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Abstract

Section A of the Internet Appendix studies the implicatiohsnforcing the
Hansen-Jagannathan lower bound, whereas Section B sghtlerithe sharpness of the lower
bounds orL|m]. Section C presents three asset pricing models (i) difterénabit, (ii) recursive
utility with stochastic variance, and (iii) recursive ugflwith constant jump intensity. Our

empirical assessment shows that each model is rejected baske lower bounds dom| and

L[m?].



l. Internet Appendix

A. Implications of enforcing the Hansen-Jagannathan lolaernd

The problem in Hansen and Jagannathan (1991, page 235)nsltitné SDF with

minimum variance

(1A-1) min {E ] — (E[m])z}.

mesS

Consider a portfolig depicted by the return

(IA-2) Rtl?tﬂ =a Rtt+1 with a= %y andy =5 ' (1-E[q]E [Reg41]).-

Analogous to how we construnt® andmC in Problems 1 and 2, we use portfolio (IA-2) to
constructm{}) ; consistent with the Hansen and Jagannathan (1991) loweidbte conjecture

and then verify the solution.

(IA-3) M = Bo+ BraRlL1,

(1A-4) — Bo + Bua(@Reri1),

wherep andPyj are constant parameters.

The first restriction is that the variancerf}), ; equate to the Hansen and Jagannathan



(1991, equation (12)) minimum variance, givendﬁ/J —y'sy,

a/Za yIZy
—— =
(IA-5) BﬁJvar<a Rt7t+1> = o3, implyingthat
(IA-6) BAYZy = ohy1y)2
Therefore, we obtain
(IA-7) B2, = (1’y)2 and hencePy;=1y.

Next, we enforce the restriction on the mean of the SDF:

(IA-8) Bo+ (Iy)E [a' Rt,t+1] =E[a],
E[n{,]

which yields that

(1A-9) Bo=E[at] - (1'y) E[aRee1a].

The end result is the expression for the minimum variance 8Dke type

(IA-10) s = Elal+ () (dResa—ElaReal).

(1A-11) = E[a]+Y (Retr1—E[Rira])-

The restrictions (IA-5) and (IA-8) are used to constmE?, and are in the flavor of how we used



restrictions (C-3) and (C-10) to construnt (analogously, we use equations (F-2) and (F-4) to

construcim®).

By constructiorrr{'f+1 prices correctly the generic portfolix’)le, as verified below:

! l !
E[n{'tjﬂ(a Rit+1)] = WE[nﬂJﬂ(y Rit+1)];

= (13'y) (E [(E (o] + <y/Rt,t+1 —E [y/Rt,tHD) <y/Rt,t+1>D )

(IA-12) = (le) {E (O] <y/E [Rt7t+1]> +var[y/Rt7t+1]}.

Next, we note that

(IA-13) varly Ret41] =Y Ty = (1-E[@) E[Ret:1]) T (1-E[a] E[Ret41])
and further that
(IA14) Y (E[a)ERua] = (I-E[@)E[Ri1]) T E[Reesal,

!

= (1-E[q)E[Rit+1]) = (E[G]E[Retra] —1+1),
= —Y/Z)H-(l—E[Qt]E[RmH])/Z_ll,

= —yIy+yl

Equations (IA-13) and (IA-14) together imply that

/

(1y)

@y)

(1A-15)  EMY@Ru)] = {-ysy+y1+ysy} =

1
(1y)



While the minimum variance SDF prices correctly the returthe portfolioa’RtHl , does
m{f&l price correctly the set of retuR; 1 1? To price the set of retufR; t 1, we must have
(IA-16)

E (MY Rea] =1 or E[q] E[Rysa] +COV((1—E (0] E[Re41]) = *Regs1, Rt,t+l> =1

Theoretically, this equality holds only when the dimensibi; ;1 is one.

In summary, our theoretical results indicate a one-way icagibn: when the pricing
restrictions in set (11) are used to construct the Hansedagahnathan bound, the variance of
the minimum variance SDF is identical to the bound. The csesaeed not hold; that is, the
obtained minimum variance SDF does not necessary pricH th& assets employed to

construct the minimum variance SDF. [ |

B. Sharpness of our entropy bound gml

How sharp is our bound dojm|] compared to the bound constructed from a generic

portfolio return in Backus, Chernov, and Zin (2014, Columof Zable I).

