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Abstract

Section A of the Internet Appendix studies the implicationsof enforcing the

Hansen-Jagannathan lower bound, whereas Section B sheds light on the sharpness of the lower

bounds onL[m]. Section C presents three asset pricing models (i) difference habit, (ii) recursive

utility with stochastic variance, and (iii) recursive utility with constant jump intensity. Our

empirical assessment shows that each model is rejected based on the lower bounds onL[m] and

L[m2].



I. Internet Appendix

A. Implications of enforcing the Hansen-Jagannathan lowerbound

The problem in Hansen and Jagannathan (1991, page 235) is to find the SDF with

minimum variance

(IA-1) min
m∈S

{
E
[
m2]− (E [m])2

}
.

Consider a portfoliop depicted by the return

Rp
t,t+1 = a

′
Rt,t+1 with a=

y
1′y

and y = Σ−1(1−E [qt ]E [Rt,t+1]) .(IA-2)

Analogous to how we constructm• andmG in Problems 1 and 2, we use portfolio (IA-2) to

constructmHJ
t,t+1 consistent with the Hansen and Jagannathan (1991) lower bound. We conjecture

and then verify the solution.

mHJ
t,t+1 = β0 + βHJRp

t,t+1,(IA-3)

= β0 + βHJ(a
′
Rt,t+1),(IA-4)

whereβ0 andβHJ are constant parameters.

The first restriction is that the variance ofmHJ
t,t+1 equate to the Hansen and Jagannathan
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(1991, equation (12)) minimum variance, given byσ2
HJ = y

′Σy,

β2
HJ

a
′Σa︷ ︸︸ ︷

var
(

a
′
Rt,t+1

)
=

y
′Σy︷︸︸︷

σ2
HJ , implying that(IA-5)

β2
HJy

′
Σy = σ2

HJ(1
′y)2.(IA-6)

Therefore, we obtain

(IA-7) β2
HJ=

(
1′y
)2

and henceβHJ= 1′y.

Next, we enforce the restriction on the mean of the SDF:

(IA-8) β0+
(
1′y
)
E

[
a
′
Rt,t+1

]

︸ ︷︷ ︸
E[mHJ

t,t+1]

= E [qt ] ,

which yields that

(IA-9) β0 = E [qt ]−
(
1′y
)
E[a

′
Rt,t+1].

The end result is the expression for the minimum variance SDFof the type

mHJ
t,t+1 = E [qt ]+

(
1′y
)(

a
′
Rt,t+1−E[a

′
Rt,t+1]

)
,(IA-10)

= E [qt ]+y
′
(Rt,t+1−E[Rt,t+1]) .(IA-11)

The restrictions (IA-5) and (IA-8) are used to constructmHJ, and are in the flavor of how we used
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restrictions (C-3) and (C-10) to constructm• (analogously, we use equations (F-2) and (F-4) to

constructmG).

By constructionmHJ
t,t+1 prices correctly the generic portfolioa

′
Rt,t+1, as verified below:

E[mHJ
t,t+1(a

′
Rt,t+1)] =

1
(1′y)

E[mHJ
t,t+1(y

′
Rt,t+1)],

=
1

(1′y)

(
E

[(
E [qt ]+

(
y
′
Rt,t+1−E

[
y
′
Rt,t+1

]))(
y
′
Rt,t+1

)])
,

=
1

(1′y)

{
E [qt]

(
y
′
E [Rt,t+1]

)
+var[y

′
Rt,t+1]

}
.(IA-12)

Next, we note that

(IA-13) var[y
′
Rt,t+1] = y

′
Σy = (1−E [qt ]E [Rt,t+1])

′
Σ−1(1−E [qt ]E [Rt,t+1])

and further that

y
′
(E [qt ])E [Rt,t+1] = (1−E [qt ]E [Rt,t+1])

′
Σ−1

E [Rt,t+1] ,(IA-14)

= (1−E [qt ]E [Rt,t+1])
′
Σ−1(E [qt ]E [Rt,t+1]−1+1) ,

= −y
′
Σy+(1−E [qt ]E [Rt,t+1])

′
Σ−11,

= −y
′
Σy+y

′
1.

