =
1

n
EQt

[
n−1∑
i=0

rt+i

]
− 1

2n
varQt

[
n−1∑
i=0

rt+i

]
(A—14)

=
1

n
EQt

[
n−1∑
i=0

max {0, st+i}
]

− 1

2n

EQt
(n−1∑

i=0

max {0, st+i}
)2−(EQt

[
n−1∑
i=0

max {0, st+i}
])2 .

We can compute the conditional moments of the shadow rate µt,t+i =EQt [st+i], σ2t,t+i =varQt [st+i],

and σt,t+i,t+j =covQt [st+i, st+j] using (A—3) and (A—13). Using (A—12) and standard results for

the moments of a truncated Normal distribution (see Priebsch (2013)), the conditional moments

of the short rate required for (A—14) are therefore given by

EQt [max {0, st+i}] = µt,t+iΦ

(
µt,t+i
σt,t+i

)
+ σt,t+iφ

(
µt,t+i
σt,t+i

)

and

EQt [max {0, st+i}max {0, st+j}] =
(
µt,t+iµt,t+j + σt,t+i,t+j

)
Φd
2

(
−ζt,t+i,−ζt,t+j;χt,t+i,t+j

)
+σt,t,+jµt,t+iφ

(
ζt,t+j

)
Φ

ζt,t+i − χt,t+i,t+jζt,t+j√
1− χ2t,t+i,t+j


+σt,t,+iµt,t+jφ (ζ1) Φ

ζt,t+j − χt,t+i,t+jζt,t+i√
1− χ2t,t+i,t+j


+σt,t,+iσt,t,+j

√
1− χ2t,t+i,t+j

2π

×φ
(√

ζ2t,t+i − 2χt,t+i,t+jζt,t+iζt,t+j + ζ2t,t+j
1− χ2t,t+i,t+j

)

where ζt,t+i =
µt,t+i
σt,t+i

and χt,t+i,t+j =
σt,t+i,t+j
σt,t+iσt,t+j

. Here, φ (.) and Φ (.) respectively denote the

probability density and cumulative distribution functions of the standard Normal distribution,

and Φd
2 denotes the decumulative bivariate Normal distribution function.
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II. Extending the Sample Period

To explore the robustness of the key results in the main text of the paper, in this section

we extend the sample back to June 1961. Although the start of our sample beginning in 1990 is

broadly representative of many recent empirical studies using U.S. data, the period from

1990—2016 is characterized by relatively low yields with stable volatilities. In contrast, yields in

the 1970s and 1980s were relatively high and much more volatile. It therefore seems possible

that the non-linearities in the SRM and QTSM would have a greater effect when starting the

analysis in 1961. However, we show that the ability of the SRM and QTSM to match the

conditional expectations and volatilities of yields are broadly similar when the models are

estimated using this longer sample.

In the interests of brevity, we focus on the LPY tests to evaluate the models’ability to

match conditional expectations. The procedure is essentially the same as described in the main

text of the paper.1 The top row of Figure A1 shows the ability of all 3-factor models and the

4-factor QTSM to satisfy the LPY(i) test, while the bottom row shows the equivalent results for

the LPY(ii) test. For both LPY tests, the gray markers indicate model-implied loadings when

the model is estimated using data from 1961—2007 (i.e. the pre-ZLB period), while the black

markers show the results when the sample for estimating the model is extended to 2016.

For the LPY(i) test, the model-implied slope coeffi cients do not fall as much with

maturity as they do in the data when the models are estimated over the 1961—2007 sample, but

the differences are not statistically significant. While the deviations from the desired slope

coeffi cients in the 3-factor QTSM are somewhat larger than in the other models, the differences

are not statistically significant and the performance of the model can be improved with the

addition of a fourth pricing factor, as was the case for the sample starting in 1990. Finally, the

addition of the ZLB period has a much smaller effect than in the benchmark sample, which

seems reasonable given that the ZLB period is now proportionally less important given the

longer pre-ZLB sample.

1We estimate the Campbell-Shiller loadings in the data using a sample starting in Nov. 1971 to avoid problems
caused by missing observations for some long-term yields prior to that date.
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Figure A1: Campbell-Shiller Loadings: Sample from 1961—2016
This figure reports results from the LPY tests for the long sample. The top row of charts reports Campbell-Shiller
loadings implied by models and the data. The loadings in the data are estimated using the pre-ZLB sample from
Nov. 1971—Dec. 2007. The 95% confidence intervals for these estimates are computed based on a block bootstrap
applied jointly to the regressand and the regressor in the Campbell-Shiller regressions in the data using a block
length of 189 months and 5,000 repetitions. The model-implied loadings are the mean loadings from running
1,000 Campbell-Shiller regressions on simulated samples of 559 months, conditional on all bond yields being
above 1% at all points in the simulated sample. The gray markers report results when the model parameters are
estimated using data from June 1961—Dec. 2007, while the black markers report results when the model
parameters are estimated on data from June 1961—Dec. 2016. The bottom row of charts reports risk-adjusted
Campbell-Shiller loadings from Nov. 1971—Dec. 2007, where term premia are obtained from models estimated
using data from June 1961—Dec. 2007 (gray markers) and from June 1961—Dec. 2016 (black markers). A
well-specified model should return loadings equal to 1, which is highlighted using the heavy solid line. Conditional
on the model estimates of term premia, the 95% confidence intervals for the risk-adjusted Campbell-Shiller
loadings from the model are computed using a block bootstrap applied jointly to the regressand and the regressor
in the risk-adjusted Campbell-Shiller regressions with a block length of 189 months and 5,000 repetitions. All
charts refer to 3-factor models, with the exception of those headed QTSM(4), which refer to a 4-factor QTSM.
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For the LPY(ii) test, the models also broadly match the desired pattern of the