Table Internet Appendix-1 reports our lower bounds.gm| and the associated bootstrap
p-values. We consider seveidl(the dimensionality oR; ;1) and draw two conclusions. First,
our bounds orh.[m| are quantitatively sharper, implying greater hurdles acipg models (e.g.,
compare bounds in Panel V versus those in Panels | througtsBdond, the bounds obtained
with a portfolio are far less stringent than the correspogdiounds that rely on the SDFs
correctly pricing each of the assets composing the pootfdlhis can be seen by comparing the

bound displayed in row (c) versus (i) and between row (d)ue(p. |



C. Example asset pricing models

Our goal is to learn about the propertieswf 1, and their consistency with bound

restrictions. Additionally, we compatgn?] to 4L[m]. We focus on three models:
(i) Difference habit,
(i) Recursive utility with stochastic variance, and

(iif) Recursive utility with constant jump intensity.

Some of the model solutions require loglinearization, vehefects are explored and

elaborated in the study of Pohl, Schmedders, and Wilms (2015

1. Difference habit model

The shocks in the difference habit model model are normadlyiduted, and the SDF is

(Campbell and Cochrane (1999))

p-1
~1( S+1
(IA-17) M1 = B, (f) ,

whereg;;1 is consumption growth3 is the time discount parameter, and p is the coefficient
of relative risk aversion. Defing = 1 — exp(z) andz = log(hy) —log(c), wheres; is the
surplus ratio corresponding | and the habiky_, 1 is known att. The laws of motion foh; and

g are

(1A-18)  log(h1) =log(h) +n[BJlog(c) and  loggr 1) =10g(g) +Y[B]uZax1,



whereB is the lag operator, such thBf{s 1} = s, with backshift operatorg[B] = § Yj Bl and
j=0
nBl=73 r]ij. Moreovery denotes the constant variance of(gg, andwgt1 is i.i.d.
j=o
standard normal variable.

Loglinear approximation of log ), in conjunction with equation (IA-18), leads to the

following dynamics:

s—1
(1A-19) ogis2) - log(s) = (%57 ) (mIEIE - 1)log(ar).
Completing the model description, we define the state vierdab= (y[B] — Yo) v? Wgt+1, Which
governs the following dynamics of the log consumption grawt

v

1 .
(IA-20) Xt = Y102 Wgt + PgXe—1 with bg = v

Models that accommodate habit have shown promise in mai&alent attributes of the asset
market data, including the equity premium, procyclicatifystock prices, counter-cyclicality of
stock volatility, and return predictability at long horize(e.g., see, among others, Bekaert and

Engstrom (2017), Chapman (1998), Chan and Kogan (2002)$antbs and Veronesi (2010)).

2. Recursive utility models

The recursive utility models are adopted from Backus, Cherand Zin (2014):

Dl

(1A-21) U= [(1-B)cf + B [Ueya))?] P,



1 : .
with certainty equivalent functiop [Ui11] = (Et [Utﬂl])a. Moreover 3 is the time preference
parameterlflp is the intertemporal elasticity of substitution, and i is the coefficient of

relative risk aversion.

The shocksuyt, Zg, andwye are standard normal random variables, independent of each
other and across time. Additionally, the jump comporggnis a Poisson mixture of normals:
conditional on the number of jumgszy is normal, with mear6 and variancgd?. The

probability of | > 0 jumps at daté is ehtflh[jil/j!, and the jump intensityy_1, is the mean of.

With backshift operators characterized\jB] = % vjBl andy(B] = % W;BJ, the
iZo iZo

state-variables in this model obey the following dynamics:

(1A-22)  log(q) = log(g) +Y[BJu jex + W[B]z — W1 NG, =h-+n[BJoxn,

(he—1)’
it

(IA-23) v =U + V[Blwy, Zglj~A(j8,j8%), P[j]=exp(—h_1)

A. Recursive utility model with stochastic varian8eth = 0, n [B] = 0, ¢ [B] = 0 in equations

(IA-22) and (1A-23). For tractability, we consider the entibn of the transformed variable:

(1A-24) X = bgX_1 + Y102 ooyt

B. Recursive utility model with constant jump intendityequations (IA-22) and (IA-23), set

v[B] =0.

Models that incorporate recursive preferences in conjanatith stochastic variance or

jumps in the consumption growth dynamics have proved sstddsa explaining asset pricing



guantities. We refer the reader to, among others, EpsteiZzam(1991), Bansal and Yaron
(2004), Campbell and Vuolteenaho (2004), Hansen, Heatwhl.5(2008), Wachter (2013), and

Zhou and Zhu (2009).