Equations (IA-13) and (IA-14) together imply that

E[mHJ
t,t+1(a

′
Rt,t+1)] =

1
(1′y)

{
−y

′
Σy+y

′
1+y

′
Σy
}
=

(1
′
y)

(1′y)
= 1.(IA-15)
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While the minimum variance SDF prices correctly the return of the portfolioa
′
Rt,t+1 , does

mHJ
t,t+1 price correctly the set of returnRt,t+1? To price the set of returnRt,t+1, we must have

(IA-16)

E
[
mHJ

t,t+1Rt,t+1
]
= 1 or E [qt ]E [Rt,t+1]+cov

(
(1−E [qt ]E [Rt,t+1])

′
Σ−1Rt,t+1,Rt,t+1

)
= 1.

Theoretically, this equality holds only when the dimensionof Rt,t+1 is one.

In summary, our theoretical results indicate a one-way implication: when the pricing

restrictions in set (11) are used to construct the Hansen andJagannathan bound, the variance of

the minimum variance SDF is identical to the bound. The converse need not hold; that is, the

obtained minimum variance SDF does not necessary price theN+1 assets employed to

construct the minimum variance SDF.

B. Sharpness of our entropy bound on L[m]

How sharp is our bound onL[m] compared to the bound constructed from a generic

portfolio return in Backus, Chernov, and Zin (2014, Column 2of Table I).

Table Internet Appendix-I reports our lower bounds onL[m] and the associated bootstrap

p-values. We consider severalN (the dimensionality ofRt,t+1) and draw two conclusions. First,

our bounds onL[m] are quantitatively sharper, implying greater hurdles on pricing models (e.g.,

compare bounds in Panel V versus those in Panels I through IV). Second, the bounds obtained

with a portfolio are far less stringent than the corresponding bounds that rely on the SDFs

correctly pricing each of the assets composing the portfolio. This can be seen by comparing the

bound displayed in row (c) versus (i) and between row (d) versus (j).
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C. Example asset pricing models

Our goal is to learn about the properties ofmt,t+1, and their consistency with bound

restrictions. Additionally, we compareL[m2] to 4L[m]. We focus on three models:

(i) Difference habit,

(ii) Recursive utility with stochastic variance, and

(iii) Recursive utility with constant jump intensity.

Some of the model solutions require loglinearization, whose effects are explored and

elaborated in the study of Pohl, Schmedders, and Wilms (2015).

1. Difference habit model

The shocks in the difference habit model model are normally distributed, and the SDF is

(Campbell and Cochrane (1999))

(IA-17) mt,t+1 = βgρ−1
t+1

(
st+1

st

)ρ−1

,

wheregt+1 is consumption growth,β is the time discount parameter, and 1−ρ is the coefficient

of relative risk aversion. Definest ≡ 1−exp(zt) andzt ≡ log(ht)− log(ct), wherest is the

surplus ratio corresponding tozt, and the habitht+1 is known att. The laws of motion forht and

gt are

log(ht+1) = log(h)+η [B] log(ct) and log(gt+1) = log(g)+ γ [B]υ
1
2 ωgt+1,(IA-18)
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whereB is the lag operator, such thatB{st+1}= st , with backshift operatorsγ [B] =
∞
∑
j=0

γ jB j and

η [B] =
∞
∑
j=0

η jB j . Moreover,υ denotes the constant variance of log(gt), andωgt+1 is i.i.d.

standard normal variable.

Loglinear approximation of log(st), in conjunction with equation (IA-18), leads to the

following dynamics:

(IA-19) log(st+1)− log(st) =

(
s−1

s

)
(η [B]B−1) log(gt+1).

Completing the model description, we define the state variable xt = (γ [B]− γ0)υ
1
2 ωgt+1, which

governs the following dynamics of the log consumption growth:

xt = γ1 υ
1
2 ωgt +ϕgxt−1 with ϕg =

γ2

γ1
.(IA-20)

Models that accommodate habit have shown promise in matching salient attributes of the asset

market data, including the equity premium, procyclicalityof stock prices, counter-cyclicality of

stock volatility, and return predictability at long horizons (e.g., see, among others, Bekaert and

Engstrom (2017), Chapman (1998), Chan and Kogan (2002), andSantos and Veronesi (2010)).

2. Recursive utility models

The recursive utility models are adopted from Backus, Chernov, and Zin (2014):

(IA-21) Ut =
[
(1−β)cρ

t + β(µt [Ut+1])
ρ] 1

ρ ,
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with certainty equivalent functionµt [Ut+1] =
(
Et
[
Uα

t+1

]) 1
α . Moreover,β is the time preference

parameter, 1
1−ρ is the intertemporal elasticity of substitution, and 1−α is the coefficient of

relative risk aversion.