risk-adjusted Campbell-Shiller loadings when estimated using a sample ending in 2007, with

model-implied loadings that are generally not significantly different from 1. As for the LPY(i)

tests, including the ZLB period in the sample used to estimate the models has a smaller effect

than in our benchmark case.
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Turning to conditional volatilities, Figure A2 shows that the 3-factor models estimated

over the longer sample display much the same weaknesses as in our benchmark sample period,

i.e. the link between the level of yields and conditional volatilities is simply too tight to match

the observed volatilities in the data when yields are away from the ZLB. Unreported results show

substantively the same result for the 4-factor QTSM.

Figure A2: Conditional Volatility of Bond Yields: Sample from 1961 to 2016
This figure plots yields yt+1,12 on the horizontal axes against 1-month-ahead conditional volatilities σt (yt+1,12) on
the vertical axes (both in the data and from 3-factor models estimated using data from June 1961—Dec. 2016).
Yields and conditional volatilities are all expressed as annualized percentages. The model-implied conditional
volatilities are computed using a first-order linearization of the relationship between bond yields and the pricing
factors, evaluated at the estimated factor values.
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III. Estimated Model Parameters

Table A1 reports parameter estimates and estimated asymptotic standard errors for the

3-factor models estimated using data from Jan. 1990—Dec. 2016.

Table A1: Three-Factor Models: Sample from 1990 to 2016
Asymptotic standard errors (SEs) are computed using the methods provided by Andreasen and

Christensen (2015). SEs for θ̂
step3
11 use bandwidth parameters wD = 5 and wT = 10.

ATSM QTSM SRM
Estimate SE Estimate SE Estimate SE

α 0.0077 0.0123 - - 0.0082 0.0010
φ11 0.0048 0.0011 0.0035 0.0047 0.0037 0.0010
φ22 0.0488 0.0473 0.0536 0.0211 0.0531 0.0051
φ33 0.0502 0.0483 0.0591 0.0194 0.0571 0.0041
µ1 - - 0.0021 0.0094 - -
µ2 - - 0.0388 0.0160 - -
µ3 - - 0.0546 0.0150 - -
h0 (1, 1) −4.28× 10−5 6.02× 10−5 −0.0020 0.0017 −5.08× 10−5 5.08× 10−5

h0 (2, 1) 2.48× 10−4 0.0019 −0.0621 0.0521 6.15× 10−4 0.0015
h0 (3, 1) −3.74× 10−4 0.0019 0.0673 0.0520 −7.66× 10−4 0.0015
hx (1, 1) 0.9892 0.0127 0.9741 0.0214 0.9867 0.0106
hx (1, 2) 0.0166 0.0195 0.0110 0.0190 0.0193 0.0118
hx (1, 3) 0.0161 0.0205 0.0096 0.0196 0.0188 0.0123
hx (2, 1) 0.1727 0.3607 0.1367 0.6055 0.2403 0.2827
hx (2, 2) 1.5753 0.8182 1.6579 0.5828 1.5657 0.4028
hx (2, 3) 0.6615 0.8549 0.7867 0.6045 0.6557 0.4180
hx (3, 1) −0.1930 0.3542 −0.1308 0.6030 −0.2626 0.2812
hx (3, 2) −0.6569 0.8088 −0.7133 0.5828 −0.6556 0.4029
hx (3, 3) 0.2538 0.8448 0.1533 0.6047 0.2497 0.4179
σ11 3.94× 10−4 3.39× 10−5 0.0035 2.25× 10−4 3.79× 10−4 2.78× 10−5

σ21 −0.0051 0.0013 −0.0351 0.0088 −0.0042 9.36× 10−4

σ22 0.0108 6.54× 10−4 0.0935 0.0055 0.0106 7.22× 10−4

σ31 0.0047 0.0013 0.0323 0.0087 0.0039 9.28× 10−4

σ32 −0.0108 6.52× 10−4 −0.0941 0.0055 −0.0108 7.67× 10−4

σ33 1.46× 10−4 1.25× 10−5 0.0022 2.56× 10−4 2.84× 10−4 2.67× 10−5
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