3. Empirical evidence and connection to our findings

How do the models under consideration fare when viewed fraperspective of

data-based lower bounds on the entropynpéntropy ofi?, and the volatility ofm?

Our implementation of the models with difference habit @iwgr DH), recursive utility
with stochastic variance (hereby RU-SV), and recursiMé@yitwith constant jump intensity
(hereby RU-CJI) follows the calibration procedure in Bagk@hernov, and Zin (2014,
respectively, Model (4) in Table 2, Model (1) in Table 3, anddél (4) in Table 4). The
corresponding model parameterizations are displayedrifiahle Internet Appendix-11l, which

indicates that each model reasonably calibrates to corsumgrowth data.

Aided by our analytical representations, we generate ttiesgarm ¢,1. The paths are
based on the model parameters in Table Internet Appenbartl shocks driving the
fundamentals (e.goy: andwy: for the RU-SV). Then we obtain the sample averages of the

series{nﬁHl, my1:t=1,...T}, and accordingly compute the entroplésﬁtﬂ], LM t41],

and the volatilities ofr ¢ 1.

Next, we draw 50,000 paths for the shocks driving a model hedge, obtain 50,000
paths form ¢,1. Panels A, B, and C of Table Internet Appendix-Il report the@pies and
volatilities across the models, obtained by averaging titepies over the replications. The

p-values, shown in square brackets, represent the propartie@plications for which the



model-based entropy and volatility measures exceeds thespmnding lower bound obtained

from the returns data in 50,000 replications of a simulatieer 966 months.

How successful are the three models in generdting that is consistent with the data?
Panel A of Table Internet Appendix-II reveals aim] of 0.0196, 00217, and 0190,
respectively, for the DH, RU-SV, and RU-CJI models. Basedwndata-based performance
measure, computed based on SET B, all the models are refasteden by the bootstrap

p-values).

Such an implication from our bound, calculated using therreproperties of the
risk-free bond, the equity market, and the 25 portfoliogesbby size and momentum, differ
from a finding in Backus, Chernov, and Zin (2014). Specificdlie data-based lower bound in
Backus, Chernov, and Zin (2014, Table 1) are generally ofrdardower than the average
conditional entrop¥E[L:[m]] obtained from asset pricing models. In particular, all & 11
E[Lt[m[] in Backus, Chernov, and Zin (2014, Tables Il through 1V) edthe lower bound

inferred from the returns on a generic portfolio taken tolEe$&P 500 index.

How does one explain this discrepancy? We note that the mafgnof the lower bound
onL[m] in the calculations of Backus, Chernov, and Zin (2014, Tablew S&P 500) is (040,
whereas it is M367, based on our lower bound and SET B. It bears emphagimnthe lower
bound onL[m] constructed from the returns of a (single) generic poxfolay provide an
insufficient hurdle in evaluating the merits of an assetipgenodel. The bounds dojm| agree

in suggesting that the models are misspecified.

Elaborating further, we now argue that considering theagytt [n?] in the model

assessment can provide an important contrast to our fintismegsd on the entrogym|. One



noteworthy result is that the entropym?] of the RU-CJI model is about 15-fold higher than the
other two models that do not incorporate the random jumpufeah the dynamics of the
consumption growth. For example, the DH, RU-SV, and RU-Cdtleis generatk[n?] of

0.0785, 0.0869, and 1.4331, respectively (see the entrieanel B of

Table Internet Appendix-11). We further note that since linger bound restriction implied from
asset prices is 0.1956, the DH and RU-SV models are rejetted &% level. However, the
RU-CJI model with constant jump intensity cannot be rejgetethe 5% level, which is a point

of departure based on the entrdgyn].

Accordingly, one question emerges: Why does the RU-CJtdaekplain features ah,
as reflected in asset prices wHem|-based performance measure is used, while the model is
successful in explaining featuresrof as reflected in asset prices when tfe?]-based
performance measure is used? To investigate a source of perfiermance, we note that the
entropy measurk[n?] is substantially more sensitive to tail asymmetries arlésizé of them

distribution as opposed to the entropy meadtjng.

Taking such a trait of entropies into consideration, we refhee moments offry ¢ 1 for
each of the models in Panel D of Table Internet Appendix-te Tinexpected finding is that the
RU-CJI model embeds excessive levels of skewness and lauofos ¢ 1, while generating
variance that is almost 90 times its DH and RU-SV model capat#s. Our contention is that
the inordinate levels of the higher-order momentspf, 1 give rise to the reported[n?] of

1.4331 for the RU-CJI model.