The shocksωgt, zgt, andωht are standard normal random variables, independent of each

other and across time. Additionally, the jump componentzgt is a Poisson mixture of normals:

conditional on the number of jumpsj, zgt is normal, with meanjθ and variancejδ2. The

probability of j ≥ 0 jumps at datet is eht−1h j
t−1/ j!, and the jump intensity,ht−1, is the mean ofj.

With backshift operators characterized byν [B] =
∞
∑
j=0

ν jB j andψ [B] =
∞
∑
j=0

ψ jB j , the

state-variables in this model obey the following dynamics:

log(gt) = log(g)+ γ [B]υ1/2
t−1ωgt +ψ [B]zgt −ψ [1]hθ, ht = h+η [B]ωht,(IA-22)

υt = υ + ν [B]ωυt , zgt| j ∼ N
(

jθ, jδ2) , P[ j] = exp(−ht−1)
(ht−1)

j

j!
.(IA-23)

A. Recursive utility model with stochastic variance. Seth= 0, η [B] = 0, ψ [B] = 0 in equations

(IA-22) and (IA-23). For tractability, we consider the evolution of the transformed variable:

xt = ϕgxt−1 + γ1υ1/2
t−1 ωgt.(IA-24)

B. Recursive utility model with constant jump intensity: In equations (IA-22) and (IA-23), set

ν [B] = 0.

Models that incorporate recursive preferences in conjunction with stochastic variance or

jumps in the consumption growth dynamics have proved successful in explaining asset pricing
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quantities. We refer the reader to, among others, Epstein and Zin (1991), Bansal and Yaron

(2004), Campbell and Vuolteenaho (2004), Hansen, Heaton, and Li (2008), Wachter (2013), and

Zhou and Zhu (2009).

3. Empirical evidence and connection to our findings

How do the models under consideration fare when viewed from the perspective of

data-based lower bounds on the entropy ofm, entropy ofm2, and the volatility ofm?

Our implementation of the models with difference habit (hereby DH), recursive utility

with stochastic variance (hereby RU-SV), and recursive utility with constant jump intensity

(hereby RU-CJI) follows the calibration procedure in Backus, Chernov, and Zin (2014,

respectively, Model (4) in Table 2, Model (1) in Table 3, and Model (4) in Table 4). The

corresponding model parameterizations are displayed in our Table Internet Appendix-III, which

indicates that each model reasonably calibrates to consumption growth data.

Aided by our analytical representations, we generate the paths formt,t+1. The paths are

based on the model parameters in Table Internet Appendix-III and shocks driving the

fundamentals (e.g.,ωυt andωgt for the RU-SV). Then we obtain the sample averages of the

series{m2
t,t+1,mt,t+1 : t = 1, . . .T}, and accordingly compute the entropiesL[m2

t,t+1], L[mt,t+1],

and the volatilities ofmt,t+1.

Next, we draw 50,000 paths for the shocks driving a model and,hence, obtain 50,000

paths formt,t+1. Panels A, B, and C of Table Internet Appendix-II report the entropies and

volatilities across the models, obtained by averaging the entropies over the replications. The

p-values, shown in square brackets, represent the proportion of replications for which the
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model-based entropy and volatility measures exceeds the corresponding lower bound obtained

from the returns data in 50,000 replications of a simulationover 966 months.

How successful are the three models in generatingL[m] that is consistent with the data?

Panel A of Table Internet Appendix-II reveals anL[m] of 0.0196, 0.0217, and 0.0190,

respectively, for the DH, RU-SV, and RU-CJI models. Based onour data-based performance

measure, computed based on SET B, all the models are rejected(as seen by the bootstrap

p-values).

Such an implication from our bound, calculated using the return properties of the

risk-free bond, the equity market, and the 25 portfolios sorted by size and momentum, differ

from a finding in Backus, Chernov, and Zin (2014). Specifically, the data-based lower bound in

Backus, Chernov, and Zin (2014, Table 1) are generally of an order lower than the average

conditional entropyE[Lt [m]] obtained from asset pricing models. In particular, all of the 11

E[Lt [m]] in Backus, Chernov, and Zin (2014, Tables II through IV) exceed the lower bound

inferred from the returns on a generic portfolio taken to be the S&P 500 index.

How does one explain this discrepancy? We note that the magnitude of the lower bound

onL[m] in the calculations of Backus, Chernov, and Zin (2014, Table1, row S&P 500) is 0.0040,

whereas it is 0.0367, based on our lower bound and SET B. It bears emphasizingthat the lower

bound onL[m] constructed from the returns of a (single) generic portfolio may provide an

insufficient hurdle in evaluating the merits of an asset pricing model. The bounds onL[m] agree

in suggesting that the models are misspecified.

Elaborating further, we now argue that considering the entropyL[m2] in the model

assessment can provide an important contrast to our findingsbased on the entropyL[m]. One
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noteworthy result is that the entropyL[m2] of the RU-CJI model is about 15-fold higher than the

other two models that do not incorporate the random jump feature in the dynamics of the

consumption growth. For example, the DH, RU-SV, and RU-CJI models generateL[m2] of

0.0785, 0.0869, and 1.4331, respectively (see the entries in Panel B of

Table Internet Appendix-II). We further note that since thelower bound restriction implied from

asset prices is 0.1956, the DH and RU-SV models are rejected at the 5% level. However, the

RU-CJI model with constant jump intensity cannot be rejected at the 5% level, which is a point

of departure based on the entropyL[m].

Accordingly, one question emerges: Why does the RU-CJI failto explain features ofm,

as reflected in asset prices whenL[m]-based performance measure is used, while the model is

successful in explaining features ofm, as reflected in asset prices when theL[m2]-based

performance measure is used? To investigate a source of model performance, we note that the

entropy measureL[m2] is substantially more sensitive to tail asymmetries and tail size of them

distribution as opposed to the entropy measureL[m].

Taking such a trait of entropies into consideration, we report the moments ofmt,t+1 for

each of the models in Panel D of Table Internet Appendix-II. The unexpected finding is that the

RU-CJI model embeds excessive levels of skewness and kurtosis of mt,t+1, while generating

variance that is almost 90 times its DH and RU-SV model counterparts. Our contention is that

the inordinate levels of the higher-order moments ofmt,t+1 give rise to the reportedL[m2] of

1.4331 for the RU-CJI model.

How should one interpret a model, such as the RU-CJI, that calibrates well to the first

moment, the second moment, and the autocorrelation of consumption growth but does not
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produce finite central moments for the distribution ofmt,t+1? This result arises because a convex

transform of a random variable, which is here Poisson-distributed, increases the skewness to the

right (see van Zwet (1966, page 10, Theorem 2.2.1)).

To see this analytically, we can use the density of the Poisson random variable to show

thatEt [(mt,t+1)
k] = Et

[
ek log(mt,t+1)

]
= Et

[
Et

[
ek log(mt,t+1)| j

]]
= eG[k]

Et

[
eH[k] j

]
, for constants

G[k] andH[k]. Note thateH[k] j is a convex transformation of the Poisson variableJ, and, for

certain parameterizations, does not admit finite higher-moments ofmt,t+1. The inordinate

amounts of skewness and kurtosis do not appear to be a reasonable depiction of valuation

operators, which are likely to be characterized by exponential, rather than power, tails.

Finally, consider the volatility bound onm using the Hansen and Jagannathan (1991,

equation (12)). As seen from Panel C of Table Internet Appendix-II, the DH and RU-SV models

are rejected, but the RU-CJI model is not rejected for reasons discussed, namely, that the RU-CJI

model embeds an unreasonable volatility, skewness, and kurtosis ofm.

4. Details: SDF of the difference habit model

Using a loglinear approximation of log(st),

(IA-25) log(mt,t+1) = D0+(ρ−1)
1
s
(1− (1−s)η [B]B) γ [B]υ

1
2 ωgt+1,

where D0 = log(β)+(ρ−1) log(g)+(ρ−1)
(s−1)

s

(
η0

1−ϕh
−1

)
log(g).
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Given the approximation log(st)≈ 1+ (s−1)
s zt , the dynamics of the surplus consumption ratio are

(IA-26) log(st+1)− log(st) =
(s−1)

s
(η [B]B−1) log(gt+1).