How should one interpret a model, such as the RU-CJI, thadreés well to the first

moment, the second moment, and the autocorrelation of ogoison growth but does not

10



produce finite central moments for the distributiom®t..1? This result arises because a convex
transform of a random variable, which is here Poissondiligied, increases the skewness to the

right (see van Zwet (1966, page 10, Theorem 2.2.1)).

To see this analytically, we can use the density of the Poismodom variable to show
thatEe[(my111)K] = [ek"’g(m-t+l)] = T [Et [ek'og(m-tﬂ)“]] — eBME, [eH [k“] , for constants
G[k] andH [K]. Note thate” K is a convex transformation of the Poisson variabland, for
certain parameterizations, does not admit finite highemerts ofm 1. The inordinate
amounts of skewness and kurtosis do not appear to be a rédesadepiction of valuation

operators, which are likely to be characterized by expaakmather than power, tails.

Finally, consider the volatility bound am using the Hansen and Jagannathan (1991,
equation (12)). As seen from Panel C of Table Internet Appehdthe DH and RU-SV models
are rejected, but the RU-CJI model is not rejected for remasiistussed, namely, that the RU-CJI

model embeds an unreasonable volatility, skewness, anddisiofm.

4. Details: SDF of the difference habit model

Using a loglinear approximation of 1¢g ),

(1A-25) log(Mt+1) = Do+ (p—1) % (1~ (1-9)n[B]B) y [BJuZay 1,
where Do = log(B) + (p — 1)log(g) + (P — 1) (S_S 2 <1E(th - 1) log(g).

11



(s=1)
s

Given the approximation Iqg) ~ 1+ z, the dynamics of the surplus consumption ratio are

(s-1)

(IA-26) log(st+1) —log(s) = (n[B|B—1)log(gt+1)-

Therefore, we may write the log SDF as

log(mt+1) = log(B)+(p—1)log(g) + (p—1) <S_S Y

La-(-9nBEB)yEluieg.s

(n[B|B—1)log(g)

(1A-27) +(p—-1)
We have the expression. |

5. Details: SDF of the recursive utility models

Based on equations (IA-21) and (IA-23), we note tiogt Zy, andwy are standard
normal random variables, independent of each other andstiroe. The jump componery; is
a Poisson mixture of normals: conditional on the number wigaj, Z; is normal with mearj6

and variancg®?. The probability ofj > 0 jumps at daté+ 1 isehlhtj/j! expands to

(IA-28)mr1 = exp (Xo +ag (B Ut% Wyt+1 + 3z [B] Zgt-+1 + @y [B] wyt+1 + an [B] (*)nt+1) :
Xo = log(B)+(p—1)log(g)

(1A-29) ~ (@~ p) (Dv—3h) — (a—p) (a/2) ((Dbyv [br]) + (Ibun [ba) %) .

12



whereag [B], a;[B], a, [B], anday, [B] are backshift operators defined as follows:

(IA-30) ay[B]=(p—1)y[B|]+(a—p)y[bi], a[Bl=(p—1)W[B]+ (a—p)P[by,

(IA-31) ay[B]=(a—p)D (bv[b]—Vv[B]B), an[B]=(a—p)J(binlb]—n[B|B),
Wb ]+ (ay[bi]8)* 1)

(IA-32) D= (a/2)(y[bs])?, and J= ( o

The functions [by], v [b1], andy[b;] are polynomial functions df;:
(IA-33)

Nk = 3 vl = 3bi, Vb = 3bivi Wb = 3 b,
1= = j=

with yo = 1, where

(IA-34) %vi < o, §nj < o, §v1 < o, §w,~ < o,
=1 =1 =1 i1
and
(IA-35) v[B]= Y v;B! and wBl =Y B
2" 2"

A. Recursive utility with stochastic variance: The SDF is a special case of (IA-28) with= 0,

n[B] =0,J = 0. The SDF takes the form

1 1
Ho+ (p— 1) y[BJuZwygtr1+ (0 — p) y[b1] Wyt i1
(IA-36) M1 = EXp ’

+ (o —p) Dbyv [by] o1 — (@ — p) DV [B] Byt 41

13



with

(IA-37)  Ho=1log(B)+(p—1)logg— (a—p)(Dv) — (@ —p) (a/2) ((Dbyv [ba])?).