Therefore, we may write the log SDF as

log(mt,t+1) = log(β)+(ρ−1) log(g)+(ρ−1)
(s−1)

s
(η [B]B−1) log(g)

+(ρ−1)
1
s
(1− (1−s)η [B]B)γ [B]υ

1
2 ωgt+1.(IA-27)

We have the expression.

5. Details: SDF of the recursive utility models

Based on equations (IA-21) and (IA-23), we note thatωgt, zgt, andωht are standard

normal random variables, independent of each other and across time. The jump componentzgt is

a Poisson mixture of normals: conditional on the number of jumps j, zgt is normal with meanjθ

and variancejδ2. The probability ofj ≥ 0 jumps at datet +1 iseht h j
t / j! expands to

mt,t+1 = exp

(
χ0+ag [B]υ

1
2
t ωgt+1+az[B]zgt+1+aυ [B]ωυt+1+ah [B]ωht+1

)
,(IA-28)

χ0 = log(β)+(ρ−1) log(g)

−(α−ρ)(Dυ−Jh)− (α−ρ)(α/2)
(
(Db1ν [b1])

2+(Jb1η [b1])
2
)
,(IA-29)
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whereag [B], az[B], aυ [B], andah [B] are backshift operators defined as follows:

ag [B] = (ρ−1)γ [B]+(α−ρ)γ [b1] , az[B] = (ρ−1)ψ [B]+(α−ρ)ψ [b1] ,(IA-30)

aυ [B] = (α−ρ) D (b1ν [b1]−ν [B]B) , ah [B] = (α−ρ)J(b1η [b1]−η [B]B) ,(IA-31)

D = (α/2)(γ [b1])
2 , and J =

(
eαψ[b1]θ+(αψ[b1]δ)2 −1

α

)
.(IA-32)

The functionsη [b1], ν [b1], andγ [b1] are polynomial functions ofb1:

(IA-33)

η [b1] =
∞
∑
j=0

b j
1η j , γ [b1] =

∞
∑
j=0

b j
1γ j , ν [b1] =

∞
∑
j=0

b j
1ν j , ψ [b1] =

∞
∑
j=0

b j
1ψ j ,

with γ0 = 1, where

(IA-34)
∞
∑
j=1

γ j < ∞,
∞
∑
j=1

η j < ∞,
∞
∑
j=1

ν j < ∞,
∞
∑
j=1

ψ j < ∞,

and

ν [B] =
∞

∑
j=0

ν jB
j and ψ [B] =

∞

∑
j=0

ψ jB
j .(IA-35)

A. Recursive utility with stochastic variance:The SDF is a special case of (IA-28) withh= 0,

η [B] = 0, J = 0. The SDF takes the form

(IA-36) mt,t+1 = exp




H0+(ρ−1)γ [B]υ
1
2
t ωgt+1+(α−ρ)γ [b1]υ

1
2
t ωgt+1

+(α−ρ)Db1ν [b1]ωυt+1− (α−ρ)Dν [B]Bωυt+1


 ,
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with

(IA-37) H0 = log(β)+(ρ−1) logg− (α−ρ)(Dυ)− (α−ρ)(α/2)
(
(Db1ν [b1])

2
)
.

Now we define

(IA-38) xt = (γ [B]− γ0)υ
1
2
t ωgt+1.

The state variablext dynamics is

xt = ϕgxt−1+ γ1υ
1
2
t−1ωgt, with γ j = ϕgγ j−1 for j ≥ 2 and ϕg =

γ2

γ1
.(IA-39)

It can be shown that the dynamics of the state variableυt is

υt −υ = ϕυ (υt−1−υ)+ν0ωυt , for j ≥ 2 and ϕυ =
ν1

ν0
.(IA-40)

The SDF can be expressed as

(IA-41) mt,t+1 = exp(H1+H2xt +H3xt+1+H4υt +H5υt+1) ,
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where

H1 = H0+(α−ρ)Dυ+(α−ρ)Db1ν [b1]
(ϕυ −1)

ν0
υ,(IA-42)

H2 = (ρ−1)− ((α−ρ)γ [b1]+(ρ−1))
ϕg

γ1
,(IA-43)

H3 =
(ρ−1)

γ1
+

(α−ρ)γ [b1]

γ1
,(IA-44)

H4 = (α−ρ)D

(
−b1ν [b1]

ϕυ
ν0

−1

)
, and(IA-45)

H5 = (α−ρ)Db1
ν [b1]

ν0
.(IA-46)

B. Recursive utility model with constant jump intensity: Consider the consumption growth

dynamics withν [B] = 0 (in this caseυt = υ). It can be shown that the SDF reduces to

(IA-47) mt,t+1 = exp




χ0

+(ρ−1)xt +((ρ−1)γ0+(α−ρ)γ [b1])υ
1
2 ωgt+1

+(ρ−1)(ψ [B]−ψ0)zgt+1+((ρ−1)ψ0+(α−ρ)ψ [b1])zgt+1

+(α−ρ)Jb1η [b1]ωht+1− (α−ρ)(ht −h) J




.

Now denote

(IA-48) x̃t = (ψ [B]−ψ0)zgt+1.

15



The law of motion of̃xt becomes

x̃t = ϕzx̃t−1 +ψ1zgt, with ϕz =
ψ2

ψ1
and ψ j+2 = ϕzψ j+1 for j ≥ 1.(IA-49)

The SDF in equation (IA-47) reduces to

(IA-50)

mt,t+1 = exp
(

G0+G1xt +G2x̃t−1+G3zgt +G4ht +G5zgt+1+G6υ
1
2 ωgt+1+G7ωht+1

)
,

with

G0 = χ0+(α−ρ)hJ, G1 = (ρ−1) ,

G2 = (ρ−1)ϕz, G3 = (ρ−1)ψ1,

G4 = −(α−ρ) J, G5 = (ρ−1)ψ0+(α−ρ)ψ [b1] ,

G6 = (ρ−1)γ0+(α−ρ)γ [b1] , G7 = (α−ρ)Jb1η [b1] .
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Table Internet Appendix-I
Sharpness of our entropy bounds onmt,t+1, when SDFs correctly price each of theN+ 1
assets
Reported are the lower entropy bounds with the one-sidedp-values in〈.〉. Our lower entropy bound on
mt,t+1 is based on equation (20) and relies on the ability of the SDF to correctly priceeach of the N+ 1
assets (the risk-free bond andN risky assets). The Backus, Chernov, and Zin (2014, equation(5)) lower
bound on the entropy ofmt,t+1 (denoted by BCZ) is based on the expressionE[log(Rm

t,t+1)]− log(Rt+1, f ),
whereRm

t,t+1 is the return on a single risky asset or a benchmark portfolio(i.e., which we proxy by the value-
weighted equity market return or equally weighted portfolio of 25 Fama-French size and book-to-market
portfolios).Rt+1, f is the gross return of the three-month Treasury bond. We employ different assets andN
in the construction of the bounds. For example, in Panel I, theN risky assets are based on two data sets: SET
A contains the value-weighted market returns, together with the 25 Fama-French size and book-to-market
portfolios, while SET B contains the value-weighted marketreturns together with the 25 Fama-French size
and momentum portfolios. The sample period is from July 1931to December 2011 (966 observations). To
compute thesep-values, we first use the block bootstrap with a block size of 20 to generate 50,000 samples
from the original data. Then we compute the lower bounds in each sample and tabulate the proportion of
bootstrap samples for which the lower bound is less than zero.

Lower bound onmt,t+1

Bound p-value

Panel I. SDF correctly prices each of the N+1 assets, and we set N= 26
(a) Set A: Market, 25 size & B/M 0.023 〈0.000〉
(b) Set B: Market, 25 size & momentum 0.037 〈0.003〉

Panel II. SDF correctly prices each of the N+1 assets, and we set N= 25
(c) Set C: 25 size & B/M 0.022 〈0.000〉
(d) Set D: 25 size & momentum 0.029 〈0.000〉

Panel III. SDF correctly prices each of the N+1 assets, and we set N= 11
(e) Set E: Market, 10 momentum 0.020 〈0.000〉

Panel IV. SDF correctly prices each of the N+1 assets, and we set N= 2
(f) Set F: Market, Low Momentum 0.010 〈0.000〉
(g) Set G: Market, high Momentum 0.014 〈0.010〉

Panel V. SDF correctly prices each of the N+1 assets, and we set N= 1
(BCZ, Eq. 5)

(h) Set H: Market portfolio only 0.005 〈0.005〉
(i) Set I: EWI portfolio of 25 size & B/M 0.007 〈0.001〉
(j) Set J: EWI portfolio of 25 size & momentum 0.007 〈0.001〉
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Table Internet Appendix-II
Model comparisons using bounds
Reported are the results for bounds on the entropy ofm, the entropy ofm2, and the volatility ofm, for three models:

– the difference habit (denoted by DH),

– the recursive utility with stochastic variance (denoted byRU-SV),

– and the recursive utility with constant jump intensity (denoted by RU-CJI).