Now we define

1
(IA-38) % = (Y[B] — Yo) Uf Wyt +1.
The state variablg dynamics is
1 ) .
(IA-39) X = PgX—1+VY1U7 Wy, With  yj=dgyj_1for j>2 and ¢g=
It can be shown that the dynamics of the state variable
Vi1

(IA-40)  ut—U=¢y (V-1 —V)+Vvount,  forj>2 and ¢y =
0

The SDF can be expressed as

(IA-41) M 141 = exp(H1 + Hax 4+ HaX;1 + Havt + HsUp41)

14
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where

(1A-42) Hi = Ho+ (a—p)Du+ (a—p)Dbyvb] (¢Uv_ Y v,
0

(1A-43) Hy — (p—1>—<<a—p>v[bﬂ+<p—1>>%,
(1A-44) Hy = (P=D, (@=p)ylb]

Y1 Y1
(IA-45) Hy = (a—p)D (—blv [by] (E—; - 1) , and
(1A-46) Hs — (a—p)Dby Pt

Vo

B. Recursive utility model with constant jump intensity: Consider the consumption growth

dynamics withv [B] = O (in this casey = v). It can be shown that the SDF reduces to

Xo
+(P—1)%+((P—1)yo+ (a—p)y[br]) LZege: 1
(IA-47) M1 =exp
+(P—1)(W[B] —Wo) Zgt+1+ (P — 1) Wo+ (o — p) W[b1]) Zgt+1

+ (a0 —p)Jbn [by] wher1 — (0 —p) (hy —h) J

Now denote

(IA-48) % = (W[B] —Wo) zgt+1.

15



The law of motion ofx. becomes

(IA-49) % =0K 1 +Wizg, with ¢,= %

The SDF in equation (IA-47) reduces to

(IA-50)

and  WYji2=0Pj11 forj>1

_ 1
M t+1 = EXP (Go + Gx + GoXe—1 + GaZgt + Gahy + GsZgr 1 + GeL2 gt 11 + G700ht+1) ;

with
Gy = Xo+ (G — p) hJ, Gy
G = (p—1) 0z, Gz =
Gy = —(a—p)J, Gs

Gs = (P—1yo+(a—p)y[bhy], G

16

(p_1)7
(p—l)l.IJ]_,
(P—1)Wo+(a—p) Wby,

(a—p)Join[by].



Table Internet Appendix-I

Sharpness of our entropy bounds orm 1, when SDFs correctly price each of theN + 1
assets

Reported are the lower entropy bounds with the one-spledlues in(.). Our lower entropy bound on
M1 iS based on equation (20) and relies on the ability of the SDéotrectly priceeach of the N1
assets (the risk-free bond ahdrisky assets). The Backus, Chernov, and Zin (2014, equ@bpriower
bound on the entropy ofy 111 (denoted by BCZ) is based on the expressiflog(RT , ;)] —10g(Ri+1,1),
whereR";  , is the return on a single risky asset or a benchmark portfoéq which we proxy by the value-
weighted equity market return or equally weighted portfaf 25 Fama-French size and book-to-market
portfolios). R.11 1 is the gross return of the three-month Treasury bond. We@nifferent assets and

in the construction of the bounds. For example, in PanetiNthisky assets are based on two data sets: SET
A contains the value-weighted market returns, togethdn thié 25 Fama-French size and book-to-market
portfolios, while SET B contains the value-weighted markttirns together with the 25 Fama-French size
and momentum portfolios. The sample period is from July 1#®3ecember 2011 (966 observations). To
compute these-values, we first use the block bootstrap with a block sizedabZyenerate 50,000 samples
from the original data. Then we compute the lower bounds ah eample and tabulate the proportion of
bootstrap samples for which the lower bound is less than zero

Lower bound om ¢ 1

Bound p-value

Panel I. SDF correctly prices each of theqNL assets, and we setN 26

(a) Set A: Market, 25 size & B/IM 0.023 (0.000
(b) Set B: Market, 25 size & momentum 0.037 (0.003
Panel Il. SDF correctly prices each of the-N1 assets, and we setN 25
(c) Set C: 25 size & B/M 0.022 (0.000
(d) Set D: 25 size & momentum 0.029 (0.000
Panel Ill. SDF correctly prices each of the-N1 assets, and we setN 11
(e) Set E: Market, 10 momentum 0.020 (0.000
Panel IV. SDF correctly prices each of the{NL assets, and we setN 2
(f) Set F: Market, Low Momentum 0.010 (0.000
(g) Set G: Market, high Momentum 0.014 (0.010
Panel V. SDF correctly prices each of thetNL assets, and we setN 1
(BCZ, Eq. 5)
(h) Set H: Market portfolio only 0.005 (0.005
(i) Set I: EWI portfolio of 25 size & B/M 0.007 0.001

(
()) Set J: EWI portfolio of 25 size & momentum 0.007 (0.001

17



Table Internet Appendix-II

Model comparisons using bounds
Reported are the results for bounds on the entropy, ¢he entropy ofr?, and the volatility ofm, for three models:

— the difference habit (denoted by DH),
— the recursive utility with stochastic variance (denoted-SV),
— and the recursive utility with constant jump intensity (d&d by RU-CJI).

The one-sideg-values shown in square brackets represent the proportti@plications for which the model-based
guantity (entropy or volatility) exceeds, in 50,000 reptions, the lower bound computed from observed asset prices
Our lower bound on the entropy of is based on equation (12) and relies on the ability of the SDietrectly price

N+ 1 assets (the risk-free bond aNdisky assets). ThH risky assets are based on SET B, which contains the value-
weighted market returns, together with the 25 Fama-Freizehand momentum portfolios. The sample period is
from July 1931 to December 2011. The lower bound on the eptwdbmis based on equation (20) and also relies on
the ability of the SDF to correctly pridd + 1 assets. The lower bound on the volatilityrofs based on Hansen and
Jagannathan (1991, equation (12)). We focus on SET B, asrésgmonds to the maximum lower bound on entropy

measures (as in our Table Internet Appendix-I). Panel Daorisghe variance, skewness, and kurtosig,afhich are
consistent with model parameterizations in Table InteApgendix-11l. The one-sideg-values(.), reported below
the lower bounds, represent the proportion of bootstragkesrior which the lower bound is less than zero.

Habit model Recursive utility models
DH RU-SV RU-CJI Lower
bounds
(Set B)
Panel A: Entropy of m
L[m] 0.0196 0.0217 0.0190 0.0367
[0.000] [0.000] [0.000] (0.003
Panel B: Entropy of rh
L[] 0.0785 0.0869 1.4331 0.1956
[0.000] [0.000] [1.000] (0.003
Panel C: Volatility bound
Hansen and Jagannathan (1991) 0.0415 0.0444 3.344 0.1292
[0.000] [0.000] [1.000] (0.000
Panel D: Moments of the ;1 distribution
Variance 0.0403 0.0444 3.3438
Skewness 0.6041 0.6476 +-00
Kurtosis 3.6447 3.8061 +00
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Table Internet Appendix-1l|

Parameters employed in model implementation

Displayed in this table are the parameters that govern igneées and the dynamics of consump-
tion growth. These parameters are adopted from Tables 2d34 af Backus, Chernov, and Zin
(2014), and likewise lo@) andng are taken from their page 16. Our implementation of the mod-
els with difference habit (hereby DH), recursive utilityttvstochastic variance (hereby RU-SV),
and recursive utility with constant jump intensity (herdRly-CJl) follows Backus, Chernov, and
Zin (2014, respectively, Model (4) in Table 2, Model (1) irbl@3, and Model (4) in Table 4). We
use US annual real personal consumption expenditures agyfpr aggregate consumption over
the sample period of 1931:07 to 2011:12 (966 observatidog)ompare model implications with
the data, we simulate a finite sample of consumption gromth/c;, over 966 months. Following
convention, we then compute the annualized consumptiomtgras ex;()zjlillog(ctﬂ /Ct4+j-1))-
The reported model mean, standard deviation, and autelaton are based on the annualized
consumption growth.

Parameter DH RU-SV RU-CJI  Data implied

Panel A: Preferences

p -9.0000 0.3333 0.3333

a -9.0000 -9.0000

B 0.9980 0.9980 0.9980

dn 0.9000

s 0.5000

Panel B: Consumption growth dynamics

Yo 1.0000 1.0000 1.0000

log(g) 0.0015 0.0015 0.0015

No 0.1000

Vi 0.0271 0.0271 0.0281

dg 0.9790 0.9790 0.9690

v1/2 0.0099 0.0099 0.0079

Vo 0.23x10°°

dy 0.9870

h 0.0008

S -0.1500

o 0.1500

Wo 1.0000

by 0.9977 0.9979

Panel C: Consumption growth
Mean (annualized) 1.0192 1.0190 1.0189 1.0339
Std. Dev. (annualized) 0.0416 0.0415 0.0369 0.0287
Autocorrelation 0.2424 0.2433 0.1771 0.2386
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