The one-sidedp-values shown in square brackets represent the proportion of replications for which the model-based
quantity (entropy or volatility) exceeds, in 50,000 replications, the lower bound computed from observed asset prices.
Our lower bound on the entropy ofm2 is based on equation (12) and relies on the ability of the SDF to correctly price
N+1 assets (the risk-free bond andN risky assets). TheN risky assets are based on SET B, which contains the value-
weighted market returns, together with the 25 Fama-French size and momentum portfolios. The sample period is
from July 1931 to December 2011. The lower bound on the entropy of m is based on equation (20) and also relies on
the ability of the SDF to correctly priceN+1 assets. The lower bound on the volatility ofm is based on Hansen and
Jagannathan (1991, equation (12)). We focus on SET B, as it corresponds to the maximum lower bound on entropy
measures (as in our Table Internet Appendix-I). Panel D presents the variance, skewness, and kurtosis ofm, which are
consistent with model parameterizations in Table InternetAppendix-III. The one-sidedp-values〈.〉, reported below
the lower bounds, represent the proportion of bootstrap samples for which the lower bound is less than zero.

Habit model Recursive utility models
DH RU-SV RU-CJI Lower

bounds
(Set B)

Panel A: Entropy of m
L[m] 0.0196 0.0217 0.0190 0.0367

[0.000] [0.000] [0.000] 〈0.003〉

Panel B: Entropy of m2

L[m2] 0.0785 0.0869 1.4331 0.1956
[0.000] [0.000] [1.000] 〈0.003〉

Panel C: Volatility bound
Hansen and Jagannathan (1991) 0.0415 0.0444 3.344 0.1292

[0.000] [0.000] [1.000] 〈0.000〉

Panel D: Moments of the mt,t+1 distribution
Variance 0.0403 0.0444 3.3438
Skewness 0.6041 0.6476 +∞
Kurtosis 3.6447 3.8061 +∞
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Table Internet Appendix-III
Parameters employed in model implementation
Displayed in this table are the parameters that govern preferences and the dynamics of consump-
tion growth. These parameters are adopted from Tables 2, 3, and 4 of Backus, Chernov, and Zin
(2014), and likewise log(g) andη0 are taken from their page 16. Our implementation of the mod-
els with difference habit (hereby DH), recursive utility with stochastic variance (hereby RU-SV),
and recursive utility with constant jump intensity (herebyRU-CJI) follows Backus, Chernov, and
Zin (2014, respectively, Model (4) in Table 2, Model (1) in Table 3, and Model (4) in Table 4). We
use US annual real personal consumption expenditures as a proxy for aggregate consumption over
the sample period of 1931:07 to 2011:12 (966 observations).To compare model implications with
the data, we simulate a finite sample of consumption growth,ct+1/ct , over 966 months. Following
convention, we then compute the annualized consumption growth as exp(∑12

j=1 log(ct+ j/ct+ j−1)).
The reported model mean, standard deviation, and auto-correlation are based on the annualized
consumption growth.

Parameter DH RU-SV RU-CJI Data implied

Panel A: Preferences
ρ -9.0000 0.3333 0.3333
α -9.0000 -9.0000
β 0.9980 0.9980 0.9980
ϕh 0.9000
s 0.5000
Panel B: Consumption growth dynamics
γ0 1.0000 1.0000 1.0000
log(g) 0.0015 0.0015 0.0015
η0 0.1000
γ1 0.0271 0.0271 0.0281
ϕg 0.9790 0.9790 0.9690
υ1/2 0.0099 0.0099 0.0079
ν0 0.23×10−5

ϕυ 0.9870
h 0.0008
θ -0.1500
δ 0.1500
ψ0 1.0000
b1 0.9977 0.9979
Panel C: Consumption growth
Mean (annualized) 1.0192 1.0190 1.0189 1.0339
Std. Dev. (annualized) 0.0416 0.0415 0.0369 0.0287
Autocorrelation 0.2424 0.2433 0.1771 0.2386
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